請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳美環 | zh_TW |
| dc.contributor.advisor | Mei-Hwan Wu | en |
| dc.contributor.author | 曾偉杰 | zh_TW |
| dc.contributor.author | Wei-Chieh Tseng | en |
| dc.date.accessioned | 2023-03-14T17:01:40Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-03-14 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-03 | - |
| dc.identifier.citation | 1. Scaglione M, Ebrille E, Caponi D et al. Zero-Fluoroscopy Ablation of Accessory Pathways in Children and Adolescents: CARTO3 Electroanatomic Mapping Combined with RF and Cryoenergy. Pacing Clin Electrophysiol 2015;38:675-81.
2. Wadia SK, Lluri G, Aboulhosn JA et al. Postoperative and short-term atrial tachyarrhythmia burdens after transcatheter vs surgical pulmonary valve replacement among congenital heart disease patients. Congenit Heart Dis 2019;14:838-845. 3. Winkel BG, Risgaard B, Sadjadieh G, Bundgaard H, Haunso S, Tfelt-Hansen J. Sudden cardiac death in children (1-18 years): symptoms and causes of death in a nationwide setting. European heart journal 2014;35:868-75. 4. Wren C, O'Sullivan JJ, Wright C. Sudden death in children and adolescents. Heart 2000;83:410-3. 5. Bagnall RD, Weintraub RG, Ingles J et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N Engl J Med 2016;374:2441-52. 6. Ackerman M, Atkins DL, Triedman JK. Sudden Cardiac Death in the Young. Circulation 2016;133:1006-26. 7. Maron BJ. Historical Perspectives on Sudden Deaths in Young Athletes With Evolution over 35 Years. Am J Cardiol 2015;116:1461-8. 8. Chappex N, Schlaepfer J, Fellmann F, Bhuiyan ZA, Wilhelm M, Michaud K. Sudden cardiac death among general population and sport related population in forensic experience. J Forensic Leg Med 2015;35:62-8. 9. Finocchiaro G, Papadakis M, Robertus JL et al. Etiology of Sudden Death in Sports: Insights From a United Kingdom Regional Registry. J Am Coll Cardiol 2016;67:2108-2115. 10. Eckart RE, Shry EA, Burke AP et al. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol 2011;58:1254-61. 11. Meyer L, Stubbs B, Fahrenbruch C et al. Incidence, causes, and survival trends from cardiovascular-related sudden cardiac arrest in children and young adults 0 to 35 years of age: a 30-year review. Circulation 2012;126:1363-72. 12. Chugh SS, Reinier K, Balaji S et al. Population-based analysis of sudden death in children: The Oregon Sudden Unexpected Death Study. Heart rhythm 2009;6:1618-22. 13. Morentin B, Aguilera B, Garamendi PM, Suarez-Mier MP. Sudden unexpected non-violent death between 1 and 19 years in north Spain. Archives of disease in childhood 2000;82:456-61. 14. Neuspiel DR, Kuller LH. Sudden and unexpected natural death in childhood and adolescence. Jama 1985;254:1321-5. 15. Niimura I, Maki T. Sudden cardiac death in childhood. Japanese circulation journal 1989;53:1571-80. 16. Wu MH, Chen HC, Wang JK, Chiu HH, Huang SC, Huang SK. Population-based study of pediatric sudden death in Taiwan. The Journal of pediatrics 2009;155:870-874.e2. 17. Driscoll DJ, Edwards WD. Sudden unexpected death in children and adolescents. Journal of the American College of Cardiology 1985;5:118b-121b. 18. Wu MH. Sudden death in pediatric populations. Korean circulation journal 2010;40:253-7. 19. Moon RY, Horne RS, Hauck FR. Sudden infant death syndrome. Lancet (London, England) 2007;370:1578-87. 20. Hauck FR, Tanabe KO. International trends in sudden infant death syndrome: stabilization of rates requires further action. Pediatrics 2008;122:660-6. 21. Sawaguchi T, Namiki M. Recent trend of the incidence of sudden infant death syndrome in Japan. Early human development 2003;75 Suppl:S175-9. 22. Trachtenberg FL, Haas EA, Kinney HC, Stanley C, Krous HF. Risk factor changes for sudden infant death syndrome after initiation of Back-to-Sleep campaign. Pediatrics 2012;129:630-8. 23. Vennemann M, Fischer D, Jorch G, Bajanowski T. Prevention of sudden infant death syndrome (SIDS) due to an active health monitoring system 20 years prior to the public "Back to Sleep" campaigns. Archives of disease in childhood 2006;91:324-6. 24. Young J. Promoting Evidence-Based Public Health Recommendations to Support Reductions in Infant and Child Mortality: The Role of National Scientific Advisory Groups. In: Duncan JR, Byard RW, editors. SIDS Sudden Infant and Early Childhood Death: The Past, the Present and the Future. Adelaide (AU): University of Adelaide Press (c) 2018 The Contributors, with the exception of which is by Federal United States employees and is therefore in the public domain., 2018. 25. Wu MH, Chen HC, Kao FY, Huang SK. Postnatal cumulative incidence of supraventricular tachycardia in a general pediatric population: A national birth cohort database study. Heart Rhythm 2016;13:2070-5. 26. Wu MH, Lin MT, Chen HC, Kao FY, Huang SK. Postnatal Risk of Acquiring Kawasaki Disease: A Nationwide Birth Cohort Database Study. The Journal of pediatrics 2017;180:80-86.e2. 27. Lung FW, Shu BC. Sleeping position and health status of children at six-, eighteen- and thirty-six-month development. Research in developmental disabilities 2011;32:713-8. 28. Wu MH, Lu CW, Chen HC, Kao FY, Huang SK. Adult Congenital Heart Disease in a Nationwide Population 2000-2014: Epidemiological Trends, Arrhythmia, and Standardized Mortality Ratio. J Am Heart Assoc 2018;7. 29. Wu MH, Lu CW, Chen HC, Chiu SN, Kao FY, Huang SK. Arrhythmic burdens in patients with tetralogy of Fallot: a national database study. Heart Rhythm 2015;12:604-609. 30. Karbassi A, Nair K, Harris L, Wald RM, Roche SL. Atrial tachyarrhythmia in adult congenital heart disease. World J Cardiol 2017;9:496-507. 31. Casteigt B, Samuel M, Laplante L et al. Atrial arrhythmias and patient-reported outcomes in adults with congenital heart disease: An international study. Heart Rhythm 2020. 32. Waldmann V, Laredo M, Abadir S, Mondesert B, Khairy P. Atrial fibrillation in adults with congenital heart disease. Int J Cardiol 2019;287:148-154. 33. Van Hare GF, Javitz H, Carmelli D et al. Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. J Cardiovasc Electrophysiol 2004;15:759-70. 34. Turner CJ, Wren C. The epidemiology of arrhythmia in infants: a population-based study. J Paediatr Child Health 2013;49:278-81. 35. Munger TM, Packer DL, Hammill SC et al. A population study of the natural history of Wolff-Parkinson-White syndrome in Olmsted County, Minnesota, 1953-1989. Circulation 1993;87:866-73. 36. Chiu SN, Wang JK, Wu MH et al. Cardiac conduction disturbance detected in a pediatric population. J Pediatr 2008;152:85-9. 37. Sano S, Komori S, Amano T et al. Prevalence of ventricular preexcitation in Japanese schoolchildren. Heart 1998;79:374-8. 38. Lu CW, Wu MH, Chen HC, Kao FY, Huang SK. Epidemiological profile of Wolff-Parkinson-White syndrome in a general population younger than 50 years of age in an era of radiofrequency catheter ablation. Int J Cardiol 2014;174:530-4. 39. El-Assaad I, DeWitt ES, Mah DY et al. Accessory pathway ablation in Ebstein anomaly: A challenging substrate. Heart Rhythm 2021;18:1844-1851. 40. Wu MH, Wang JK, Lin JL, Lai LP, Lue HC, Hsieh FJ. Cardiac rhythm disturbances in patients with left atrial isomerism. Pacing Clin Electrophysiol 2001;24:1631-8. 41. Wu MH, Wang JK, Chiu SN et al. Twin atrioventricular nodes, arrhythmias, and survival in pediatric and adult patients with heterotaxy syndrome. Heart Rhythm 2021;18:605-612. 42. Sharland G, Tingay R, Jones A, Simpson J. Atrioventricular and ventriculoarterial discordance (congenitally corrected transposition of the great arteries): echocardiographic features, associations, and outcome in 34 fetuses. Heart 2005;91:1453-8. 43. Anderson RH, Becker AE, Arnold R, Wilkinson JL. The conducting tissues in congenitally corrected transposition. Circulation 1974;50:911-23. 44. Simmons MA, Rollinson N, Fishberger S, Qin L, Fahey J, Elder RW. Modern Incidence of Complete Heart Block in Patients with L-looped Ventricles: Does Univentricular Status Matter? Congenit Heart Dis 2015;10:E237-42. 45. Bautista-Hernandez V, Myers PO, Cecchin F, Marx GR, Del Nido PJ. Late left ventricular dysfunction after anatomic repair of congenitally corrected transposition of the great arteries. J Thorac Cardiovasc Surg 2014;148:254-8. 46. Deal BJ. Can patients with congenitally corrected transposition of the great arteries live better electrically? J Thorac Cardiovasc Surg 2016;151:140-2. 47. Connelly MS, Liu PP, Williams WG, Webb GD, Robertson P, McLaughlin PR. Congenitally corrected transposition of the great arteries in the adult: Functional status and complications. Journal of the American College of Cardiology 1996;27:1238-1243. 48. Fontaine JM, Kamal BM, Sokil AB, Wolf NM. Ventricular tachycardia: a life-threatening arrhythmia in a patient with congenitally corrected transposition of the great arteries. J Cardiovasc Electrophysiol 1998;9:517-22. 49. Dobson R, Danton M, Nicola W, Hamish W. The natural and unnatural history of the systemic right ventricle in adult survivors. J Thorac Cardiovasc Surg 2013;145:1493-501; discussion 1501-3. 50. Cuypers JA, Eindhoven JA, Slager MA et al. The natural and unnatural history of the Mustard procedure: long-term outcome up to 40 years. Eur Heart J 2014;35:1666-74. 51. Hernandez-Madrid A, Paul T, Abrams D et al. Arrhythmias in congenital heart disease: a position paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital heart disease, endorsed by HRS, PACES, APHRS, and SOLAECE. Europace 2018;20:1719-1753. 52. Chiu SN, Wu MH, Tsai CT et al. Atrial flutter/fibrillation in patients receiving transcatheter closure of atrial septal defect. J Formos Med Assoc 2017;116:522-528. 53. Khairy P, Van Hare GF, Balaji S et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm 2014;11:e102-65. 54. Wasmer K, Eckardt L. Management of supraventricular arrhythmias in adults with congenital heart disease. Heart 2016;102:1614-9. 55. Labombarda F, Hamilton R, Shohoudi A et al. Increasing Prevalence of Atrial Fibrillation and Permanent Atrial Arrhythmias in Congenital Heart Disease. J Am Coll Cardiol 2017;70:857-865. 56. Warnes CA, Liberthson R, Danielson GK et al. Task Force 1: the changing profile of congenital heart disease in adult life. Journal of the American College of Cardiology 2001;37:1170-1175. 57. Walsh EP, Cecchin F. Arrhythmias in adult patients with congenital heart disease. Circulation 2007;115:534-45. 58. van der Linde D, Konings EE, Slager MA et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011;58:2241-7. 59. Baumgartner H. Geriatric congenital heart disease: a new challenge in the care of adults with congenital heart disease? Eur Heart J 2014;35:683-5. 60. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 2014;130:749-56. 61. Huang SK, Bharati S, Graham AR, Lev M, Marcus FI, Odell RC. Closed chest catheter desiccation of the atrioventricular junction using radiofrequency energy—A new method of catheter ablation. Journal of the American College of Cardiology 1987;9:349-358. 62. Stephen Huang SK. Radio-frequency catheter ablation of cardiac arrhythmias: Appraisal of an evolving therapeutic modality. American Heart Journal 1989;118:1317-1323. 63. Chiu SN1 LC, Chang CW, Chang CC, Lin MT, Lin JL, Chen CA, Wang JK, Wu MH. Radiofrequency Catheter Ablation of Supraventricular Tachycardia in Infants and Toddlers. Circulation journal 2009;73:1717-1721. 64. Philip Saul J, Kanter RJ, Writing C et al. PACES/HRS expert consensus statement on the use of catheter ablation in children and patients with congenital heart disease: Developed in partnership with the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American Academy of Pediatrics (AAP), the American Heart Association (AHA), and the Association for European Pediatric and Congenital Cardiology (AEPC). Heart Rhythm 2016;13:e251-89. 65. Brugada J, Blom N, Sarquella-Brugada G et al. Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: EHRA and AEPC-Arrhythmia Working Group joint consensus statement. Europace 2013;15:1337-82. 66. Kovoor P RM, Collins L, Uther JB, Ross DL. Risk to Patients From Radiation Associated With Radiofrequency Ablation for Supraventricular Tachycardia. Circulation 1998;98:1534-1540. 67. Limacher MC DP, Germano G, Laskey WK, Lindsay BD, McKetty MH, Moore ME, Park JK, Prigent FM, Walsh MN. ACC expert consensus document. Radiation safety in the practice of cardiology. American College of Cardiology. Journal of the American College of Cardiology 1998;31:892-913. 68. Calkins H E-AR, Kalbfleisch SJ, Langberg JJ, Morady F. Effect of operator experience on outcome of radiofrequency catheter ablation of accessory pathways. THE AMERICAN JOURNAL OF CARDIOLOGY 1993;71:1104-1105. 69. Gaita F, Guerra PG, Battaglia A, Anselmino M. The dream of near-zero X-rays ablation comes true. Eur Heart J 2016;37:2749-2755. 70. Journy N, Ancelet S, Rehel JL et al. Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach. Radiat Environ Biophys 2014;53:39-54. 71. Miglioretti DL, Johnson E, Williams A et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013;167:700-7. 72. Baysson H, Rehel JL, Boudjemline Y et al. Risk of cancer associated with cardiac catheterization procedures during childhood: a cohort study in France. BMC Public Health 2013;13:266. 73. Pearce MS, Salotti JA, Little MP et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet 2012;380:499-505. 74. Smith G, Clark JM. Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing Clin Electrophysiol 2007;30:510-8. 75. Clark BC, Sumihara K, McCarter R, Berul CI, Moak JP. Getting to zero: impact of electroanatomical mapping on fluoroscopy use in pediatric catheter ablation. J Interv Card Electrophysiol 2016;46:183-9. 76. Casella M, Dello Russo A, Pelargonio G et al. Near zerO fluoroscopic exPosure during catheter ablAtion of supRavenTricular arrhYthmias: the NO-PARTY multicentre randomized trial. Europace 2016;18:1565-1572. 77. Venneri L, Rossi F, Botto N et al. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council's Biological Effects of Ionizing Radiation VII Report. Am Heart J 2009;157:118-24. 78. Stahl CM, Meisinger QC, Andre MP, Kinney TB, Newton IG. Radiation Risk to the Fluoroscopy Operator and Staff. AJR Am J Roentgenol 2016;207:737-744. 79. Goldstein JA, Balter S, Cowley M, Hodgson J, Klein LW, Interventional Committee of the Society of Cardiovascular I. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv 2004;63:407-11. 80. Purtell CS, Kipp RT, Eckhardt LL. Into a Fluoroless Future: an Appraisal of Fluoroscopy-Free Techniques in Clinical Cardiac Electrophysiology. Curr Cardiol Rep 2021;23:28. 81. Tseng WC, Wu MH, Lu CW et al. Zero Fluoroscopy During Ablation of Right-Sided Supraventricular Tachycardia Substrates in a Pediatric Population - Initial Experience in Taiwan. Acta Cardiologica Sinica 2019;35:476-483. 82. Tseng WC, Wu MH, Lu CW et al. Zero-fluoroscopy ablation of left-sided arrhythmia substrates in children - Mid-term safety and feasibility study from transaortic approach. J Formos Med Assoc 2022. 83. Yang L, Sun G, Chen X et al. Meta-Analysis of Zero or Near-Zero Fluoroscopy Use During Ablation of Cardiac Arrhythmias. Am J Cardiol 2016;118:1511-1518. 84. Del Greco M, Marini M, Bonmassari R. Implantation of a biventricular implantable cardioverter-defibrillator guided by an electroanatomic mapping system. Europace 2012;14:107-11. 85. DeSena HC, Landis BJ, Moore RA, Spar DS, Whiteside W, Blaxall BC. Future Diagnostic Strategies—Pediatric. Cardioskeletal Myopathies in Children and Young Adults, 2017:361-379. 86. Silver ES, Nash MC, Liberman L. Implantation of permanent pacemaker and ICD leads in children using a three-dimensional electroanatomic mapping system as an aid to fluoroscopy. Pacing Clin Electrophysiol 2015;38:448-54. 87. Colella A, Giaccardi M, Colella T, Modesti PA. Zero x-ray cardiac resynchronization therapy device implantation guided by a nonfluoroscopic mapping system: A pilot study. Heart Rhythm 2016;13:1481-8. 88. Del Greco M, Maines M, Marini M et al. Three-Dimensional Electroanatomic Mapping System-Enhanced Cardiac Resynchronization Therapy Device Implantation: Results From a Multicenter Registry. J Cardiovasc Electrophysiol 2017;28:85-93. 89. Gianni C, Della Rocca DG, Natale A, Horton RP. Fluoroless 3D mapping-guided pacemaker implant in a pregnant patient. Pacing Clin Electrophysiol 2021;44:1641-1645. 90. El-Assaad I, Al-Kindi SG, Aziz PF. Trends of Out-of-Hospital Sudden Cardiac Death Among Children and Young Adults. Pediatrics 2017;140. 91. Kottmaier M, Baur A, Lund S et al. Atrial fibrillation ablation in adults with congenital heart disease on uninterrupted oral anticoagulation is safe and efficient. Clin Res Cardiol 2020;109:904-910. 92. Guarguagli S, Kempny A, Cazzoli I et al. Efficacy of catheter ablation for atrial fibrillation in patients with congenital heart disease. Europace 2019;21:1334-1344. 93. Mondesert B, Nair K, McLeod CJ, Khairy P. Technological Advances in Arrhythmia Management Applied to Adults With Congenital Heart Disease. Can J Cardiol 2019;35:1708-1722. 94. Kerst G, Weig HJ, Weretka S et al. Contact force-controlled zero-fluoroscopy catheter ablation of right-sided and left atrial arrhythmia substrates. Heart Rhythm 2012;9:709-14. 95. Krause U, Backhoff D, Klehs S, Schneider HE, Paul T. Contact force monitoring during catheter ablation of intraatrial reentrant tachycardia in patients with congenital heart disease. J Interv Card Electrophysiol 2016;46:191-8. 96. Wu SJ, Li CH, Lin JC, Weng CJ, Lin WW, Hsieh YC. Detecting supraventricular tachycardia with smartwatches facilitates the decision for catheter ablation: A case series. Pacing Clin Electrophysiol 2021. 97. Nazarian S, Lam K, Darzi A, Ashrafian H. Diagnostic Accuracy of Smartwatches for the Detection of Cardiac Arrhythmia: Systematic Review and Meta-analysis. J Med Internet Res 2021;23:e28974. 98. Lu TC, Fu CM, Ma MH, Fang CC, Turner AM. Healthcare Applications of Smart Watches. A Systematic Review. Appl Clin Inform 2016;7:850-69. 99. Perez MV, Mahaffey KW, Hedlin H et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med 2019;381:1909-1917. 100. Li S, Zhang C, Liu N et al. Genotype-Positive Status Is Associated With Poor Prognoses in Patients With Left Ventricular Noncompaction Cardiomyopathy. J Am Heart Assoc 2018;7:e009910. 101. Razminia M, Manankil MF, Eryazici PL et al. Nonfluoroscopic catheter ablation of cardiac arrhythmias in adults: feasibility, safety, and efficacy. J Cardiovasc Electrophysiol 2012;23:1078-86. 102. Razminia M, Willoughby MC, Demo H et al. Fluoroless Catheter Ablation of Cardiac Arrhythmias: A 5-Year Experience. Pacing Clin Electrophysiol 2017;40:425-433. 103. Tseng WC, Wu MH, Lu CW et al. Zero Fluoroscopy During Ablation of Right-Sided Supraventricular Tachycardia Substrates in a Pediatric Population - Initial Experience in Taiwan. Acta Cardiol Sin 2019;35:476-483. 104. Zoghbi WA, Adams D, Bonow RO et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 2017;30:303-371. 105. Juang JM, Lu TP, Lai LC et al. Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep 2014;4:6733. 106. Priori SG, Wilde AA, Horie M et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace 2013;15:1389-406. 107. Fan CT, Lin JC, Lee CH. Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics 2008;9:235-46. 108. Chen CJ, Lu TP, Lin LY et al. Impact of Ancestral Differences and Reassessment of the Classification of Previously Reported Pathogenic Variants in Patients With Brugada Syndrome in the Genomic Era: A SADS-TW BrS Registry. Frontiers in genetics 2018;9:680. 109. Rubin R. Despite Educational Campaigns, US Infants Are Still Dying Due to Unsafe Sleep Conditions. Jama 2018;319:2466-2468. 110. Abdel-Mannan O, Taylor H, Donner EJ, Sutcliffe AG. A systematic review of sudden unexpected death in epilepsy (SUDEP) in childhood. Epilepsy & behavior : E&B 2019;90:99-106. 111. Ely DM, Driscoll AK, Matthews TJ. Infant Mortality by Age at Death in the United States, 2016. NCHS data brief 2018:1-8. 112. Ely DM, Hoyert DL. Differences Between Rural and Urban Areas in Mortality Rates for the Leading Causes of Infant Death: United States, 2013-2015. NCHS data brief 2018:1-8. 113. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation 2009;119:1085-92. 114. Gillum RF. Sudden cardiac death in Hispanic Americans and African Americans. American journal of public health 1997;87:1461-6. 115. Wann LS, Curtis AB, January CT et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (Updating the 2006 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2011;57:223-42. 116. Kapa S, Vaidya V, Hodge DO et al. Right ventricular dysfunction in congenitally corrected transposition of the great arteries and risk of ventricular tachyarrhythmia and sudden death. Int J Cardiol 2018;258:83-89. 117. Spigel Z, Binsalamah ZM, Caldarone C. Congenitally Corrected Transposition of the Great Arteries: Anatomic, Physiologic Repair, and Palliation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2019;22:32-42. 118. Waldmann V, Bouzeman A, Duthoit G et al. Long-Term Follow-Up of Patients with Tetralogy of Fallot and Implantable Cardioverter Defibrillator: The DAI-T4F (Implantable Cardioverter Defibrillator-Tetralogy of Fallot) Nationwide Registry. Circulation 2020. 119. Chiu SN, Huang SC, Wang JK et al. Implantable cardioverter defibrillator therapy in repaired tetralogy of Fallot after pulmonary valve replacement: Implications for the mechanism of ventricular arrhythmia. Int J Cardiol 2017;249:156-160. 120. Loomba RS, Buelow MW, Aggarwal S, Arora RR, Kovach J, Ginde S. Arrhythmias in Adults with Congenital Heart Disease: What Are Risk Factors for Specific Arrhythmias? Pacing Clin Electrophysiol 2017;40:353-361. 121. Mouws E, de Groot NMS. Atrial Tachyarrhythmia in Congenital Heart Disease: Beyond the Suture Lines. Circ Arrhythm Electrophysiol 2017;10. 122. Huhta JC, Maloney JD, Ritter DG, Ilstrup DM, Feldt RH. Complete atrioventricular block in patients with atrioventricular discordance. Circulation 1983;67:1374-7. 123. Baruteau AE, Abrams DJ, Ho SY, Thambo JB, McLeod CJ, Shah MJ. Cardiac Conduction System in Congenitally Corrected Transposition of the Great Arteries and Its Clinical Relevance. J Am Heart Assoc 2017;6. 124. Oliver JM, Gallego P, Gonzalez AE et al. Comparison of outcomes in adults with congenitally corrected transposition with situs inversus versus situs solitus. Am J Cardiol 2012;110:1687-91. 125. Wu MH, Chen HC, Lu CW, Wang JK, Huang SC, Huang SK. Prevalence of congenital heart disease at live birth in Taiwan. J Pediatr 2010;156:782-5. 126. Chiu SN, Wu WL, Lu CW et al. Special electrophysiological characteristics of pediatric idiopathic ventricular tachycardia. Int J Cardiol 2017;227:595-601. 127. Kasar T, Ayyildiz P, Tunca Sahin G et al. Rhythm disturbances and treatment strategies in children with congenitally corrected transposition of the great arteries. Congenit Heart Dis 2018;13:450-457. 128. Kanter RJ. Pearls for ablation in congenital heart disease. J Cardiovasc Electrophysiol 2010;21:223-30. 129. Hebe J, Hansen P, Ouyang F, Volkmer M, Kuck KH. Radiofrequency catheter ablation of tachycardia in patients with congenital heart disease. Pediatr Cardiol 2000;21:557-75. 130. Takeuchi D, Toyohara K, Shoda M, Hagiwara N. Electrophysiological features and radiofrequency catheter ablation of accessory pathways associated with atrioventricular discordance. J Cardiovasc Electrophysiol 2020;31:89-99. 131. Justino H. The ALARA concept in pediatric cardiac catheterization: techniques and tactics for managing radiation dose. Pediatr Radiol 2006;36 Suppl 2:146-53. 132. Wan G, Shannon KM, Moore JP. Factors associated with fluoroscopy exposure during pediatric catheter ablation utilizing electroanatomical mapping. J Interv Card Electrophysiol 2012;35:235-42. 133. Drago F SM, Di Pino A, Grutter G, Bevilacqua M, Leibovich S. Exclusion of fluoroscopy during ablation treatment of right accessory pathway in children. J Cardiovasc Electrophysiol 2002;13:778-782. 134. Kubus P, Vit P, Gebauer RA et al. Long-term results of paediatric radiofrequency catheter ablation: a population-based study. Europace 2014;16:1808-13. 135. Backhoff D, Klehs S, Muller MJ et al. Long-Term Follow-Up After Catheter Ablation of Atrioventricular Nodal Reentrant Tachycardia in Children. Circ Arrhythm Electrophysiol 2016;9. 136. Karacan M, Celik N, Akdeniz C, Tuzcu V. Long-term outcomes following cryoablation of atrioventricular nodal reentrant tachycardia in children. Pacing Clin Electrophysiol 2018;41:255-260. 137. Balli S, Kucuk M, Bulut MO, Yucel IK, Celebi A. Transcatheter Cryoablation Procedures without Fluoroscopy in Pediatric Patients with Atrioventricular Nodal Reentrant Tachycardia: A Single-Center Experience. Acta Cardiologica Sinica 2018;34:337-343. 138. Anselmino M, Matta M, Saglietto A et al. Transseptal or retrograde approach for transcatheter ablation of left sided accessory pathways: a systematic review and meta-analysis. Int J Cardiol 2018;272:202-207. 139. Koca S, Akdeniz C, Tuzcu V. Transseptal Puncture for Catheter Ablation in Children. Pediatr Cardiol 2019;40:799-804. 140. Fogelman R, Birk E, Dagan T et al. Catheter ablation of left-sided accessory pathways in small children. J Arrhythm 2019;35:742-747. 141. Koca S, Pac FA, Eris D, Zabun MM, Ozeke O, Ozcan F. Electroanatomic mapping-guided pediatric catheter ablation with limited/zero fluoroscopy. Anatol J Cardiol 2018;20:159-164. 142. Elkiran O, Akdeniz C, Karacan M, Tuzcu V. Electroanatomic mapping-guided catheter ablation of atrial tachycardia in children with limited/zero fluoroscopy. Pacing Clin Electrophysiol 2019;42:453-457. 143. Clark BC, Sumihara K, Berul CI, Moak JP. Off the pedal: Fluoroless transseptal puncture in pediatric supraventricular tachycardia ablation. Pacing Clin Electrophysiol 2017;40:1254-1259. 144. Baykaner T, Quadros KK, Thosani A et al. Safety and efficacy of zero fluoroscopy transseptal puncture with different approaches. Pacing Clin Electrophysiol 2020;43:12-18. 145. Swissa M, Birk E, Dagan T et al. Limited fluoroscopy catheter ablation of accessory pathways in children. J Cardiol 2017;70:382-386. 146. Pani A, Giuseppina B, Bonanno C et al. Predictors of Zero X-Ray Ablation for Supraventricular Tachycardias in a Nationwide Multicenter Experience. Circ Arrhythm Electrophysiol 2018;11:e005592. 147. Miyake CY, Mah DY, Atallah J et al. Nonfluoroscopic imaging systems reduce radiation exposure in children undergoing ablation of supraventricular tachycardia. Heart Rhythm 2011;8:519-525. 148. Kindel SJ, Miller EM, Gupta R et al. Pediatric cardiomyopathy: importance of genetic and metabolic evaluation. J Card Fail 2012;18:396-403. 149. Gersh BJ, Maron BJ, Bonow RO et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011;124:e783-831. 150. Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet (London, England) 2015;386:813-25. 151. Sigvardsen PE, Fuchs A, Kuhl JT et al. Left ventricular trabeculation and major adverse cardiovascular events: the Copenhagen General Population Study. Eur Heart J Cardiovasc Imaging 2021;22:67-74. 152. Sedaghat-Hamedani F, Haas J, Zhu F et al. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J 2017;38:3449-3460. 153. Kayvanpour E, Sedaghat-Hamedani F, Gi WT et al. Clinical and genetic insights into non-compaction: a meta-analysis and systematic review on 7598 individuals. Clin Res Cardiol 2019;108:1297-1308. 154. Aung N, Doimo S, Ricci F et al. Prognostic Significance of Left Ventricular Noncompaction: Systematic Review and Meta-Analysis of Observational Studies. Circ Cardiovasc Imaging 2020;13:e009712. 155. Shi WY, Moreno-Betancur M, Nugent AW et al. Long-Term Outcomes of Childhood Left Ventricular Noncompaction Cardiomyopathy: Results From a National Population-Based Study. Circulation 2018;138:367-376. 156. Brescia ST, Rossano JW, Pignatelli R et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation 2013;127:2202-8. 157. Sigvardsen PE, Fuchs A, Kühl JT et al. Left ventricular trabeculation and major adverse cardiovascular events: the Copenhagen General Population Study. Eur Heart J Cardiovasc Imaging 2021;22:67-74. 158. Czosek RJ, Jefferies JL, Khoury PR et al. Arrhythmic Burden and Ambulatory Monitoring of Pediatric Patients with Cardiomyopathy. Pacing Clin Electrophysiol 2016;39:443-51. 159. Bharucha T, Lee KJ, Daubeney PE et al. Sudden death in childhood cardiomyopathy: results from a long-term national population-based study. J Am Coll Cardiol 2015;65:2302-10. 160. Finsterer J, Stollberger C. Left Ventricular Noncompaction Syndrome: Genetic Insights and Therapeutic Perspectives. Curr Cardiol Rep 2020;22:84. 161. van Waning JI, Moesker J, Heijsman D, Boersma E, Majoor-Krakauer D. Systematic Review of Genotype-Phenotype Correlations in Noncompaction Cardiomyopathy. J Am Heart Assoc 2019;8:e012993. 162. Takasaki A, Hirono K, Hata Y et al. Sarcomere gene variants act as a genetic trigger underlying the development of left ventricular noncompaction. Pediatr Res 2018;84:733-742. 163. Li S, Zhang C, Liu N, Bai H, Hou C, Pu J. Clinical implications of sarcomere and nonsarcomere gene variants in patients with left ventricular noncompaction cardiomyopathy. Mol Genet Genomic Med 2019;7:e874. 164. Muhammad E, Levitas A, Singh SR et al. PLEKHM2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction. Hum Mol Genet 2015;24:7227-40. 165. Ohno S, Omura M, Kawamura M et al. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Europace 2014;16:1646-54. 166. Shan L, Makita N, Xing Y et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Mol Genet Metab 2008;93:468-74. 167. Khurshid S, Chen W, Singer DE et al. Comparative Clinical Effectiveness of Population-Based Atrial Fibrillation Screening Using Contemporary Modalities: A Decision-Analytic Model. J Am Heart Assoc 2021;10:e020330. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83328 | - |
| dc.description.abstract | 背景
頻脈對兒童與成人期先天性心臟病族群的健康影響甚劇,其最嚴重的表現是猝死,雖然不常見,卻會造成家庭深遠的影響與社會的損失。因此頻脈與猝死的研究為至關重要的健康議題。隨著醫療的進步,兒童與成人期先天性心臟患者頻脈的治療逐漸地進步,猝死發生亦可能隨之而降低。然而針對此族群的流行病學資料仍稀缺,新發展導管技術治療頻脈的安全性、可行性,以及基因變異對此族群頻脈與猝死的影響,尚待進一步的研究。 研究方法 為探究兒童猝死的樣貌並瞭解先天性心臟病於其中之重要性,需要完善的兒童猝死背景値資料,我們進行臺灣與美國國家型資料庫猝死流行病學的比較研究。為了瞭解解剖構造與頻脈和猝死的關連,我們以先天性矯正型大動脈轉位這個解剖構造具雙重連接不一致(double discordance)的先天性心臟病族群,進行研究;為了將頻脈治療進行最佳化,我們發展了無輻射心導管治療心律不整技術與電磁解剖標測技術,並藉由病例對照研究了解這個新頻脈治療技術的安全性、可行性與成效。最後,為了探究基因變異對於不良心血管事件(包括: 心律不整、猝死等)的影響,以兒童左心室緻密不全這個心肌病變的世代資料進行研究。 研究結果 於全國性資料庫3,097,277位活產個案中,總計共1,661位發生猝死,男性佔56.8%。出生後累積猝死率,依年齡0、5、11、14歲,每1000活產中有0.35、0.49、0.56與0.59人次。這些猝死的兒童病患中,合併心臟疾患者有347名(20.9%),其中先天性心臟患者有228名(65.7%),具有非心臟之其他共病者則有300名(18.1%)。依年齡0、5、11、14歲的累積全因死亡率則為每1000活產中5.3、6.78、7.63與 8.06人。猝死之風險與全因死亡率皆隨出生年而逐步下降,其中猝死風險之下降,於2008年後尤其明顯。依地域分析,猝死風險與全因死亡率於臺灣東部最高,猝死佔全因死亡率之比例,則為北臺灣較高。與美國資料相比,其年齡逾14歲之猝死風險與全因死亡率分別為0.54與9.06人,其數據與我國資料相當,且長期趨勢觀之,亦隨出生年份有逐年降低。這些流行病學資料,對我國猝死之研究與相關之預防政策推動,相當有幫助。我們亦可以從全國流行病學資料,了解到具先天性心臟病病患,猝死的比率實是相當地高。 先天性矯正型大動脈轉位之研究顯示,追蹤20年與30年累積無發生心室上頻脈的比率分別為68%與54%。頻脈機轉與位於右心的副傳導路徑相關者最為常見(55.6%),另外亦有相當高的比例是具有特殊的雙重房室結迴繞頻脈的狀況(33.3%)。以心導管進行頻脈燒灼者,成功率高且復發率低,以無輻射心導管技術進行燒灼成績亦相當。族群中有4位病患發生猝死(3.85%)。此部分研究結果顯示,先天性心臟結構異常與心律不整之特性與猝死之發生,具高度相關性。 推廣無輻射心導管到所有兒童頻脈治療後,我們發現可以在無輻射三維定位指引下成功燒灼去除右心與左心之頻脈病灶,不僅安全而且成功率高。於右心燒灼,68次傳統輻射導引燒灼的輻射線使用時間,平均為 30.9±23.9分鐘;41次的新式無輻射燒灼,無人使用輻射線(P < 0.001)。兩組間成功率以及復發率皆無差異。左心燒灼,雖然逆行性經主動脈進行燒灼困難度較高,於轉換前期仍須輻射線輔助導引,但整體仍有與傳統方式相同的高成功率與低復發率。對兒童以及輻射累積劑量較高的成人期先天性心臟病患,此一新技術相當重要。 至於基因變異於心肌病變族群之影響,我們蒐集了33位兒童期左心室緻密不全患者,有4例合併頻脈(2例猝死)。24位接受基因測試。其中肌小節基因變異有5名,離子通道基因變異2名,其他單一變異有4名,複合性基因變異則有6名。部分基因變異與頻脈有相關。顯示於兒童左心室緻密不全患者中,基因的調節對成長中兒童之重要性。而基因的調節對主要不良心血管事件,如心律不整與猝死的影響,對先天性心臟病患,亦可能佔有類似之重要角色。 結論 為了估量猝死與先天性心臟疾病之間的關連,我們建立了臺灣出生後的累積猝死與全因死亡率之基礎數據,並藉臺美對照,可見猝死率隨時間逐降。先天性矯正型大動脈轉位病患具雙重連接不一致之解剖學異常,其頻脈與猝死發生率,皆較一般人高。新科技發展帶來的無輻射心導管技術,有效而安全的地降低病患的輻射線暴露。基因資訊對成長中的兒童尤其重要,基因多型性帶來的基因調節效果,可能影響臨床表現,而多重基因變異,更可能增加頻脈或猝死之風險。 頻脈與猝死在兒童與成人期先天性心臟病患者族群中,有特殊的機制,其反映了個體於持續發展時期的影響。對於這類病患,相應治療的發展應考量其持續成長的需求,更需考慮多樣的基因變異與非基因因子可能造成的影響。 | zh_TW |
| dc.description.abstract | Background
Tachyarrhythmia disorders in pediatric population and adults with congenital heart diseases (ACHD) carry significant morbidity and mortality. One of the most serious manifestations of tachyarrhythmia disorders is sudden cardiac arrest and ensuing sudden death (SD). Although SD is not common, the drastic presentation leads the issue the top-priority health issue. With medical advances, the management of tachyarrhythmia may be improved and the occurrence and outcome of SD may be reduced. However, relative studies are scarce and further investigation is of paramount importance. Methods We examined the epidemiological profile of pediatric SD as background reference and to know the importance of congenital heart disease (CHD) in SD by using nationwide databases from Taiwan and US. To elucidate the anatomical correlation, we investigated the mechanisms underlying the major adverse cardiovascular events (MACE), including tachyarrhythmia and SD in patients with congenitally corrected transposition of great arteries (ccTGA), a unique CHD with anatomical double discordance. To optimize treatment for tachyarrhythmias and prevent SD, we developed zero-fluoroscopy transcatheter ablation in children and ACHD, along with confirmation of safety, feasibility and effectiveness. Finally, we explored association and impact from genetic causes of left ventricular non-compaction (LVNC) and MACE in pediatric population. Results Our nationwide analysis for SD revealed 1661 children out of 3,097,277 live births with SD (56.8% male). The postnatal cumulative risk of SD was 0.35, 0.49, 0.56 and 0.59/1000 by age 0, 5, 11 and 14 years, respectively. Coexisting cardiac diagnosis was noted in 347 (20.9%), CHD in 228 (65.7%), and non-cardiac diagnosis in 300 (18.1%) patients. Cumulative all-cause mortality was 5.3, 6.78, 7.63 and 8.06/1000 by age 0, 5, 11 and 14 years. Risks of SD and all-cause death decreased over birthyear. SD risk decreased particularly after the 2008 birthyear. Risks of SD and all-cause death were the highest in Eastern Taiwan, but SD/all-cause death ratio was high in Taipei metropolitan and Northern Taiwan. Cumulative risk of SD (0.54/1000 by age 14) and all-cause mortality (9.06/1000 by age 14) in the US also decreased over time. These data are extremely helpful for us to have strategic planning for SD prevention. As compared with the general pediatric population, the risk was surprisingly higher in CHD patients. In patients with ccTGA, the 20-year and 30-year freedom from supraventricular tachycardia (SVT) was 68% and 54%, respectively. Tachyarrhythmias were associated with right-sided accessory pathways (5/9, 55.6%) and a unique twin atrioventricular nodal reentry (3/9, 33.3%). Catheter ablation was highly effective with low recurrence rate. There was four SD (3.85%). To optimize the ablation on the radiation reduction in children with or without CHD, we established a novel systematic non-fluoroscopic mapping/ablation. In the right sided substrates, the mean fluoroscopy time was 30.9±23.9 minutes in control group (68 procedures) while all 41 procedures in study group were performed without fluoroscopy (p < .001). The acute procedural success rates were similarly high in both groups and the recurrence rate was comparable at mid-term follow-up. As to the left-sided substrates, including SVT and ventricular tachycardia, which us more frequently associated with SD. In spite of the technology difficulty in retrograde transaortic approach under non-fluoroscopy guidance, the acute procedural success rates were high and the recurrence rate was low, without significant difference between the fluoroscopic and non-fluoroscopic guidance. The novel technology is particularly important for growing children who are relatively vulnerable to radiation. In analysis of 33 pediatric LVNC patients, 4 had tachyarrhythmia and 2 SD. Among the 24 patients who received genetic testing, isolated sarcomere gene variants were found in 5 patients, isolated channelopathy gene variants in 2, neuromuscular, mitochondria and other gene variants in 4. In addition, compound gene variants or chromosomal anomalies were found in 6. The yield of genetic findings in pediatric LVNC suggest important roles of genetic modification in growing children and may indicate the potential impact as a coexisting factor in children with CHD. Conclusions To estimate the risk of SD and the association with cardiac disease, especially CHD, we derived the postnatal cumulative risks of SD and all-cause mortality in Taiwan and US. The time trend underlined the impact from medical advance and education on SD prevention. With unique anatomical double discordance, patients with ccTGA are at high risk of not only tachyarrhythmia but also SD. Novel non-fluoroscopic guidance transcatheter ablation is effective and safe, and could reduce the radiation exposure hazard significantly. Genetic information is import particularly for growing children, including the genetic causes per se, genetic modification from single nucleotide polymorphism to influence the phenotype, the double or multiple hits to increase the risk of tachyarrhythmia or even SD. Tachyarrhythmia and SD in children and ACHD are distinct in the underlying mechanisms and reflect the developmental influence. Treatment needs to consider the growing potential and the various genetic and non-genetic modification. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-14T17:01:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-03-14T17:01:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT vi GRAPHICAL ABSTRACT ix CONTENTS x INDEX OF FIGURES xiii INDEX OF TABLES xvi ABBREVIATIONS xviii Chapter 1 Introduction 1 1.1 Literature Review and Research Question 1 1.1.1 Arrhythmia and Sudden death/sudden Cardiac Death 1 1.1.2 Sudden Death, a Rare but Important Issue in Children and in Adults with Congenital Heart Disease 2 1.1.3 Arrhythmia Burden in Children and High Arrhythmia Burden in Adults with Congenital Heart Disease 5 1.1.4 Growing Population of Adults with Congenital Heart Disease 10 1.1.5 Novel Treatment of Arrhythmia in Current Era 12 1.1.6 Genetic Profiles May Be Associated with Arrhythmia and SD 20 1.2 Study Hypothesis 21 1.3 Specific Aims 23 Chapter 2 Materials and Methods 24 2.1 Cumulative Postnatal Risk of Pediatric Sudden Death 24 2.2 Arrhythmia Burden and Long-term Outcomes of Patients with CcTGA 25 2.3 The Safety, Feasibility and Effectiveness of Zero-fluoroscopy Guidance Transcatheter Ablation of Tachyarrhythmias 27 2.3.1 Right-sided Arrhythmia Substrates 28 2.3.2 Left-sided Arrhythmia Substrates 29 2.3.3 Zero-fluoroscopy Procedures of CIED Implantation 30 2.4 Genetic Profiles and Risk Prediction for Major Adverse Cardiovascular Events in Pediatric LVNC 31 Chapter 3 Results 34 3.1 Cumulative Postnatal Risk of Pediatric Sudden Death and All-cause Mortality in Nationwide Birth Cohorts of Taiwan 34 3.2 Long-term Outcomes of Arrhythmia and Distinct Electrophysiological Features in ccTGA 38 3.3 Zero Fluoroscopy During Interventional Electrophysiology, including Ablation of Tachyarrhythmia and CIED implantation 43 3.3.1 Zero Fluoroscopy During Ablation of Right-Sided Supraventricular Tachycardia Substrates 43 3.3.2 Left-sided Arrhythmia Substrates in Children– Mid-term Safety and Feasibility Study from Transaortic Approach 45 3.3.3 Outcomes of Zero Fluoroscopy Approach of CIED Implantation 49 3.4 Genetic Variants and Risk Prediction for Major Adverse Cardiac Outcomes, in Pediatric LVNC 49 Chapter 4 Discussion 54 4.1 Cumulative Postnatal Risk of Pediatric Sudden Death and All-cause Mortality in Nationwide Birth Cohorts of Taiwan. Comparison with the US 54 4.2 CcTGA, Anatomical Factors and Arrhythmia and SD 57 4.3 Novel Treatment of Tachyarrhythmia, Zero-fluoroscopy Guidance Catheter Ablation is Safe, Feasible and Effective 63 4.4 The Genophenotypic Correlation in Pediatric LVNC. Arrhythmia Susceptibility is Associated with Mortality and SD 72 Chapter 5 Perspectives 78 Chapter 6 Summary 80 REFERENCES 85 FIGURES 99 TABLES 123 APPENDIX 140 | - |
| dc.language.iso | en | - |
| dc.subject | 心律不整 | zh_TW |
| dc.subject | 成人期先天性心臟病 | zh_TW |
| dc.subject | 兒童 | zh_TW |
| dc.subject | 猝死/心因性猝死 | zh_TW |
| dc.subject | sudden death/sudden cardiac death | en |
| dc.subject | adults with congenital heart disease | en |
| dc.subject | Tachyarrhythmia | en |
| dc.subject | pediatric | en |
| dc.title | 兒童與成人期先天性心臟病患者之頻脈與猝死: 解剖構造與電生理學之影響研究 | zh_TW |
| dc.title | Tachyarrhythmia and Sudden Death in Children and Adults with Congenital Heart Disease: Anatomical and Electrophysiological Consideration | en |
| dc.title.alternative | Tachyarrhythmia and Sudden Death in Children and Adults with Congenital Heart Disease: Anatomical and Electrophysiological Consideration | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 陳文彬 | zh_TW |
| dc.contributor.coadvisor | Wen-Pin Chen | en |
| dc.contributor.oralexamcommittee | 楊偉勛 ;鄭敬楓 ;王玠能 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Shiung Yang ;Ching-Feng Cheng;Jieh-Neng Wang | en |
| dc.subject.keyword | 心律不整,猝死/心因性猝死,兒童,成人期先天性心臟病, | zh_TW |
| dc.subject.keyword | Tachyarrhythmia,sudden death/sudden cardiac death,pediatric,adults with congenital heart disease, | en |
| dc.relation.page | 140 | - |
| dc.identifier.doi | 10.6342/NTU202300008 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-01-04 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1018230103051005.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
