請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83352
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林永松(Yeong-Sung Lin) | |
dc.contributor.author | Yu-Wen Lai | en |
dc.contributor.author | 賴俞雯 | zh_TW |
dc.date.accessioned | 2023-03-19T21:05:23Z | - |
dc.date.copyright | 2022-09-26 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-21 | |
dc.identifier.citation | [1] C. W. Tsao, A. W. Aday, Z. I. Almarzooq, A. Alonso, A. Z. Beaton, M. S. Bittencourt, A. K. Boehme, A. E. Buxton, A. P. Carson, Y. Commodore-Mensah, et al.,“Heart disease and stroke statistics—2022 update: a report from the american heart association,” Circulation, vol. 145, no. 8, pp. e153–e639, 2022. [2] F. Sarijaloo, J. Park, X. Zhong, and A. Wokhlu, “Predicting 90 day acute heart failure readmission and death using machine learning-supported decision analysis,” Clinical cardiology, vol. 44, no. 2, pp. 230–237, 2021. [3] 衛生福利部統計處, “110 年死因統計結果分析 (含附表),” 2022. [4] R. Coronel, J. De Groot, and J. Van Lieshout, “Defining heart failure,” Cardiovascular research, vol. 50, no. 3, pp. 419–422, 2001. [5] R. C. of Physicians, Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care. UK: National Clinical Guideline Centre, 2010. [6] M. W. Rich, “Heart failure in the 21st century: A cardiogeriatric syndrome,” The Journals of Gerontology: Series A, vol. 56, no. 2, pp. M88–M96, 2001. [7] M. Tsuchihashi, H. Tsutsui, K. Kodama, F. Kasagi, and A. Takeshita, “Clinical characteristics and prognosis of hospitalized patients with congestive heart failure-a study in fukuoka, japan,” Japanese circulation journal, vol. 64, no. 12, pp. 953–959, 2000. [8] S. A. Hunt, D. W. Baker, M. H. Chin, M. P. Cinquegrani, A. M. Feldman, G. S. Francis, T. G. Ganiats, S. Goldstein, G. Gregoratos, M. L. Jessup, et al., “Acc/aha guidelines for the evaluation and management of chronic heart failure in the adult: executive summary: A report of the american college of cardiology/american heart association task force on practice guidelines (committee to revise the 1995 guidelines for the evaluation and management of heart failure) developed in collaboration with the international society for heart and lung transplantation endorsed by the heart failure society of america,” Journal of the American College of Cardiology, vol. 38, no. 7, pp. 2101–2113, 2001. [9] T. M. Krummel, “The rise of wearable technology in health care,” JAMA Network Open, vol. 2, no. 2, pp. e187672–e187672, 2019. [10] N. Sviridova and K. Sakai, “Human photoplethysmogram: new insight into chaotic characteristics,” Chaos, Solitons & Fractals, vol. 77, pp. 53–63, 2015. [11] J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiological measurement, vol. 28, no. 3, p. R1, 2007. [12] D. K. Shaeffer, “Mems inertial sensors: A tutorial overview,” IEEE Communications Magazine, vol. 51, no. 4, pp. 100–109, 2013. [13] C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using cmos-mems technique,” IEEE Transactions on Electron Devices, vol. 57, no. 7, pp. 1670–1679, 2010. [14] S. A. Siddiqui, Y. Zhang, Z. Feng, and A. Kos, “A pulse rate estimation algorithm using PPG and smartphone camera,” Journal of Medical Systems, vol. 40, 2016. [15] D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, and H. Nazeran, “A review on wearable photoplethysmography sensors and their potential future applications in health care,” International journal of biosensors & bioelectronics, vol. 4, no. 4, p. 195, 2018. [16] H. Nogami, W. Iwasaki, N. Morita, and R. Takigawa, “Relationship between AC/DC ratio and light-blocking structure for reflective photoplethysmographic sensor,” Sensors and Materials, vol. 30, no. 12, pp. 3021–3028, 2018. [17] Y.-H. Kao, P. C.-P. Chao, and C.-L. Wey, “Design and validation of a new PPG module to acquire high-quality physiological signals for high-accuracy biomedical sensing,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 1, pp. 1–10, 2018. [18] A. A. Alian and K. H. Shelley, “Photoplethysmography,” Best Practice & Research Clinical Anaesthesiology, vol. 28, no. 4, pp. 395–406, 2014. Hemodynamic Monitoring Devices. [19] E. F. Pribadi, R. K. Pandey, and P. C.-P. Chao, “Optimizing a novel PPG sensor patch via optical simulations towards accurate heart rates,” Microsystem Technologies, vol. 26, no. 11, pp. 3409–3420, 2020. [20] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla, and K. A. Reddy, “A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1445–1457, 2012. [21] X. Che, M. Li, W. Kang, F. Lai, and J. Wang, “Continuous blood pressure estimation from two-channel PPG parameters by XGBoost,” in 2019 IEEE International Conference on Robotics and Biomimetics, pp. 2707–2712, 2019. [22] T. R. Dawber, H. E. THomas Jr, and P. M. McNamara, “Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease,” Angiology, vol. 24, no. 4, pp. 244–255, 1973. [23] N. H. Mohd Sani, W. Mansor, K. Y. Lee, N. Ahmad Zainudin, and S. A. Mahrim, “Determination of heart rate from photoplethysmogram using fast fourier transform,” in 2015 International Conference on BioSignal Analysis, Processing and Systems, pp. 168–170, 2015. [24] N. Daimiwal, M. Sundhararajan, and R. Shriram, “Respiratory rate, heart rate and continuous measurement of BP using PPG,” in 2014 International Conference on Communication and Signal Processing, pp. 999–1002, 2014. [25] P.-Y. Chiang, P. C. P. Chao, T.-Y. Tu, Y.-H. Kao, C.-Y. Yang, D.-C. Tarng, and C. -L. Wey, “Machine learning classification for assessing the degree of stenosis and blood flow volume at arteriovenous fistulas of hemodialysis patients using a new photoplethysmography sensor device,” Sensors, vol. 19, no. 15, 2019. [26] X. Tian, Q. Zhu, Y. Li, and M. Wu, “Cross-domain joint dictionary learning for ECG reconstruction from PPG,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 936–940, 2020. [27] N. Pinheiro, R. Couceiro, J. Henriques, J. Muehlsteff, I. Quintal, L. Gon?alves, and P. Carvalho, “Can PPG be used for HRV analysis?,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2945–2949, 2016. [28] V. Jeyhani, S. Mahdiani, M. Peltokangas, and A. Vehkaoja, “Comparison of hrv parameters derived from photoplethysmography and electrocardiography signals,” in 2015 37th annual international conference of the ieee engineering in medicine and biology society (EMBC), pp. 5952–5955, IEEE, 2015. [29] N. Pinheiro, R. Couceiro, J. Henriques, J. Muehlsteff, I. Quintal, L. Goncalves, and P. Carvalho, “Can ppg be used for hrv analysis?,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2945–2949, IEEE, 2016. [30] Y. Sun and N. Thakor, “Photoplethysmography revisited: from contact to noncontact, from point to imaging,” IEEE transactions on biomedical engineering, vol. 63, no. 3, pp. 463–477, 2015. [31] G. Narendra Kumar Reddy, M. Sabarimalai Manikandan, and N. V. L. Narasimha Murty, “On-device integrated PPG quality assessment and sensor disconnection/saturation detection system for IoT health monitoring,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 9, pp. 6351–6361, 2020. [32] T. Bai, D. Li, H. Wang, Y. Pang, G. Li, J. Lin, Q. Zhou, and G. Jeon, “A PPG signal de-noising method based on the DTCWT and the morphological filtering,” in 2016 12th International Conference on Signal-Image Technology Internet-Based Systems, pp. 503–506, 2016. [33] Y. Luo, R. H. Hargraves, A. Belle, O. Bai, X. Qi, K. R. Ward, M. P. Pfaffenberger, and K. Najarian, “A hierarchical method for removal of baseline drift from biomedical signals: application in ECG analysis,” The Scientific World Journal, vol. 2013, 2013. [34] V. Chouhan and S. Mehta, “Total removal of baseline drift from ECG signal,” in 2007 International Conference on Computing: Theory and Applications, pp. 512–515, 2007. [35] H. Deng, L. Zhang, Y. Xie, and S. Mo, “Research on estimation of blood glucose based on PPG and deep neural networks,” in IOP Conference Series: Earth and Environmental Science, vol. 693, p. 012046, IOP Publishing, 2021. [36] Z. Zhang, Z. Pi, and B. Liu, “Troika: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 2, pp. 522–531, 2015. [37] S. H. Kim, D. W. Ryoo, and C. Bae, “Adaptive noise cancellation using accelerometers for the ppg signal from forehead,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2564–2567, 2007. [38] S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, and D. Howard, “A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, pp. 871–879, 2009. [39] G. L. Santos, P. T. Endo, K. H. d. C. Monteiro, E. d. S. Rocha, I. Silva, and T. Lynn, “Accelerometer-based human fall detection using convolutional neural networks,” Sensors, vol. 19, no. 7, p. 1644, 2019. [40] Y. Chen and Y. Xue, “A deep learning approach to human activity recognition based on single accelerometer,” in 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1488–1492, 2015. [41] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965. [42] S. R. Messer, J. Agzarian, and D. Abbott, “Optimal wavelet denoising for phonocardiograms,” Microelectronics journal, vol. 32, no. 12, pp. 931–941, 2001. [43] D. Sadhukhan, S. Pal, and M. Mitra, “PPG noise reduction based on adaptive frequency suppression using discrete fourier transform for portable home monitoring applications,” in 2018 15th IEEE India Council International Conference, pp. 1–6, 2018. [44] S. Li, G. Liu, and Z. Lin, “Comparisons of wavelet packet, lifting wavelet and stationary wavelet transform for de-noising ECG,” in 2009 2nd IEEE International Conference on Computer Science and Information Technology, pp. 491–494, 2009. [45] C. Y. Guo and J. P. Li, “Development and future of wavelet analysis,” in 2013 10th International Computer Conference on Wavelet Active Media Technology and Information Processing, pp. 335–338, 2013. [46] M. Omachi and S. Omachi, “Fast calculation of continuous wavelet transform using polynomial,” in 2007 International Conference on Wavelet Analysis and Pattern Recognition, vol. 4, pp. 1688–1691, 2007. [47] C. Lee and Y. Zhang, “Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach,” in IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, 2003., pp. 194–195, 2003. [48] B. Lee, Y. Kee, J. Han, and W. J. Yi, “Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7937–7940, 2011. [49] S. Puranik and A. W. Morales, “Heart rate estimation of PPG signals with simultaneous accelerometry using adaptive neural network filtering,” IEEE Transactions on Consumer Electronics, vol. 66, no. 1, pp. 69–76, 2020. [50] A. A. Alian, N. J. Galante, N. S. Stachenfeld, D. G. Silverman, and K. H. Shelley, “Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. part 1: time domain analysis,” Journal of clinical monitoring and computing, vol. 25, no. 6, pp. 377–385, 2011. [51] M. S. Afzali Arani, D. E. Costa, and E. Shihab, “Human activity recognition: A comparative study to assess the contribution level of accelerometer, ECG, and PPG signals,” Sensors, vol. 21, no. 21, p. 6997, 2021. [52] D. Hern?ndez, L. Trujillo, E. Z-Flores, O. Villanueva, and O. Romo-Fewell, “Detecting epilepsy in EEG signals using time, frequency and time-frequency domain features,” in Computer science and engineering—theory and applications, pp. 167–182, Springer, 2018. [53] H. Wang and D. Hu, “Comparison of SVM and LS-SVM for regression,” in 2005 International Conference on Neural Networks and Brain, vol. 1, pp. 279–283, IEEE,2005. [54] Y. Zhang and Z. Feng, “A SVM method for continuous blood pressure estimation from a PPG signal,” in Proceedings of the 9th international conference on machine learning and computing, pp. 128–132, 2017. [55] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, “An introduction to decision tree modeling,” Journal of Chemometrics: A Journal of the Chemometrics Society, vol. 18, no. 6, pp. 275–285, 2004. [56] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001. [57] S. S. Bashar, M. S. Miah, A. Z. Karim, M. A. Al Mahmud, and Z. Hasan, “A machine learning approach for heart rate estimation from PPG signal using random forest regression algorithm,” in 2019 International Conference on Electrical, Computer and Communication Engineering, pp. 1–5, 2019. [58] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016. [59] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural information processing systems, vol. 30, 2017. [60] Y. Long, Y. Lin, Z. Zhang, R. Jiang, and Z. Wang, “Objective assessment of depression using multiple physiological signals,” in 2021 14th International Congresson Image and Signal Processing, BioMedical Engineering and Informatics (CISPBMEI), pp. 1–6, 2021. [61] H. Abdi, “A neural network primer,” Journal of Biological Systems, vol. 2, no. 03,pp. 247–281, 1994. [62] F. Esgalhado, B. Fernandes, V. Vassilenko, A. Batista, and S. Russo, “The application of deep learning algorithms for PPG signal processing and classification,”Computers, vol. 10, no. 12, 2021. [63] A. J. Camm, M. Malik, J. T. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen, P. Coumel,E. L. Fallen, H. L. Kennedy, R. E. Kleiger, et al., “Heart rate variability: standards of measurement, physiological interpretation and clinical use. task force of the european society of cardiology and the north american society of pacing and electrophysiology,” 1996. [64] P. W. Kamen, H. Krum, and A. M. Tonkin, “Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans,” Clinical science, vol. 91, no. 2, pp. 201–208, 1996. [65] O. Faust and M. G. Bairy, “Nonlinear analysis of physiological signals: a review,”Journal of Mechanics in Medicine and Biology, vol. 12, no. 04, p. 1240015, 2012. [66] A. Prinzie and D. V. d. Poel, “Random multiclass classification: Generalizing random forests to random mnl and random nb,” in International Conference on Database and Expert Systems Applications, pp. 349–358, Springer, 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83352 | - |
dc.description.abstract | 慢性心臟衰竭是一種臨床症候群,患者的再住院和死亡率非常高,預後情形不佳。光體積變化描記圖法(PPG)與穿戴式裝置之結合使實時且無創蒐集患者出院後的生理資訊成為可能,及時預警可能發生的不良事件。 在本論文中,我們針對40名病患PPG與3軸加速度信號紀錄進行再住院風險分析。將信號進行去噪後,與病患性別、年齡、心衰等級結合為模型輸入向量,用於心衰患者的再住院風險分析。實驗依據對加速度數據的應用分成三種方法,方法1將加速度作為濾波器,當加速度值超過閾值時,刪除同時段的PPG。方法2和方法3的加速度數據不作為濾波器,而是提取加速度統計特徵改進模型決策空間。方法2是方法3的對照組,使用文獻中常用的時域統計特徵;方法3統計超過閾值的採樣點,稱為活動力特徵,為本文所提出。接著結合PPG、加速度和病患統計特徵為輸入向量,以LightGBM、XGBoost和隨機森林作為分析模型,選擇其中表現最好的模型進行10-Fold交叉驗證。 本文的貢獻有兩個。首先,以便攜式裝置蒐集的生理信號數據為主體,建立心衰病患一年再入院的風險分析模型是一項較創新的挑戰。本文的實驗在測試集上最佳結果有96.67%的準確率與0.99的AUC,並在以病患為主體分群的10-Fold交叉驗證中取得84.58%的平均準確率和0.90的平均AUC。第二是本文所提出之活動力特徵,經由實驗證明對模型判斷有高度效益。相較於過濾活動力大PPG區段的方法,提升14%;相較於選用一般統計特徵的對照組方法在10-Fold交叉驗證中提高5%。 | zh_TW |
dc.description.abstract | Chronic heart failure is a clinical syndrome, the patient's rehospitalization and mortality are very high, and the prognosis is poor. The combination of Photoplethysmography (PPG) and wearable devices makes it possible to collect the physiological information of patients after discharge in real-time and non-invasively, and to provide timely warning of possible adverse events. In this thesis, we performed a readmission risk analysis for 40 patients with PPG and 3-axis acceleration signal records. After denoising the signal, it is combined with the patient's gender, age, and heart failure grade as the model input vector, which is used for the risk analysis of rehospitalization of heart failure patients. The experiment is divided into three methods based on the application of acceleration data. In Method-1, the acceleration is used as a filter. When the acceleration value exceeds the threshold, the PPG of the same period is deleted. The acceleration data of Method-2 and Method-3 are not used as a filter, but the statistical acceleration features are extracted to improve the model decision space. Method-2 uses the time-domain statistical features commonly used in the literature and is the control group of Method-3; Method-3 counts the sampling points that exceed the threshold, called activity features, which are proposed in this thesis. Then combined with PPG, acceleration, and patient statistical features as input vectors, LightGBM, XGBoost, and random forest were used as analysis models, and the best performing model was selected for 10-Fold cross-validation. There are two contributions of this thesis. First, it is a relatively innovative challenge to establish a risk analysis model for one-year readmission of heart failure patients based on the physiological signal data collected by portable devices. The best results on the test dataset in this thesis have an accuracy of 96.67% and an AUC of 0.99, and achieved an average accuracy of 84.58% and an average AUC of 0.90 in the 10-Fold cross validation with patients as the main group. The second is the activity feature proposed in this thesis, which has been proved to be highly effective for model judgment through experiments. Compared with the method of filtering the PPG section with high activity, the improvement is 14%; compared with the control group experiment using general statistical features, the improvement in 10-Fold cross validation is 5%. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T21:05:23Z (GMT). No. of bitstreams: 1 U0001-2009202219243600.pdf: 1934796 bytes, checksum: 0ea699824dab646ff8518b22bf523a60 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 ii 摘要 iii Abstract v Contents vii List of Figures xi List of Tables xii Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Heart Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Photoplethysmography . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 Related Work 8 2.1 PPG and Physiological Features . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Waveform of PPG . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 PPG-related Physiological Features . . . . . . . . . . . . . . . . . . 10 2.1.3 Common Noise in PPG Signal . . . . . . . . . . . . . . . . . . . . 11 2.1.3.1 Baseline Drift . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3.2 High Frequency Interference . . . . . . . . . . . . . . 11 2.1.3.3 Motion Artifact . . . . . . . . . . . . . . . . . . . . . 12 2.2 Accelerometer Data . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 Adaptive Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Model-based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2.2 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2.3 LightGBM . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 3 Method 19 3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 PPG Denoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1.1 Filter High-Frequency Noise . . . . . . . . . . . . . . 20 3.1.1.2 Filter Low-Frequency Noise . . . . . . . . . . . . . . . 20 3.1.1.3 MA Denoise . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1.4 Detect and Clear Peak . . . . . . . . . . . . . . . . . . 22 3.1.2 PPG Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2.1 Segment Length . . . . . . . . . . . . . . . . . . . . . 23 3.1.2.2 Exclude Abnormal PPG Segments . . . . . . . . . . . 24 3.1.3 Acceleration Denoising . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.4 Acceleration data Experimental Methods . . . . . . . . . . . . . . . 26 3.1.4.1 Method-1 : Acceleration Filter . . . . . . . . . . . . . 27 3.1.4.2 Method-2 : Acceleration data Feature - Control Group . 28 3.1.4.3 Method-3 : Acceleration data Feature - Activity Feature 28 3.2 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 PPG Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1.1 Time Domain Feature . . . . . . . . . . . . . . . . . . 29 3.2.1.2 Frequency Domain Feature . . . . . . . . . . . . . . . 31 3.2.1.3 Nonlinear Features . . . . . . . . . . . . . . . . . . . . 32 3.2.2 Acceleration Feature Extraction . . . . . . . . . . . . . . . . . . . 32 3.2.2.1 Control Group Feature . . . . . . . . . . . . . . . . . . 32 3.2.2.2 Experimental Group Feature . . . . . . . . . . . . . . 34 3.2.3 Demographic Feature Extraction . . . . . . . . . . . . . . . . . . . 35 3.2.4 Feature Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Evaluation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 4 Experiment 41 4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Method-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 Method-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 Method-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 10-Fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6.1 Extra Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Chapter 5 Conclusions and Future Work 53 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References 55 | |
dc.language.iso | en | |
dc.title | 以腕戴式裝置監測生理資訊於心臟衰竭病患建立預測再住院率之機器學習模型 | zh_TW |
dc.title | Uses Wrist-worn Devices to Monitor Physiological Information in Heart Failure Patients to Predict the Readmission Rate By A Machine Learning Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李家岩(Chia-Yen Lee),鍾順平(Shun-Ping Chung),孔令傑(Ling-Chieh Kung),呂俊賢(Chun-Hsien Lu) | |
dc.subject.keyword | 光體積變化描記圖法,心臟衰竭,信號處理,3軸加速度,心率變異分析,再住院, | zh_TW |
dc.subject.keyword | Photoplethysmography,Heart Failure,Signal Processing,3-axis Acceleration,Heart Rate Variability,readmission, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU202203670 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2022-09-23 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2009202219243600.pdf 目前未授權公開取用 | 1.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。