請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83350完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑(Wing-Kit Choi) | |
| dc.contributor.author | Yi-Ching Liao | en |
| dc.contributor.author | 廖宜慶 | zh_TW |
| dc.date.accessioned | 2023-03-19T21:05:18Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-22 | |
| dc.identifier.citation | [1] Reinitzer, F. (1888). Beitr?ge zur kenntniss des cholesterins. Monatshefte f?r Chemie/Chemical Monthly. 9: 421-441. [2] Wu, S.-T. (1986). Birefringence dispersions of liquid crystals. Physical Review A. 33: 1270. [3] Chen, H. Y., Liu, H. H., Lai, J. L., Chiu, C. H., & Chou, J. Y. (2010). Relation between physical parameters and thermal stability of liquid-crystal blue phase. Applied Physics Letters,97(18), 181919. [4] Chen, H. Y., Liu, H. H., Lai, J. L., Chiu, C. H., & Chou, J. Y. (2010). Relation between physical parameters and thermal stability of liquid-crystal blue phase. Applied Physics Letters,97(18), 181919. [5] Bahr, C., & Kitzerow, H. S. (2001). Chirality in liquid crystals. Heidelberg: Springer. [6] Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H., & Kajiyama, T. (2002). Polymer-stabilized liquid crystal blue phases. Nature materials,1(1), 64. [7] Schadt, M., & Helfrich, W. (1971). Voltage?dependent optical activity of a twisted nematic liquid crystal. Applied Physics Letters,18(4), 127-128. [8] Chigrinov, V. G. (1999). Liquid crystal devices: physics and applications. [9] Hong, S.H., et al. (2000). Electro-optic characteristic of fringe-field switching mode depending on rubbing direction. Japanese Journal of Applied Physics. 39: L527 [10] Lee, S., et al. (1998). Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Applied physics letters. 73: 2881-2883. [11] Oh?e, M. and Kondo, K. (1995). Electro?optical characteristics and switching behavior of the in?plane switching mode. Applied physics letters. 67: 3895-3897. [12] Lee, Y.J., et al. (2009). Surface-controlled patterned vertical alignment mode with reactive mesogen. Optics express. 17: 10298-10303. [13] Kim, S.G., et al. (2007). Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen. Applied physics letters. 90: 261910. [14] Ting, C.L. and Huang, W.F. (2005). Multi-domain vertical alignment liquid crystal display and driving method thereof, U.S. Patents. US 6922183 B2 [15] Kim, K.H., et al. (1998). Domain divided vertical alignment mode with optimized fringe field effect. Proceedings of Asia Display. 98: 383-386. [16] Ge, Z., Gauza, S., Jiao, M., Xianyu, H., & Wu, S. T. (2009). Electro-optics of polymer-stabilized blue phase liquid crystal displays. Applied Physics Letters,94(10), 101104. [17] Chen, K.M., et al. (2010). Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. Journal of Display Technology. 6: 49-51. [18] Yamada, F., Nakamura, H., Sakaguchi, Y., & Taira, Y. (2002). Sequential?color LCD based on OCB with an LED backlight. Journal of the Society for Information Display,10(1), 81-85. [19] Bos, P.J. and Koehler/beran, K.R. (1984). The pi-cell: a fast liquid-crystal optical-switching device. Molecular Crystals and Liquid Crystals. 113: 329-339. [20] Meyer, Robert B., et al. (1975). Ferroelectric liquid crystals. Journal de Physique Lettres 36: 69-71. [21] Samsung Electronics. (2008). The world's first Blue Phase LCD panel which can be operated at an unprecedented refresh rate of 240Hz. From Wikipedia. [22] Chen, K. M., Gauza, S., Xianyu, H., & Wu, S. T. (2010). Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. Journal of display technology, 6(2), 49-51. [23] Chen, K. M., Gauza, S., Xianyu, H., & Wu, S. T. (2010). Hysteresis effects in blue-phase liquid crystals. Journal of Display Technologyin 6(8), 318-322. [24] S. Stallinga Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands ~Received 3 November 1998; accepted for publication 8 December 1998 [25] Chen, H., Lan, Y. F., Tsai, C. Y., & Wu, S. T. (2017). Low-voltage blue-phase liquid crystal display with diamond-shape electrodes. Liquid Crystals,44(7), 1124-1130. [26] Zhu, X., Ge, Z., & Wu, S. T. (2006). Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays. Journal of Display Technology,2(1), 2-20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83350 | - |
| dc.description.abstract | 隨著現今顯示技術的發展,液晶顯示器也必須在更進一步的提升效能,而藍相液晶是其中一個最有淺力的材料之一,此材料具有比一般液晶顯示器更佳的反應時間,並且可以利用現有的顯示器技術使其發光效率及解析度達到提升,然而經過不斷的試驗,此材料的穿透率較低以及有較高的穿透電壓,所以我們嘗試設計新的電極結構來提升穿透率及降低操作電壓。 本實驗室有提出過中空六角形結構,並且嘗試優化此結構。在本篇論文中,我們嘗試調整現有的結構,找到更佳的結構達到我們的目標。本篇論文主要有四個部分,第一部分調整中空六角形結構的不同參數,分析其中的優缺點並且找出此結構的最佳解,還有針對降低電壓而修改結構,第二部分對原本的結構增加一重電極使其變成二重中空六角形結構,比較改善後的電極優缺點,再對此結構調整不同參數並討論與穿透率及操作電壓的關係進而找到最佳化的電極結構,第三部分增加更多的電極變成多重中空六角形結構,比較結構間穿透率及操作電壓的變化,並利用第二部分得出的結構對八重中空六角形結構做最佳化得到最佳穿透率為92%其操作電壓為6.3V,第四部分,利用雙層結構來補償原有結構電極穿透無效區,嘗試在pixel及common上方增加電壓使其變成光亮區,而我們找到最佳化結構其最佳穿透率87%其操作電壓為7.1V。 | zh_TW |
| dc.description.abstract | With the rapid development of display technology nowadays, liquid crystal display technology needs to further improve its performance. Blue-phase liquid crystal is considered to be one of the materials with such potential. Blue Phase liquid crystal material has sub-millisecond response time. Use of the blue phase liquid crystal can have the potential to improve light efficiency and resolution of the liquid crystal display by employing field-sequential-color (FSC) technique. However, there are at least two problems in blue phase liquid crystal: low transmittance and high operating voltage. So we need to design new electrode structures to decrease voltage and increase transmittance. In our laboratory, we have previously proposed hollow hexagonal electrode and optimized this design. In this thesis, we will modify this structure further to achieve the goals. This thesis is mainly divided into four parts. In the first part, we changed various parameters of hollow hexagonal electrode structure, and analyzed their advantages and disadvantages to find the optimized value. Then we modified the structure to make voltage lower. In the second part, we added an electrode to the original structure to become a double hollow hexagonal electrode design, and compared their pros and cons. Then, we adjusted various parameters of this structure, and got the optimized values of transmittance and operating voltage. In the third part, we added more electrode rings into the original structure. We compared the changes about the transmittance and operating voltage, and we used the results from the second part to optimize the octuple hollow hexagon structure. We found the best transmittance of 92% and operating voltage of 6.3V. In the fourth part, we used double layers electrode to improve dead zone of the original structure. We added the electrode above the original pixel and common electrodes to make dead zone become bright zone. We found that the optimized structure has transmittance of 87% and operating voltage of 7.1V. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T21:05:18Z (GMT). No. of bitstreams: 1 U0001-2009202218372300.pdf: 7284717 bytes, checksum: 7e0a9a1a427f3f1aeaebd7185d7831ab (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要 i ABSTRACT ii 目錄 iv 圖目錄 viii 表目錄 xii 第一章 液晶簡介 1 1.1 液晶介紹 1 1.2 液晶分類 3 1.2.1 向列相液晶 4 1.2.2 近晶相液晶 5 1.2.3 膽固醇型液晶 6 1.2.4 圓盤狀液晶 7 1.3 液晶的物理特性 8 1.3.1 光學異向性 8 1.3.2 連續彈性體理論 10 1.3.3 秩序參數 10 1.3.4 介電常數異向性 11 1.4 藍相液晶 12 1.4.1 藍相液晶歷史 12 1.4.2 藍相液晶之特性 12 1.4.3 藍相液晶溫寬問題 13 1.4.4 克爾效應(Kerr effect) 14 第二章 液晶顯示器簡介 16 2.1 液晶顯示器介紹 16 2.2 藍相液晶顯示器之優缺點 17 2.3 液晶顯示器之重要參數 19 2.3.1 對比度 19 2.3.2 響應時間 19 2.3.3 灰階 19 2.3.4 可視角 20 2.4 研究動機 21 第三章 研究方法 22 3.1 Techwiz模擬軟體介紹 22 3.2 Techwiz參數設定 23 3.2.1 材料庫模組(Material Database) 23 3.2.2 網格化切割(Mesh Generation) 24 3.2.3 液晶分析(LC Analysis) 24 3.2.4 光學分析 25 3.2.5 突起物高度、底部角度、電極厚度、液晶層厚度 27 第四章 實驗模擬結果 28 4.1 中空六角形電極結構最佳化及其探討和影響 28 4.1.1 調整r、R 及g的大小並討論其影響 29 4.1.2 調整common及pixel電壓並討論其影響 34 4.1.3 雙層電極對穿透率及操作電壓的影響 35 4.2 二重中空六角形電極結構最佳化及其探討和影響 36 4.2.1 二重中空六角形電極對穿透率及操作電壓的影響 37 4.2.2 調整r 的大小並討論其影響 38 4.2.3 調整m 的大小並討論其影響 40 4.2.4 調整g 的大小並討論其影響 43 4.2.5 調整光亮區面積並討論其影響 45 4.2.6 調整R1及R2比例並討論其影響 48 4.2.7 二重中空六角形結構之最佳化 50 4.2.8 調整common及pixel電壓並討論其影響 52 4.3 多重中空六角形電極結構最佳化及其探討和影響 54 4.3.1 多重中空六角形電極對穿透率及操作電壓的影響 55 4.3.2 多重中空六角形結構之最佳化 58 4.4 雙層電極結構補償電極無效穿透區其探討和影響 60 4.4.1 雙層電極結構補償外圍電極對穿透率及操作電壓的影響 60 4.4.2 雙層電極結構補償中央電極對穿透率及操作電壓的影響 63 第五章 結論與未來目標 67 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙層中空六角形電極 | zh_TW |
| dc.subject | 藍相液晶 | zh_TW |
| dc.subject | Techwiz | zh_TW |
| dc.subject | 多重中空六角形電極 | zh_TW |
| dc.subject | Techwiz | en |
| dc.subject | multiple hollow hexagonal electrode | en |
| dc.subject | double layers hollow hexagonal electrode | en |
| dc.subject | Blue-phase liquid crystal | en |
| dc.title | 多重六角形電極結構應用於藍相液晶顯示器之研究 | zh_TW |
| dc.title | Multiple Hexagonal Electrode Design for Blue Phase Liquid Crystal Display | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(Hoang Yan Lin),黃定洧(Ding-Wei Huang) | |
| dc.subject.keyword | 藍相液晶,Techwiz,多重中空六角形電極,雙層中空六角形電極, | zh_TW |
| dc.subject.keyword | Blue-phase liquid crystal,Techwiz,multiple hollow hexagonal electrode,double layers hollow hexagonal electrode, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202203667 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-09-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2009202218372300.pdf 未授權公開取用 | 7.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
