請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83387完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭柏秀(Po-Hsiu Kuo) | |
| dc.contributor.author | Wen-Ya Hsu | en |
| dc.contributor.author | 許雯雅 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:06:20Z | - |
| dc.date.copyright | 2022-10-17 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-22 | |
| dc.identifier.citation | Anderson, M. J. (2001). A new method for non?parametric multivariate analysis of variance. Austral ecology, 26(1), 32-46. Ang, Q. Y., Alba, D. L., Upadhyay, V., Bisanz, J. E., Cai, J., Lee, H. L., . . . Turnbaugh, P. J. (2021). The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health. Elife, 10. doi:10.7554/eLife.70349 Bajaj, J. S., Hylemon, P. B., Ridlon, J. M., Heuman, D. M., Daita, K., White, M. B., . . . Gillevet, P. M. (2012). Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303(6), G675-G685. doi:10.1152/ajpgi.00152.2012 Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Arch Gen Psychiatry, 4, 561-571. doi:10.1001/archpsyc.1961.01710120031004 Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., . . . Clark, A. G. (2015). Host genetic variation impacts microbiome composition across human body sites. Genome Biol, 16, 191. doi:10.1186/s13059-015-0759-1 Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., . . . Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 90. doi:10.1186/s40168-018-0470-z Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., . . . Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. doi:10.1038/s41587-019-0209-9 Bonder, M. J., Kurilshikov, A., Tigchelaar, E. F., Mujagic, Z., Imhann, F., Vila, A. V., . . . Zhernakova, A. (2016). The effect of host genetics on the gut microbiome. Nat Genet, 48(11), 1407-1412. doi:10.1038/ng.3663 Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., . . . Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A, 108(38), 16050-16055. doi:10.1073/pnas.1102999108 Brown, L. C., Tucker, M. D., Sedhom, R., Schwartz, E. B., Zhu, J., Kao, C., . . . Armstrong, A. J. (2021). <em>LRP1B</em> mutations are associated with favorable outcomes to immune checkpoint inhibitors across multiple cancer types. Journal for ImmunoTherapy of Cancer, 9(3), e001792. doi:10.1136/jitc-2020-001792 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581-583. doi:10.1038/nmeth.3869 Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol, 28(2), 203-209. Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4(1). doi:10.1186/s13742-015-0047-8 Chen, W., Liu, F., Ling, Z., Tong, X., & Xiang, C. (2012). Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLOS ONE, 7(6), e39743. doi:10.1371/journal.pone.0039743 Chen, Z., Li, J., Gui, S., Zhou, C., Chen, J., Yang, C., . . . Xie, P. (2018). Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. Neuroreport, 29(5), 417-425. doi:10.1097/wnr.0000000000000985 Chiu, J.-H., Tseng, L.-M., Huang, T.-T., Liu, C.-Y., Wang, J.-Y., Huang, C.-P., . . . Hsu, C.-Y. (2020). MEGF11 is related to tumour recurrence in triple negative breast cancer via chemokine upregulation. Scientific Reports, 10(1), 8060. doi:10.1038/s41598-020-64950-0 Collavin, L., Buzzai, M., Saccone, S., Bernard, L., Federico, C., DellaValle, G., . . . Schneider, C. (1998). cDNA characterization and chromosome mapping of the human GAS2 gene. Genomics, 48(2), 265-269. doi:10.1006/geno.1997.5172 Foster, J. A., & McVey Neufeld, K. A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci, 36(5), 305-312. doi:10.1016/j.tins.2013.01.005 Giannakopoulou, O., Lin, K., Meng, X., Su, M. H., Kuo, P. H., Peterson, R. E., . . . Kuchenbaecker, K. (2021). The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study. JAMA Psychiatry, 78(11), 1258-1269. doi:10.1001/jamapsychiatry.2021.2099 Goodrich, J. K., Davenport, E. R., Beaumont, M., Jackson, M. A., Knight, R., Ober, C., . . . Ley, R. E. (2016). Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe, 19(5), 731-743. doi:10.1016/j.chom.2016.04.017 Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., . . . Ley, R. E. (2014). Human genetics shape the gut microbiome. Cell, 159(4), 789-799. doi:10.1016/j.cell.2014.09.053 Goto, Y., Obata, T., Kunisawa, J., Sato, S., Ivanov, II, Lamichhane, A., . . . Kiyono, H. (2014). Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 345(6202), 1254009. doi:10.1126/science.1254009 Guillemyn, B., Kayserili, H., Demuynck, L., Sips, P., De Paepe, A., Syx, D., . . . Symoens, S. (2019). A homozygous pathogenic missense variant broadens the phenotypic and mutational spectrum of CREB3L1-related osteogenesis imperfecta. Human Molecular Genetics, 28(11), 1801-1809. doi:10.1093/hmg/ddz017 Hu, Q., Wu, C., Yu, J., Luo, J., & Peng, X. (2022). Angelica sinensis polysaccharide improves rheumatoid arthritis by modifying the expression of intestinal Cldn5, Slit3 and Rgs18 through gut microbiota. International Journal of Biological Macromolecules, 209, 153-161. doi:https://doi.org/10.1016/j.ijbiomac.2022.03.090 Huang, C. B., Alimova, Y., Myers, T. M., & Ebersole, J. L. (2011). Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol, 56(7), 650-654. doi:10.1016/j.archoralbio.2011.01.011 Hughes, D. A., Bacigalupe, R., Wang, J., Ruhlemann, M. C., Tito, R. Y., Falony, G., . . . Raes, J. (2020). Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat Microbiol, 5(9), 1079-1087. doi:10.1038/s41564-020-0743-8 Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., . . . Ruan, B. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun, 48, 186-194. doi:10.1016/j.bbi.2015.03.016 Kim, B. J., Lee, Y. S., Lee, S. Y., Baek, W. Y., Choi, Y. J., Moon, S. A., . . . Koh, J. M. (2018). Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J Clin Invest, 128(4), 1429-1441. doi:10.1172/jci91086 Knuesel, T., & Mohajeri, M. H. (2022). The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients, 14(1), 37. Retrieved from https://www.mdpi.com/2072-6643/14/1/37 Kolde, R., Franzosa, E. A., Rahnavard, G., Hall, A. B., Vlamakis, H., Stevens, C., . . . Huttenhower, C. (2018). Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Med, 10(1), 6. doi:10.1186/s13073-018-0515-8 Kuo, P.-H., & Chung, Y.-C. E. (2019). Moody microbiome: Challenges and chances. Journal of the Formosan Medical Association, 118, S42-S54. doi:https://doi.org/10.1016/j.jfma.2018.09.004 Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., Demirkan, A., . . . Zhernakova, A. (2021). Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 53(2), 156-165. doi:10.1038/s41588-020-00763-1 Lee, M. S., Pan, W. H., Liu, K. L., & Yu, M. S. (2006). Reproducibility and validity of a Chinese food frequency questionnaire used in Taiwan. Asia Pac J Clin Nutr, 15(2), 161-169. Lee, P. H., Anttila, V., Won, H., Feng, Y.-C. A., Rosenthal, J., Zhu, Z., . . . Smoller, J. W. (2019). Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 179(7), 1469-1482.e1411. doi:10.1016/j.cell.2019.11.020 Lee, Y. C., Chao, Y. L., Chang, C. E., Hsieh, M. H., Liu, K. T., Chen, H. C., . . . Kuo, P. H. (2019). Transcriptome Changes in Relation to Manic Episode. Front Psychiatry, 10, 280. doi:10.3389/fpsyt.2019.00280 Lewis, S. J., & Heaton, K. W. (1997). Stool Form Scale as a Useful Guide to Intestinal Transit Time. Scandinavian Journal of Gastroenterology, 32(9), 920-924. doi:10.3109/00365529709011203 Li, S. X., Han, Y., Xu, L. Z., Yuan, K., Zhang, R. X., Sun, C. Y., . . . Lu, L. (2018). Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Molecular Psychiatry, 23(3), 597-608. doi:10.1038/mp.2017.85 Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220-230. doi:10.1038/nature11550 Mullins, N., Forstner, A. J., O’Connell, K. S., Coombes, B., Coleman, J. R. I., Qiao, Z., . . . Psychiatry, H. A.-I. (2021). Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 53(6), 817-829. doi:10.1038/s41588-021-00857-4 O'Callaghan, A., & van Sinderen, D. (2016). Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.00925 Ozaki, D., Kubota, R., Maeno, T., Abdelhakim, M., & Hitosugi, N. (2021). Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos Int, 32(1), 145-156. doi:10.1007/s00198-020-05728-y Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., . . . Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 81(3), 559-575. doi:10.1086/519795 Qin, Y., Havulinna, A. S., Liu, Y., Jousilahti, P., Ritchie, S. C., Tokolyi, A., . . . M?ric, G. (2022). Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nature Genetics, 54(2), 134-142. doi:10.1038/s41588-021-00991-z Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., . . . Gl?ckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. doi:10.1093/nar/gks1219 Rausch, P., Rehman, A., K?nzel, S., H?sler, R., Ott, S. J., Schreiber, S., . . . Baines, J. F. (2011). Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A, 108(47), 19030-19035. doi:10.1073/pnas.1106408108 Rawls, J. F., Mahowald, M. A., Ley, R. E., & Gordon, J. I. (2006). Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection. Cell, 127(2), 423-433. doi:https://doi.org/10.1016/j.cell.2006.08.043 Rhee, S. H., Pothoulakis, C., & Mayer, E. A. (2009). Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol, 6(5), 306-314. doi:10.1038/nrgastro.2009.35 Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., . . . Gordon, J. I. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150), 1241214. doi:10.1126/science.1241214 Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., . . . Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), 210-215. doi:10.1038/nature25973 R?hlemann, M. C., Hermes, B. M., Bang, C., Doms, S., Moitinho-Silva, L., Thingholm, L. B., . . . Franke, A. (2021). Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nature Genetics, 53(2), 147-155. doi:10.1038/s41588-020-00747-1 Sanna, S., Kurilshikov, A., van der Graaf, A., Fu, J., & Zhernakova, A. (2022). Challenges and future directions for studying effects of host genetics on the gut microbiome. Nature Genetics, 54(2), 100-106. doi:10.1038/s41588-021-00983-z Saulnier, D. M., Ringel, Y., Heyman, M. B., Foster, J. A., Bercik, P., Shulman, R. J., . . . Guarner, F. (2013). The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes, 4(1), 17-27. doi:10.4161/gmic.22973 Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., . . . Ye, J. (2009). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 38(suppl_1), D5-D16. doi:10.1093/nar/gkp967 Schlegel, C. R., Georgiou, M. L., Misterek, M. B., St?cker, S., Chater, E. R., Munro, C. E., . . . Costa-Pereira, A. P. (2015). DAPK2 regulates oxidative stress in cancer cells by preserving mitochondrial function. Cell Death & Disease, 6(3), e1671-e1671. doi:10.1038/cddis.2015.31 Scotti, E., Bou?, S., Sasso, G. L., Zanetti, F., Belcastro, V., Poussin, C., . . . Hoeng, J. (2017). Exploring the microbiome in health and disease: Implications for toxicology. Toxicology Research and Application, 1, 2397847317741884. doi:10.1177/2397847317741884 Sender, R., Fuchs, S., & Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol, 14(8), e1002533. doi:10.1371/journal.pbio.1002533 Sommer, F., & B?ckhed, F. (2013). The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology, 11(4), 227-238. doi:10.1038/nrmicro2974 Suzuki, T. A., & Ley, R. E. (2020). The role of the microbiota in human genetic adaptation. Science, 370(6521), eaaz6827. doi:doi:10.1126/science.aaz6827 Torres, F. (2020). What is depression? Retrieved from https://psychiatry.org/patients-families/depression/what-is-depression Tsai, H. C., Lu, M. K., Yang, Y. K., Huang, M. C., Yeh, T. L., Chen, W. J., . . . Kuo, P. H. (2012). Empirically derived subgroups of bipolar I patients with different comorbidity patterns of anxiety and substance use disorders in Han Chinese population. J Affect Disord, 136(1-2), 81-89. doi:10.1016/j.jad.2011.08.015 Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using QQ and manhattan plots. bioRxiv, 005165. Vacca, M., Celano, G., Calabrese, F. M., Portincasa, P., Gobbetti, M., & De Angelis, M. (2020). The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 8(4). doi:10.3390/microorganisms8040573 Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E. F., Wang, J., Tito, R. Y., . . . Raes, J. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 4(4), 623-632. doi:10.1038/s41564-018-0337-x Varghese, A. K., Verd?, E. F., Bercik, P., Khan, W. I., Blennerhassett, P. A., Szechtman, H., & Collins, S. M. (2006). Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology, 130(6), 1743-1753. doi:10.1053/j.gastro.2006.02.007 Wang, J., Kurilshikov, A., Radjabzadeh, D., Turpin, W., Croitoru, K., Bonder, M. J., . . . Zhernakova, A. (2018). Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome, 6(1), 101. doi:10.1186/s40168-018-0479-3 WHO. (2021). Depression. Retrieved from https://www.who.int/news-room/fact-sheets/detail/depression Xie, H., Guo, R., Zhong, H., Feng, Q., Lan, Z., Qin, B., . . . Jia, H. (2016). Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. Cell Syst, 3(6), 572-584.e573. doi:10.1016/j.cels.2016.10.004 Xing, L., Shi, G., Mostovoy, Y., Gentry, N. W., Fan, Z., McMahon, T. B., . . . Fu, Y.-H. (2019). Mutant neuropeptide S receptor reduces sleep duration with preserved memory consolidation. Science Translational Medicine, 11(514), eaax2014. doi:doi:10.1126/scitranslmed.aax2014 Xu, X., Zhan, G., Chen, R., Wang, D., Guan, S., & Xu, H. (2022). Gut microbiota and its role in stress-induced hyperalgesia: Gender-specific responses linked to different changes in serum metabolites. Pharmacological Research, 177, 106129. doi:https://doi.org/10.1016/j.phrs.2022.106129 Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A Rating Scale for Mania: Reliability, Validity and Sensitivity. British Journal of Psychiatry, 133(5), 429-435. doi:10.1192/bjp.133.5.429 Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., . . . Xie, P. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21(6), 786-796. doi:10.1038/mp.2016.44 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83387 | - |
| dc.description.abstract | 微生物佔了人體細胞總數的一半以上,而它們大多都生活在宿主的腸道中,稱為腸道微生物,過去研究發現這些迷你居民與許多宿主的身體表徵和疾病有關,動物實驗更證明雙向腸腦軸的存在,顯示人類的第二個大腦-大腸及腸道菌相與宿主的壓力、焦慮、情緒和行為之間存在密切關係,腸道菌相在其中更是扮演了重要的角色,而情緒疾患中,憂鬱症在全球疾病負擔中名列前茅,每年奪走超過 70 萬人的生命,因此,研究人類腸道菌相和憂鬱症狀的交互作用或許可以使我們更加了解疾病機制。然而一項回顧性研究顯示,多篇研究在憂鬱與菌相組成之間的增減方向不一致,這可能不僅由環境造成,還與宿主基因有關,由於特定細菌豐度在雙胞胎研究中發現了適中的遺傳力,顯示宿主遺傳因子對腸道菌相的影響需要更全面的研究。微生物菌相與全基因體關聯分析 (mbGWAS) 近年來被用於研究宿主遺傳變異與菌相之間的交互作用,然而,即使最顯著的訊號也無法在重現在每篇mbGWAS中,且大多關注健康的歐洲及美洲人。 本研究欲探索臺灣人群中遺傳變異與腸道菌相之間的關聯,並評估是否可以複製先前mbGWAS的研究結果。此外,也單獨分析憂鬱患者的基因與腸道菌相之間是否存在特殊關係。 本研究在臺灣北部醫院招募了 280 位患有情緒疾患的成年人 (143位憂鬱症和 137位非躁症下的躁鬱症) 和 101名從未診斷為精神疾患的健康對照組。使用訪談和自評的問卷蒐集人口學、臨床和飲食變項。我們定序糞便樣本中的微生物16S rRNA 基因的 V3–V4 和 V4 區域,並以屬作為最小分類的腸道菌相資料;由血液樣本取得宿主遺傳變異。我們使用線性和邏輯回歸進行了 2 個模型 (全部個案和僅納入憂鬱病患) 來分析腸道菌相,並校正相關協變量以盡量減少它們對腸道菌相組成的影響,接著從模型中提出殘差,以累加性模型 (additive model) 進行遺傳關聯分析。 我們在通過品質控管的全樣本 (n=368) 和情緒疾患個案 (n=267) 中分別找到 14 個和 9 個達到 GWAS 顯著水準 (P < 5×10-8) 的菌相和遺傳變異之間的關聯,其中有4個基因 (LRP1B、NPSR1-AS1、MGAT5、SLIT3) 複製了之前的 mbGWAS 結果,儘管位點和相關的細菌種類並不完全相同。此外,我們也發現僅在憂鬱患者中特有的 5 個信號。然而,這些關聯的潛在機制仍然未知。 未來的研究需要擴大樣本數,以獲得台灣人群中更穩定且可重複的結果,並進行動物模型研究宿主的分子生物學和疾病機制。隨著遺傳變異對腸道菌相組成的影響有更進一步的發現,可以使我們對宿主-微生物的交互作用和疾病機制 (包括情緒疾患) 有更多的了解。 | zh_TW |
| dc.description.abstract | The human microbiome makes up more than half of the body's total cell counts, almost all of them live in our gut, and we call them gut microbiota. Previous studies have identified these tiny residents are associated with many host body traits and diseases. Experimental studies provided convincing evidence of the strong connection between gut and host’s stress, anxiety, mood, and behavior (the bidirectional gut-brain axis) and the important effect of gut microbiota ,indicating the need for investigation of human gut microbiota and mood disorders interaction. Mood disturbance is common in the population, and depression ranks high in the global disease burden and takes away over 700,000 people’s lives every year. A review study showed inconsistent associations of depression and microbial traits, which might be caused by the environment and host genes. The heritability of specific bacteria abundance estimated from twin studies in human was moderate, indicating the need to investigate the impacts of host genetic factors on gut microbiota. Microbiome genome-wide association studies (mbGWAS) were recently used to study the interaction between host genetic variants and microbiota composition. It is still a field in its infancy and lacks overlap for even the most vital signals among studies and is mostly conducted in European or American healthy populations. To fill in the study gaps, the current study explored associations between genetic variants and gut microbiota in a Taiwanese sample. It evaluated whether findings in the previous mbGWAS in European populations can be replicated. We also explicitly investigated the relationships between associated genes for mood disorders and gut microbiota among depressive patients using a case-only design. We recruited 280 adult patients with mood disorders (143 major depressive disorder and 137 bipolar disorder under depressive episode) in several central and regional hospitals in Taipei and 101 healthy controls. We assessed demographic, clinical and dietary information using interviewed and self-reported questionnaires. For stool samples, we amplified V3-V4 and V4 only regions of the 16S rRNA gene for sequencing and identified microbiota at the genus level. Genetic variants were genotyped from blood samples. We conducted two models (whole samples and case only) using multivariate linear and logistic regression to analyze microbiota data with relevant covariates adjusted to minimize their influences on gut microbiota composition. We then extracted residuals from these models to perform genetic association analysis using additive genetic model. Satisfying a GWAS evidence threshold P < 5 × 10?8, we identified 14 and 9 significant signals for the association between taxa and genetic markers in qualified 368 samples and 267 cases, respectively. Notably, there were four genes, including LRP1B, NPSR1-AS1, MGAT5, and SLIT3, replicated previous mbGWAS results, although not precisely the same SNPs and associated taxa. Furthermore, using case-only design helps us explore exclusive 5 signals only shown in depression patients. However, uthe nderlying mechanism of these associations is still unknown. Future studies are needed to expand the sample size for more stable and replicated results in Taiwanese and conduct animal modto investigaten of host molecular biology and disease. With a further expanded discovery of convincing genetic variants contributing to gut microbiota composition, there will be more insights into host-microbial interaction and the mechanisms of diseases, including mood disturbances. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:06:20Z (GMT). No. of bitstreams: 1 U0001-2209202204554800.pdf: 5316651 bytes, checksum: ff593c9c82500a72b8839fcd898c7de5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II Abstract IV Chapter 1 Introduction 1 1.1 Background 1 1.1.1 The role of gut microbiota in health 1 1.1.2 The Gut-Brain axis 1 1.1.3 Gut microbiota and mood disorders 2 1.1.4 Association between host genetic variants and gut microbiota composition 3 1.2 Study aims 5 Chapter 2 Materials and Methods 6 2.1 Participants 6 2.2 Assessment 6 2.2.1 Clinical characteristics and mood severity 6 2.2.2 Dietary characteristics 8 2.3 Stool sample collection and Gut microbiota sequencing 8 2.3.1 Sample collection 8 2.3.2 DNA extraction 9 2.3.3 Sequencing 10 2.4 16S rRNA microbiota data processing and trait preparation 11 2.4.1 QIIME2 dada2 denoise 11 2.4.2 α-diversity and β-diversity 11 2.4.3 Taxa retention and transformation 12 2.5 Genotyping and quality control 13 2.5.1 DNA extraction from blood samples 13 2.5.2 Genome-wide genotyping 13 2.5.3 Imputation and quality control (QC) 14 2.6 Statistical analysis 14 2.6.1 Description of demographics and clinical characteristics 14 2.6.2 Association analysis of genetic variates and microbiota traits 15 Chapter 3 Results 17 3.1 Demographic, clinical, dietary and stool-related characteristics 17 3.2 Gut microbiota traits – distribution and diversity indices 18 3.3 Genome-wide association analysis 19 3.3.1 Results of Model 1 (All participants) 19 3.3.2 Results of Model 2 (Case only) 20 3.3.3 Replicated mbGWAS results 21 Chapter 4 Discussion 22 4.1 Association between host genetic variates and gut microbiota 22 4.2 Limitations 26 4.3 Conclusion 27 References 28 Figures 35 Tables 43 Supplementary 48 | |
| dc.language.iso | en | |
| dc.subject | 情緒疾患 | zh_TW |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 全基因體關聯分析 | zh_TW |
| dc.subject | 宿主遺傳變異 | zh_TW |
| dc.subject | 憂鬱 | zh_TW |
| dc.subject | Gut microbiota | en |
| dc.subject | mood disorder | en |
| dc.subject | depression | en |
| dc.subject | host genetic | en |
| dc.subject | Genome-wide association analysis | en |
| dc.title | 情緒疾患宿主之遺傳變異與腸道菌相組成之關聯性 | zh_TW |
| dc.title | Association between host genetic variants and gut microbiota composition in mood disorders | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧子彬(Tzu-Pin Lu),馮嬿臻(Yen-Chen Anne Feng),吳偉愷(Wei-Kai Wu) | |
| dc.subject.keyword | 腸道菌相,全基因體關聯分析,宿主遺傳變異,憂鬱,情緒疾患, | zh_TW |
| dc.subject.keyword | Gut microbiota,Genome-wide association analysis,host genetic,depression,mood disorder, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202203786 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-22 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2209202204554800.pdf 未授權公開取用 | 5.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
