請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8338
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏恒巍(Hen-Wei Wei) | |
dc.contributor.author | Bo-Syun Li | en |
dc.contributor.author | 李柏勳 | zh_TW |
dc.date.accessioned | 2021-05-20T00:52:20Z | - |
dc.date.available | 2020-08-25 | |
dc.date.available | 2021-05-20T00:52:20Z | - |
dc.date.copyright | 2020-08-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-07 | |
dc.identifier.citation | Association of Official Analytical Chemists (AOAC) 1984. Official methods of analysis, 14th edition. AOAC, Arlington, VA, USA. Aviagen 2014. Arbor acres plus broiler nutrition specification. Aviagen Incorporated, USA. Aviagen 2014. Arbor acres plus broiler performance objectives. Aviagen Incorporated, USA. Agricultural Research Council (ARC) 1981. The nutrient requirement of pigs. Commonwealth Agricultural Bureaux, Slough, UK. Baker DH 1991. Partitioning nutrients for growth and other metabolic functions: Efficiency and priority considerations. Poultry Science 70, 1797-1805. Baker DH and Han Y 1994. Ideal amino acid profile for chicks during the first three weeks post-hatching. Poultry Science 73, 1441-1447. Baker DH, Batal AB, Parr TM, Augspurger NR and Parsons CM 2002. Ideal ratio (relative to lysine) of tryptophan, threonine, isoleucine, and valine for chicks during the second and third weeks post hatch. Poultry Science 73, 485-494. Batterham ES, Anderson LM, Baigent DR and White E 1990. Utilization of ileal digestible amino acids by growing pigs: Effects of dietary lysine concentration on efficiency of lysine retention. British of Journal Nutrition 64, 81-94. Becker DE, Ullrey DE and Terrill SW 1954. Protein and amino acid intakes for optimum growth rate in the young pig. Journal of Animal Science13, 346-356. Bedford MR and Summers JD 1985. Influence of the ratio of essential to non-essential amino acids on performance and carcass composition of the broiler chick. British Poultry Science 26, 483-491. Bender AE 1965. The balancing of amino acid mixtures and protein. Proceedings of The Nutrition Society 24, 190-197. Boisen S, Hvelplund T and Weisbjerg MR 2000. Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Production Science 64, 239-251. Chung TK and Baker DH 1992. Ideal amino acid pattern for 10-kilogram pigs. Journal of Animal Science 70, 3102-3111. Cole DJA 1978. Amino acid nutrition of the pig. In Recent advances in animal nutrition (ed. W Haresign and D Lewis), pp. 51-67. Butterworths Publishing, London, UK. Corzo A, Kidd MT, Thaxton JP and Kerr BJ 2005. Dietary tryptophan effects on growth and stress responses of male broiler chicks. British Poultry Science 46, 478-484. Cuca M and Jensen LS 1990. Arginine requirement of starting broiler chicks. Poultry Science 69, 1377-1382. Diógenes AF, Fernandes JBK, Dorigam JCP, Sakomura NK, Rodrigues FHF, Lima BTM and Gonçalves FH 2016. Establishing the optimal essential amino acid ratios in juveniles of Nile tilapia (Oreochromis niloticus) by the deletion method. Aquaculture Nutrition 22, 435-443. Dove H, Pearce GR and Tribe DE 1977. Utilization of amino acids by preruminant lambs. I. The effect of alterations in total essential amino acid intake at constant nitrogen intake. Australian Journal of Agricultural Research. 28, 917-932. D’Mello JPF 1994. Amino acid imbalances, antagonisms and toxicities. In Amino acids in farm animal nutrition (ed. JPF D’Mello), pp. 63-97. CABI Publishing, Wallingford, UK. Edwards HM, Baker DH, Fernandez SR and Parsons CM 1997. Maintenance threonine requirement and efficiency of its use for accretion of whole-body threonine and protein in young chicks. British Journal of Nutrition 78, 111-119. Edwards HM and Baker DH 1999. Maintenance sulfur amino acid requirements of young chicks and efficiency of their use for accretion of whole-body sulfur amino acid and protein. Poultry Science 78, 1418-1423. Edwards HM, Fernandez SR and Baker DH 1999. Maintenance lysine requirement and efficiency of using lysine for accretion of whole-body lysine and protein in young chicks. Poultry Science 78, 1412-1417. Ekperigin HE and Vohra P 1981. Histopathological and biochemical effects of feeding excess dietary methionine to broiler. Avian Diseases 25, 82-95. Emmert JL and Backer DH 1997. Use of the ideal protein concept for precision formulation of amino acid levels in broiler diets. Journal of Applied Poultry Research 6, 462-470. Farran MT and Thomas OP 1990. Dietary requirements of leucine, isoleucine, and valine in male broilers during the starter period. Poultry Science 69, 757-762. Featherston WR, Bird HR and Harper AE 1962. Ability of the chick to utilize d- and excess l-indispensable amino acid nitrogen in the synthesis of dispensable amino acids. Journal of Nutrition 78, 95-100. Fevold HL 1951. Egg proteins. Advances in Protein Chemistry 6, 187-252. Fisher C, Moriss TR and Jennings RC 1973. A model for the description and prediction of the response of laying hens to amino acid intake. British Journal of Nutrition 14, 469-484. Fisher H, Griminger P, Leveille GA and Shapiro R 1960. Quantitative aspects of lysine deficiency and amino acid imbalance. Journal of Nutrition 71, 213-220. Fuller MF, McWilliam R, Wang TC and Giles LR 1989. The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. British Journal of Nutrition 62, 255-267. Fuller MF and Garlick PJ 1994. Human amino acid requirements: Can the controversy be resolved. Annual Review of Nutrition 14, 217-241. Gahl MJ, Crenshaw TD and Benevenga NJ 1995. Diminishing returns in weight, nitrogen, and lysine gain of pigs fed six levels of lysine from three supplemental sources. Journal of Animal Science 73, 3177-3187. Garlick PJ, Burk TL and Swick RW 1976. Protein synthesis and RNA in tissues of the pig. American Journal of Physiology 230, 1108-1112. Gietzen DW, Erecius LF and Rogers QR 1998. Neurochemical changes after imbalanced diet suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. Journal of Nutrition 128, 771-781. Glista WA 1951. The amino acid requirements of the chick : method and application to some of the amino acids. PhD thesis, University of Illinois, Urbana, Illinois. Griffin ME, Wilson KA and Brown PB 1994. Dietary arginine requirement of juvenile hybrid striped bass. Journal of Nutrition 124, 888-893. Han Y and Baker DH 1991. Lysine requirements of fast- and slow-growing broiler chicks. Poultry Science 70, 2018-2114. Heger J, Frydrych Z and Fronek P 1987. The effect of nonessential nitrogen on the utilization of dietary protein in the growing rat. Journal of Animal Physiology and Animal Nutrition 57, 130-139. Heger J, Mengesha S and Vodehnal D 1998. Effect of essential:total nitrogen ratio on protein utilization in the growing pig. British Journal of Nutrition 80, 537-544. Hurwitz S, Sklan D and Bartov I 1978. New formal approaches to the determination of energy and amino acid requirements of chicks. Poultry Science 57,197-205. Ikemoto S, Miyashita M, Yamanaka C, Shizuka F, Kido Y, Kishi K, Sogawa Y, Kori H and Yamamoto S 1989. Optimal ratios of essential to total amino acids for amino acid mixtures given to rats. Nutrition Reports International 39, 477-486. Kalinowski A, Moran EJ and Wyatt C 2003. Methionine and cystine requirements of slow- and fast-feathering male broilers from zero to three weeks of age. Poultry Science 82, 1423-1427. Kidd MT, Corzo A, Hoehler D, Kerr BJ, Barber SJ and Branton SL 2004. Threonine needs of broiler chickens with different growth rates. Poultry Science 83, 1368-1375. Klain GJ, Scott HM and Johnson BC 1960a. The protein requirement of the growing chick determined with amino acid mixtures. Journal of Nutrition 71, 209-212. Klain GJ, Scott HM and Johnson BC 1960b. The amino acid requirement of the growing chick fed a crystalline amino acid diet. Poultry Science 39, 39-44. Konashi S, Takahashi K and Akiba Y 2000. Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens. British Journal of Nutrition 83, 449-456. Kreuzer M, Klrchgessner M and Steinhart H 1988. Einfluß der Energie- und Proteinversorgung sowie des Altersstadiums auf die Aminosäurenzusammensetzung von Broilern. Archiv fur Geflugelkunde 52, 133-141. Leeson S, Caston L and Summers JD 1996. Broiler response to diet energy. Poultry Science 75, 529-535. Lemme A 2003. The 'Ideal Protein Concept' in broiler nutrition 1. Methodological aspects - Opportunities and limitations. Degussa AG Amino News 4, 2-8. Leveille GA and Fisher H 1958. The amino acid requirements for maintenance in the adult rooster: i. Nitrogen and energy requirements in normal and protein-depleted animals receiving whole egg protein and amino acid diets. Journal of Nutrition 66, 441-453. Leveille GA and Fisher H 1959. Amino acid requirements for maintenance in the adult rooster: ii. The requirements for glutamic acid, histidine, lysine and arginine. Journal of Nutrition 69, 289-294. Leveille GA and Fisher H 1960. Amino acid requirement for maintenance in the adult rooster: iii. The requirements for leucine, isoleucine, valine and threonine, with reference also to the utilization of the d-isomers of valine, threonine and isoleucine. Journal of Nutrition 70, 135-140. Leveille GA, Shapiro R and Fisher H 1960. Amino acid requirements for maintenance in the adult rooster: iv. The requirements for methionine, cystine, phenylalanine, tyrosine and tryptophan; the adequacy of the determined requirements. Journal of Nutrition 72, 8-15. Li GH, Qu MG, Zhu NH and Yan XH 2003. Determination of the amino acid requirements and optimum dietary amino acid pattern for growing Chinese taihe silky fowls in early stage. Asian-Australasian Journal of Animal Sciences 16, 1782-1788. Morris TR 1999. Experimental design and analysis in animal sciences. CABI, USA. Morris TR 2004. Nutrition of chicks and layers. World's Poultry Science Journal 60, 5-18. Musharaf NA and Latshaw JD 1999. Heat increment as affected by protein and amino acid nutrition. World’s Poultry Science Journal 55, 233-240. National Research Council (NRC) 1994. Nutrient requirements of poultry, 9th revised edition. National Academy Press, Washington, DC, USA. National Research Council (NRC) 1998. Nutrient requirements of swine, 9th revised edition. National Academy Press, Washington, DC, USA. Otto ER, Yokoyama M, Ku PK, Ames NK and Trottier NL 2003. Nitrogen balance and ileal amino acid digestibility in growing pigs fed diets reduced in protein concentration. Journal of Animal Science 81, 1743-1753. Robbins KR, Saxton AM and Southern LL 2006. Estimation of nutrient requirements using broken-line regression analysis. Journal of Animal Science 84, 155-165. Roth FX, Gotterbarm GG, Windisch W and Kirchgessner M 1999. Einfluss des gehalts an nichtessentiellen aminosäuren im futter auf die stickstoffbilanz und auf den protein-turnover des ganzkörpers von wachsended schweinen. Journal of Animal Physiology and Animal Nutrition 81, 232-238. Roth FX, Gruber K and Kirchgessner M 2001. The ideal dietary amino acid pattern for broiler-chicks of age 7 to 28 days. Archiv fur Geflugelkunde 65, 199-206. Si JL, Fritts CA, Burnham DJ and Waldroup PW 2004. Extent to which crude protein may be reduced in corn-soybean meal broiler diets through amino acid supplementation. International Journal of Poultry Science 3, 46-50. Sklan D and Noy Y 2005. Direct determination of optimal amino acid intake for maintenance and growth in broilers. Poultry Science 84, 412-418. Southern LL and Baker DH 1983. Arginine requirement of the young pig. Journal of Animal Science 57, 402-412. Sugahara M and Ariyoshi S 1968. The role of dispensable amino acids for the maximum growth of chicks. Agricultural and Biological Chemistry 32, 153-160. Wang TC and Fuller MF 1989. The optimum dietary amino acid pattern for growing pigs:1. Experiments by amino acid deletion. British of Journal Nutrition 62, 77-89. Wecke C, Khan DR, Sunder A and Liebert F 2018. Age and Gender Dependent Amino Acid Concentrations in the Feather, Feather-Free and Whole Empty Body Protein of Fast Growing Meat-Type Chickens. Open Journal of Animal Sciences 8, 223-238. Wei HW, Kuo HM, Chiu WZ and Chen BJ 2009. The optimum dietary essential amino acid pattern for male Taiwan country chicks. Asian-Australasian Journal of Animal Sciences 22, 1186-1194. Young VR and Zamora J 1968. Effects of altering the proportion of essential to non-essential amino acids on growth and plasma amino acid levels in the rat. Journal of Nutrition 96, 21-27. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8338 | - |
dc.description.abstract | 本研究之目的乃在探討現今商用白肉雞對各必需胺基酸之可消化需要量,以及整體必需胺基酸與整體非必需胺基酸間之比例,藉以建立飼糧中理想胺基酸組成。 本研究分為四個試驗,皆以3日齡之雄性白肉雞(Arbor Acres Plus)為試驗動物,試驗為期7日,至10日齡結束。試驗一以滿足愛拔益加飼養管理手冊0至10日齡各營養分推薦量之玉米–大豆粕實用飼糧餵飼雞隻,並根據每日體重、採食量與飼糧中可代謝能濃度,計算出3至10日齡白肉雞平均每日每公斤代謝體重所對應之可代謝能需要量(k值)為381.10±23.83 kcal。試驗二則參考愛拔益加飼養管理手冊與NRC (1994) 之各必需胺基酸推薦量,配製各必需胺基酸總推薦量之50、75、100、125或150% 半純化飼糧,並且依據雞隻個別代謝體重、k值與處理飼糧之可代謝能濃度,計算每日應有之採食量,進行管飼。試驗結束後,以比較性屠宰法分析其體氮蓄積率,將結果以二次曲線模型進行分析,結果得知在總推薦量百分比為109.75%時,能致使體氮蓄積率表現最佳。試驗三以試驗二之結果為對照組飼糧,其餘組別則分別是以每一個必需胺基酸當成唯一限制胺基酸之缺乏組,且同一缺乏組有兩種不同缺乏程度,分別為對照組的50%與60%。試驗期間之餵食方式亦以管飼進行,試驗結果顯示,將對照組之體氮蓄積率畫成一條水平線,再將各胺基酸缺乏組別所對應的體氮蓄積率進行直線迴歸,各組迴歸直線與對照組的水平線之交點的x軸對應值,即為白肉雞每日每公斤代謝體重對此必需胺基酸用於生長加維持之需要量。而各迴歸直線的斜率之倒數和迴歸直線與x軸的截距,則分別代表雞隻每日每公斤代謝體重對此必需胺基酸用於生長與維持之需要量。另將所求得之生長、維持、生長加維持之各必需胺基酸需要量除以離胺酸組之數值,則得到3至10日齡肉雞生長加維持所需之理想必需胺基酸組成為Lys:Arg:SAA:His:Trp:Leu:AAA:Ile:Thr:Val =100:108:74:32:13:123:123:63:70:81;生長所需之組成為100:113:77:33:13:125:123:66:74:83;維持所需之組成為100:21:5:13:15:58:125:3:11:41。將個別生長與維持所需之需要量,和不同生長階段之體蛋白質蓄積率,與代謝體重進行各生長階段之動態性估測,可求得0至10日齡之理想必需胺基酸組成為100:111:75:32:13:123:123:64:72:81;10至21日齡為100:111:75:32:13:123:123:64:72:81;21日齡至35日齡為100:109:74:32:13:122:123:63:71:81。試驗四以添加不同濃度之非必需胺基酸與試驗三求得之3至10日齡各必需胺基酸生長加維持之需要量,分別配製出五種飼糧中整體必需胺基酸(E)佔總胺基酸(T)比例(E:T)為0.62、0.48、0.39、0.32或0.28之組別,並以管飼進行試驗,試驗結果顯示隨著飼糧中E:T增加,體氮蓄積率呈線性提升(P < 0.01),而氮利用效率則呈線性下降(P < 0.01),兩指標之高原期轉折點分別為0.37與0.44。 綜合上述所建立之理想胺基酸組成,可當成評判商用飼料中必需胺基酸組成良窳之參考,以期能對白肉雞生長性能與飼糧中胺基酸的平衡能有效地提升及改善。 | zh_TW |
dc.description.abstract | The objective of this study was to establish ideal amino acid pattern (IAAP) of dietary protein for current commercial broiler by using a unique methodology for investigating digestible requirements for individual essential amino acids and to determine a proper proportion between essential and non-essential amino acids. In this study, three-day-old male broilers were used as an experimental animal model. The test lasted for 7 days and ended at 10 days of age. The study was divided into four trials. First trial was to feed the chickens with a practical diet, based on corn and soybean meal, meeting the recommended nutritional requirements in the Arbor Acres broiler feeding management manual. According to the daily body weight, feed intake and the metabolizable energy concentration in the diet, the mean of metabolizable energy requirement (k value) for daily maintenance plus growth based on metabolic body weight was calculated as 381.10±23.83 kcal for 3 to 10 day old broiler. In the second trial, the percentages of all essential amino acids in five diets were designed as 50, 75, 100, 125 or 150% referring to the broiler requirements suggested by the Arbor Acres Broiler Nutrition Supplement (2014) and NRC (1994). According to the individual metabolic body weight of individual broilers, the k value obtaining in trial 1 and the metabolizable energy concentration of the corresponding diet, daily feed intake was computed for intubation. In the end of the experiment, the nitrogen retention rate was calculated by comparative slaughtering. To result in the best nitrogen retention rate for broiler from Day 3-10, the results were computed by a quadratic regression model to acquire an optimum percentage of requirements, 109.75%, recommended by the afore-mentioned literature for all essential amino acids. In the third trial, the results of the trial 2 was served as the diet for the control group. Individual essential amino acids were assigned to be the only limiting amino acid in corresponding deficiency groups, and the deficiency level was 50 or 60% of the control group, respectively. The intubation was also conducted in this trial as well. The x coordinate of an intersection for each straight line, resulting from every two deficient groups with the same limiting amino acid but at different levels, with a horizontal line from the response of the control group represented the daily requirement for the corresponding essential amino acid based on metabolic body weight for growth plus maintenance. The x-intercept and the reciprocal of slope for each straight line stood for the respective requirement for maintenance and growth, respectively, corresponding to the examined amino acid. The each amino acid requirements obtained for growth, maintenance, and growth plus maintenance were divided by the value of lysine to obtain the ideal essential amino acid pattern (IEAAP) for growth plus maintenance from 3 to 10 days of age was Lys: Arg: SAA: His: Trp: Leu: AAA: Ile: Thr: Val =100: 108: 74: 32: 13: 123:123: 63: 70: 81, respectively, for growth was 100: 113: 77: 33: 13 : 125: 123: 66: 74: 83, respectively, and for maintenance was 100: 21: 5: 13: 15: 58: 125: 3: 11: 41, respectively. The requirements for respective growth and maintenance, the body protein accumulation rate and metabolic body weight of different growth stages were used to estimate dynamically the IEAAP at each growth stage. The IEAAP was computed as 100: 111: 75: 32: 13: 123: 123: 64: 72: 81 for 0 to 10 days of age, as 100: 111: 75: 32: 13: 123: 123: 64: 72: 81 for 10 to 21 days of age, and as 100: 109: 74: 32: 13: 122: 123: 63: 71: 81 for 21 to 35 days of age. In the fourth trial, the ratio of overall essential amino acids relative to total amino acids (E: T) was designed as 0.62, 0.48, 0.39, 0.32 or 0.28 by changing dietary non-essential amino acid levels and fixing individual essential amino acid requirement levels for growth plus maintenance from the trial 3. The feeding way was also conducted by intubation. The results showed that the nitrogen retention rate increased linearly (P < 0.01) while the nitrogen utilization decreased linearly (P < 0.01) with the increase of E: T in the diets. The plateau turning points of these criteria were 0.37 and 0.44, respectively. The IAAP established in this study will be utilized as a criterion for checking the amino acid composition of practical diets and improving the balance of amino acids in the diet resulting in better growth performance for broiler. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:52:20Z (GMT). No. of bitstreams: 1 U0001-0308202011332500.pdf: 1754324 bytes, checksum: cbcfbd4a35fadf160eb64aaa59fedf2d (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 摘要 III ABSTRACT V 目錄 VIII 圖目錄 X 表目錄 XI 壹、前言 1 貳、文獻探討 2 一、理想胺基酸組成之概念與研究意義 2 二、理想胺基酸組成的研究模式 4 三、家禽胺基酸用於生長與維持需要量之研究模式 13 四、整體必需胺基酸與整體非必需胺基酸之間的關係 17 五、影響肉雞理想胺基酸組成的因素 20 六、本實驗之研究目的 25 參、試驗內容 26 試驗一、檢測生長前期商用白肉雞,每日每公斤代謝體重所對應之可代謝能需要量(K值) 26 一、前言 26 二、材料與方法 27 三、結果 30 四、討論 31 試驗二、檢測愛拔益加飼養管理手冊之各必需胺基酸推薦量所配製之結晶態胺基酸飼糧對生長前期白肉雞之適用性 32 一、前言 32 二、材料與方法 33 三、結果 36 四、討論 40 試驗三、白肉雞生長前期飼糧中理想必需胺基酸組成之建立與不同生長階段之理想必需胺基酸組成之動態性估測 42 一、前言 42 二、材料與方法 43 三、結果 48 四、討論 55 試驗四、白肉雞生長前期飼糧中整體必需胺基酸與整體非必需胺基酸之比例關係 62 一、前言 62 二、材料與方法 63 三、結果 66 四、討論 70 肆、結論 72 伍、附錄 73 陸、參考文獻 88 | |
dc.language.iso | zh-TW | |
dc.title | 白肉雞飼糧中理想胺基酸組成之建立 | zh_TW |
dc.title | Establishing the Dietary Ideal Amino Acid Pattern for Broiler | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.advisor-orcid | 魏恒巍(0000-0001-9096-1013) | |
dc.contributor.oralexamcommittee | 王翰聰(Han-Tsung Wang),林原佑(Yuan-Yu Lin),李滋泰(Tzu-Tai Lee) | |
dc.contributor.oralexamcommittee-orcid | 王翰聰(0000-0002-5142-8619),林原佑(0000-0002-3397-3218) | |
dc.subject.keyword | 白肉雞,理想胺基酸組成,體氮蓄積率,必需胺基酸,非必需胺基酸, | zh_TW |
dc.subject.keyword | Broiler,Ideal amino acid pattern,Nitrogen retention rate,Essential amino acids,Non-essential amino acids, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU202002256 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-08-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0308202011332500.pdf | 1.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。