Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83296
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文貞zh_TW
dc.contributor.advisorWen-Jen Linen
dc.contributor.author林雋言zh_TW
dc.contributor.authorJiun Yann Limen
dc.date.accessioned2023-03-02T17:01:49Z-
dc.date.available2023-11-10-
dc.date.copyright2023-06-02-
dc.date.issued2023-
dc.date.submitted2023-02-20-
dc.identifier.citationAbuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of Covalent Attachment of Polyethylene Glycol on Immunogenicity and Circulating Life of Bovine Liver Catalase. Journal of Biological Chemistry. 1977;252(11):3582-3586.
Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug Metabolism and Pharmacokinetics, The Blood-brain barrier, and Central Nervous System Drug Discovery. NeuroRx. 2005;2(4):554-571.
Almalik A, Day PJ, Tirelli N. HA-Coated Chitosan Nanoparticles for CD44-Mediated Nucleic Acid Delivery. Macromolecular Bioscience. 2013;13(12):1671-1680.
Amani A, Alizadeh MR, Yaghoubi H, Nohtani M. Novel Multi-Targeted Nanoparticles for Targeted Co-Delivery of Nucleic Acid and Chemotherapeutic Agents to Breast Cancer Tissues. Materials Science and Engineering: C. 2021;118:111494.
Amer MH. Gene Therapy for Cancer: Present Status and Future Perspective. Molecular and cellular therapies. 2014;2(1):1-19.
Amer Ridha A, Kashanian S, Rafipour R, Hemati Azandaryani A, Zhaleh H, Mahdavian E. A Promising Dual-Drug Targeted Delivery System in Cancer Therapy: Nanocomplexes of Folate–Apoferritin-Conjugated Cationic Solid Lipid Nanoparticles. Pharmaceutical development and technology. 2021;26(6):673-681.
Anguela XM, High KA. Entering the Modern Era of Gene Therapy. Annual Review of Medicine. 2019;70:273-288.
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An Overview of Active and Passive Targeting Strategies to Improve the Nanocarriers Efficiency to Tumour Sites. Journal of Pharmacy and Pharmacology. 2019;71(8):1185-1198.
Augustyn E, Finke K, Zur AA, Hansen L, Heeren N, Chien H-C, et al. LAT-1 Activity of Meta-Substituted Phenylalanine and Tyrosine Analogs. Bioorganic & medicinal chemistry letters. 2016;26(11):2616-2621.
Aweda T, El-Sayed R, Gadhia D, Yasui N, Massicano A, Super I, et al. Antibody-based PET Agents Targeting the Prostate Cancer-Associated Amino Acid Transporter LAT1. Journal of Nuclear Medicine. 2019;60(supplement 1):612.
Baglo Y, Liang BJ, Robey RW, Ambudkar SV, Gottesman MM, Huang H-C. Porphyrin-lipid Assemblies and Nanovesicles Overcome ABC Transporter-mediated Photodynamic Therapy Resistance in Cancer Cells. Cancer letters. 2019;457:110-118.
Bang DY, Lee IK, Lee B-M. Toxicological Characterization of Phthalic Acid. Toxicological research. 2011;27(4):191-203.
Bao G, Bao XR. Shedding Light on the Dynamics of Endocytosis and Viral Budding. Proceedings of the National Academy of Sciences. 2005;102(29):9997-9998.
Bao X, Wu J, Xie Y, Kim S, Michelhaugh S, Jiang J, et al. Protein Expression and Functional Relevance of Efflux and Uptake Drug Transporters at the Blood-Brain Barrier of Human Brain and Glioblastoma. Clinical Pharmacology & Therapeutics. 2020;107(5):1116-1127.
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive Targeting of Nanoparticles to Cancer: A Comprehensive Review of the Literature. Molecular and Clinical Oncology. 2014;2(6):904-908.
Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer Active Targeting by Nanoparticles: A Comprehensive Review of Literature. Journal of Cancer Research and Clinical Oncology. 2015;141(5):769-784.
Bhunia S, Vangala V, Bhattacharya D, Ravuri HG, Kuncha M, Chakravarty S, et al. Large Amino Acid Transporter 1 Selective Liposomes of L-DOPA Functionalized Amphiphile for Combating Glioblastoma. Molecular Pharmaceutics. 2017;14(11):3834-3847.
Cappoli N, Jenkinson MD, Dello Russo C, Dickens D. LAT1, A Novel Pharmacological Target for the Treatment of Glioblastoma. Biochemical Pharmacology. 2022;201:115103.
Chandrasekaran AR. Nuclease Resistance of DNA Nanostructures. Nature Reviews Chemistry. 2021;5(4):225-239.
Chen Q, Xiao Z, Wang C, Chen G, Zhang Y, Zhang X, et al. Microneedle Patches Loaded with Nanovesicles for Glucose Transporter-Mediated Insulin Delivery. ACS nano. 2022;16(11):18223-18231.
Chen S, Deng J, Zhang L-M. Cationic Nanoparticles Self-Assembled from Amphiphilic Chitosan Derivatives Containing Poly (amidoamine) Dendrons and Deoxycholic Acid as a Vector for Co-elivery of Doxorubicin and Gene. Carbohydrate Polymers. 2021;258:117706.
Chen Y, Sheng W, Lin J, Fang C, Deng J, Zhang P, et al. Magnesium Oxide Nanoparticle Coordinated Phosphate-Functionalized Chitosan Injectable Hydrogel for Osteogenesis and Angiogenesis in Bone Regeneration. ACS Applied Materials & Interfaces. 2022;14(6):7592-7608.
Chen Z, Wang W, Li Y, Wei C, Zhong P, He D, et al. Folic Acid-Modified Erythrocyte Membrane Loading Dual Drug for Targeted and Chemo-photothermal Synergistic Cancer Therapy. Molecular Pharmaceutics. 2020;18(1):386-402.
Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, et al. Targeting Folate Receptor Alpha for Cancer Treatment. Oncotarget. 2016;7(32):52553-52574.
Chong ZX, Yeap SK, Ho WY. Transfection Types, Methods and Strategies: A Technical Review. PeerJ. 2021;9:e11165.
Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for Gene Delivery: Methods for Improvement and Applications. Advances in Colloid and Interface Science. 2019;268:25-38.
Duelli R, Enerson BE, Gerhart DZ, Drewes LR. Expression of Large Amino Acid Transporter LAT1 in Rat Brain Endothelium. Journal of Cerebral Blood Flow & Metabolism. 2000;20(11):1557-1562.
Essa ML, Elashkar AA, Hanafy NA, Saied EM, El-Kemary M. Dual Targeting Nanoparticles Based on Hyaluronic and Folic Acids as a Promising Delivery System of the Encapsulated 4-Methylumbelliferone (4-MU) Against Invasiveness of Lung Cancer In Vivo and In Vitro. International Journal of Biological Macromolecules. 2022;206:467-480.
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the Human Tissue-Specific Expression by Genome-Wide Integration of Transcriptomics and Antibody-Based Proteomics. Molecular & cellular proteomics. 2014;13(2):397-406.
Farran B, Montenegro RC, Kasa P, Pavitra E, Huh YS, Han Y-K, et al. Folate-Conjugated Nanovehicles: Strategies for Cancer Therapy. Materials Science and Engineering: C. 2020;107:110341.
Fukui N, Yawata T, Nakajo T, Kawanishi Y, Higashi Y, Yamashita T, et al. Targeting CD146 Using Folic Acid–Conjugated Nanoparticles and Suppression of Tumor Growth in a Mouse Glioma Model. Journal of Neurosurgery. 2020;134(6):1772-1782.
Gao H, Shi W, Freund LB. Mechanics of Receptor-Mediated Endocytosis. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(27):9469-9474.
Grunwald T, Ulbert S. Improvement of DNA Vaccination by Adjuvants and Sophisticated Delivery Devices: Vaccine-Platforms for the Battle Against Infectious Diseases. Clinical and Experimental Vaccine Research. 2015;4(1):1-10.
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules. 2023;28(3):1151.
Häfliger P, Charles R-P. The L-Type Amino Acid Transporter LAT1-An Emerging Target in Cancer. International journal of molecular sciences. 2019;20(10):2428.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57-70.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-674.
Helmy LA, Abdel-Halim M, Hassan R, Sebak A, Farghali HA, Mansour S, et al. The Other Side to the Use of Active Targeting Ligands; The Case of Folic Acid in the Targeting of Breast Cancer. Colloids and Surfaces B: Biointerfaces. 2022;211:112289.
Hiraoka M, Kagawa Y. Genetic Polymorphisms and Folate Status. Congenital Anomalies. 2017;57(5):142-149.
Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Advanced Healthcare Materials. 2021;10(8):e2001812.
Illingworth A. What is MFI and how is it calculated? : International Clinical Cytometry Society; Available from: https://www.cytometry.org/web/q_view.php?id=152&filter=Analysis%20Techniques.
Jin Z, Hu G, Zhao K. Mannose-anchored Quaternized Chitosan/Thiolated Carboxymethyl Chitosan Composite NPs as Mucoadhesive Carrier for Drug Delivery. Carbohydrate Polymers. 2022;283:119174.
Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression Cloning and Characterization of A Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 Antigen (CD98). Journal of Biological Chemistry. 1998;273(37):23629-23632.
Kato T, Jin CS, Ujiie H, Lee D, Fujino K, Wada H, et al. Nanoparticle Targeted Folate Receptor 1-Enhanced Photodynamic Therapy for Lung Cancer. Lung Cancer. 2017;113:59-68.
Kelemen LE. The Role of Folate Receptor α in Cancer Development, Progression and Treatment: Cause, Consequence or Innocent Bystander? International Journal of Cancer. 2006;119(2):243-250.
Kim KS, Suzuki K, Cho H, Youn YS, Bae YH. Oral Nanoparticles Exhibit Specific High-efficiency Intestinal Uptake and Lymphatic Transport. ACS nano. 2018;12(9):8893-8900.
Kou L, Bhutia YD, Yao Q, He Z, Sun J, Ganapathy V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Frontiers in Pharmacology. 2018;9:27.
Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE. Insight on the Formation of Chitosan Nanoparticles through Ionotropic Gelation with Tripolyphosphate. Molecular Pharmaceutics. 2012;9(10):2856-2862.
Lee JH, Lee ST, Nam YK, Gong SP. Gene Delivery into Siberian Sturgeon Cell Lines by Commercial Transfection Reagents. In Vitro Cellular & Developmental Biology - Animal. 2019;55(2):76-81.
Lin C-W, Lee C-Y, Lin S-Y, Kang L, Fu Y-C, Chen C-H, et al. Bone-Targeting Nanoparticles of a Dendritic (Aspartic acid) 3-Functionalized PEG-PLGA Biopolymer Encapsulating Simvastatin for the Treatment of Osteoporosis in Rat Models. International journal of molecular sciences. 2022;23(18):10530.
Liu Y-H, Li Y-L, Shen H-T, Chien P-J, Sheu G-T, Wang B-Y, et al. L-Type Amino Acid Transporter 1 Regulates Cancer Stemness and the Expression of Programmed Cell Death 1 Ligand 1 in Lung Cancer Cells. International journal of molecular sciences. 2021;22(20):10955.
Lopes A, Vandermeulen G, Préat V. Cancer DNA Vaccines: Current Preclinical and Clinical Developments and Future Perspectives. Journal of Experimental & Clinical Cancer Research. 2019;38(1):146.
Luo Y, Wang Q. Recent Development of Chitosan-Based Polyelectrolyte Complexes with Natural Polysaccharides for Drug Delivery. International Journal of Biological Macromolecules. 2014;64:353-367.
Ma K, Mi C-L, Cao X-X, Wang T-Y. Progress of Cationic Gene Delivery Reagents for Non-Viral Vector. Applied Microbiology and Biotechnology. 2021;105(2):525-538.
Ma L, Shen C-a, Gao L, Li D-w, Shang Y-r, Yin K, et al. Anti-Inflammatory Activity of Chitosan Nanoparticles Carrying NF-κB/p65 Antisense Oligonucleotide in RAW264. 7 Macropghage Stimulated by Lipopolysaccharide. Colloids and Surfaces B: Biointerfaces. 2016;142:297-306.
Madheswaran T. Fabrication, Optimization, and Evaluation of Rotigotine-Loaded Chitosan Nanoparticles for Nose-To-Brain Delivery. Pharmaceutics. 2019;11.
Malhotra M, Lane C, Tomaro-Duchesneau C, Saha S, Prakash S. A Novel Method for Synthesizing PEGylated Chitosan Nanoparticles: Strategy, Preparation, and In Vitro Analysis. International Journal of Nanomedicine. 2011;6:485.
Mali S. Delivery Systems for Gene Therapy. Indian journal of human genetics. 2013;19(1):3-8.
Martinez RS, Salji MJ, Rushworth L, Ntala C, Rodriguez Blanco G, Hedley A, et al. SLFN5 Regulates LAT1-Mediated mTOR Activation in Castration-Resistant Prostate CancerSLFN5 Regulates LAT1 in CRPC. Cancer Research. 2021;81(13):3664-3678.
Maryam K, Azarpanah A. Preparation and In Vitro Evaluation of Chitosan Nanoparticles Containing Diclofenac Using the Ion-Gelation Method. Jundishapur Journal of Natural Pharmaceutical Products. 2015;10:1-7.
McCord E, Pawar S, Koneru T, Tatiparti K, Sau S, Iyer AK. Folate Receptors’ Expression in Gliomas May Possess Potential Nanoparticle-Based Drug Delivery Opportunities. ACS Omega. 2021;6(6):4111-4118.
Merino D, Casalongué C, Alvarez VA. Polysaccharides as Eco-nanomaterials for Agricultural Applications. Handbook of Ecomaterials. 2018:1-22.
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nature Reviews Drug Discovery. 2021;20(2):101-124.
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as A Bioactive Polymer: Processing, Properties and Applications. International Journal of Biological Macromolecules. 2017;105(Pt 2):1358-1368.
Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, et al. Folic Acid Functionalized Nanoparticles as Pharmaceutical Carriers in Drug Delivery Systems. Drug Development Research. 2019;80(4):404-424.
Nawaz FZ, Kipreos ET. Emerging Roles for Folate Receptor FOLR1 in Signaling and Cancer. Trends in Endocrinology & Metabolism. 2022;33(3):159-174.
Nobbmann U. Intensity-Volume-Number: Which size is correct? : Malvern Panalytical Ltd.; 2017; Available from: https://www.materials-talks.com/intensity-volume-number-which-size-is-correct/.
Nunes R, Serra AS, Simaite A, Sousa Â. Modulation of Chitosan-TPP Nanoparticle Properties for Plasmid DNA Vaccines Delivery. Polymers. 2022;14(7):1443.
O'Shannessy DJ, Davis DW, Anderes K, Somers EB. Isolation of Circulating Tumor Cells from Multiple Epithelial Cancers with ApoStream® for Detecting (or Monitoring) the Expression of Folate Receptor Alpha. Biomarker Insights. 2016;11:BMI.S35075.
Palazzolo L, Parravicini C, Laurenzi T, Guerrini U, Indiveri C, Gianazza E, et al. In Silico Description of LAT1 Transport Mechanism at an Atomistic Level. Frontiers in Chemistry. 2018;6:350.
Pan Y, Wang Z, Ma J, Zhou T, Wu Z, Ding P, et al. Folic Acid-Modified Fluorescent-Magnetic Nanoparticles for Efficient Isolation and Identification of Circulating Tumor Cells in Ovarian Cancer. Biosensors. 2022;12(3):184.
Park S-C, Heo H, Jang M-K. Polyethylenimine Grafted-Chitosan Based Gambogic Acid Copolymers for Targeting Cancer Cells Overexpressing Transferrin Receptors. Carbohydrate Polymers. 2022;277:118755.
Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric Vehicles for Nucleic Acid Delivery. Advanced Drug Delivery Reviews. 2020;156:119-132.
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type Amino Acid Transporter 1 as A Target for Drug Delivery. Pharmaceutical research. 2020;37(5):1-17.
Puris E, Gynther M, Huttunen J, Auriola S, Huttunen KM. L-Type Amino Acid Transporter 1 Utilizing Prodrugs of Ferulic Acid Revealed Structural Features Supporting the Design of Prodrugs for Brain Delivery. European Journal of Pharmaceutical Sciences. 2019;129:99-109.
Puscas I, Bernard-Patrzynski F, Jutras M, Lécuyer M-A, Bourbonnière L, Prat A, et al. IVIVC Assessment of Two Mouse Brain Endothelial Cell Models for Drug Screening. Pharmaceutics. 2019;11(11):587.
Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, et al. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Frontiers in Cell and Developmental Biology. 2021;9.
Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, et al. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Frontiers in Cell and Developmental Biology. 2021:830.
Ramamoorth M, Narvekar A. Non Viral Vectors in Gene Therapy- An Overview. Journal of Clinical and Diagnostic Research. 2015;9(1):Ge01-06.
Razaghi A, Zickler AM, Spallholz J, Kirsch G, Björnstedt M. Selenofolate Inhibits the Proliferation of IGROV1 Cancer Cells Independently from Folate Receptor Alpha. Heliyon. 2021;7(6):e07254-e07254.
Rezaei M, Nazari M. New Generation Vaccines for COVID-19 Based on Peptide, Viral Vector, Artificial Antigen Presenting Cell, DNA or mRNA. Avicenna Journal of Medical Biotechnology. 2022;14(1):30-36.
Sangha V, Hoque MT, Henderson JT, Bendayan R. Novel Localization of Folate Transport Systems in the Murine Central Nervous System. Fluids and Barriers of the CNS. 2022;19(1):92.
Sarkar P, Ghosh S, Sarkar K. Folic Acid Based Carbon Dot Functionalized Stearic Acid-g-Polyethyleneimine Amphiphilic Nanomicelle: Targeted Drug Delivery and Imaging for Triple Negative Breast Cancer. Colloids and Surfaces B: Biointerfaces. 2021;197:111382.
Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, et al. Engineering Patient-Specific Cancer Immunotherapies. Nature Biomedical Engineering. 2019;3(10):768-782.
Shariatinia Z. Pharmaceutical Applications of Chitosan. Advances in Colloid and Interface Science. 2019;263:131-194.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians. 2022;72(1):7-33.
Song H, Yu M, Lu Y, Gu Z, Yang Y, Zhang M, et al. Plasmid DNA Delivery: Nanotopography Matters. Journal of the American Chemical Society. 2017;139(50):18247-18254.
Srisongkram T, Bahrami K, Järvinen J, Timonen J, Rautio J, Weerapreeyakul N. Development of Sesamol Carbamate-L-Phenylalanine Prodrug Targeting L-Type Amino Acid Transporter1 (LAT1) as a Potential Antiproliferative Agent against Melanoma. International journal of molecular sciences. 2022;23(15):8446.
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as A Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Advanced Drug Delivery Reviews. 2016;99:28-51.
Sun J, Ou W, Han D, Paganini-Hill A, Fisher MJ, Sumbria RK. Comparative Studies Between The Murine Immortalized Brain Endothelial Cell Line (bEnd. 3) and Induced Pluripotent Stem Cell-Derived Human Brain Endothelial Cells for Paracellular Transport. PLoS One. 2022;17(5):e0268860.
Takeuchi K, Ogata S, Nakanishi K, Ozeki Y, Hiroi S, Tominaga S, et al. LAT1 Expression in Non-small-cell Lung Carcinomas: Analyses by Semiquantitative Reverse Transcription-PCR (237 cases) and Immunohistochemistry (295 cases). Lung Cancer. 2010;68(1):58-65.
Tejeda-Mansir A, García-Rendón A, Guerrero-Germán P. Plasmid-DNA Lipid and Polymeric Nanovaccines: A New Strategic In Vaccines Development. Biotechnology & Genetic Engineering Reviews. 2019;35(1):46-68.
Tharanathan RN, Kittur FS. Chitin--The Undisputed Biomolecule of Great Potential. Critical Reviews in Food Science and Nutrition. 2003;43(1):61-87.
Thompson C, Rahman MM, Singh S, Arthur S, Sierra-Bakhshi C, Russell R, et al. The Adipose Tissue-Derived Secretome (ADS) in Obesity Uniquely Induces L-Type Amino Acid Transporter 1 (LAT1) and mTOR Signaling in Estrogen-Receptor-Positive Breast Cancer Cells. International journal of molecular sciences. 2021;22(13):6706.
Thorne B, Takeya R, Vitelli F, Swanson X. Gene Therapy. In: Kiss, B, Gottschalk U, Pohlscheidt M, editors. New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins. Cham: Springer International Publishing; 2018. p. 351-399.
Torchilin V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Advanced Drug Delivery Reviews. 2011;63(3):131-135.
Ullah S, Azad AK, Nawaz A, Shah KU, Iqbal M, Albadrani GM, et al. 5-Fluorouracil-Loaded Folic-Acid-Fabricated Chitosan Nanoparticles for Site-Targeted Drug Delivery Cargo. Polymers. 2022;14(10):2010.
Valente JFA, Pereira P, Sousa A, Queiroz JA, Sousa F. Effect of Plasmid DNA Size on Chitosan or Polyethyleneimine Polyplexes Formulation. Polymers. 2021;13(5):793.
Vaughan HJ, Green JJ, Tzeng SY. Cancer-Targeting Nanoparticles for Combinatorial Nucleic Acid Delivery. Advanced Materials. 2020;32(13):1901081.
Venteicher B, Merklin K, Ngo HX, Chien HC, Hutchinson K, Campbell J, et al. The Effects of Prodrug Size and a Carbonyl Linker on l‐Type Amino Acid Transporter 1‐Targeted Cellular and Brain Uptake. ChemMedChem. 2021;16(5):869-880.
Verhoeven J, Hulpia F, Kersemans K, Bolcaen J, De Lombaerde S, Goeman J, et al. New Fluoroethyl Phenylalanine Analogues as Potential LAT1-Targeting PET Tracers for Glioblastoma. Scientific reports. 2019;9(1):1-23.
Vyas A, Jain A, Hurkat P, Jain A, Jain SK. Targeting of AIDS Related Encephalopathy Using Phenylalanine Anchored Lipidic Nanocarrier. Colloids and Surfaces B: Biointerfaces. 2015;131:155-161.
Wang Q, Holst J. L-Type Amino Acid Transport and Cancer: Targeting the mTORC1 Pathway to Inhibit Neoplasia. American journal of cancer research. 2015;5(4):1281-1294.
Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, et al. Chitosan Derivatives and Their Application in Biomedicine. International journal of molecular sciences. 2020;21(2):487.
Wang W, Xue C, Mao X. Chitosan: Structural Modification, Biological Activity and Application. International Journal of Biological Macromolecules. 2020;164:4532-4546.
Wang Y, Huang J, Wu Q, Zhang J, Ma Z, Zhu L, et al. Decitabine Sensitizes the Radioresistant Lung Adenocarcinoma to Pemetrexed Through Upregulation of Folate Receptor Alpha. Frontiers in oncology. 2021;11:668798.
Wang Z, Wu G, Yang Z, Li X, Feng Z, Zhao Y. Chitosan/Hyaluronic Acid/MicroRNA-21 Nanoparticle-Coated Smooth Titanium Surfaces Promote the Functionality of Human Gingival Fibroblasts. International Journal of Nanomedicine. 2022;17:3793-3807.
Wiener EC, Konda S, Shadron A, Brechbiel M, Gansow O. Targeting Dendrimer-Chelates to Tumors and Tumor Cells Expressing the High-Affinity Folate Receptor. Investigative Radiology. 1997;32(12):748-754.
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid Nanoparticle Technology for Therapeutic Gene Regulation in the Liver. Advanced Drug Delivery Reviews. 2020;159:344-363.
Xie J, Gonzalez-Carter D, Tockary TA, Nakamura N, Xue Y, Nakakido M, et al. Dual-sensitive Nanomicelles Enhancing Systemic Delivery of Therapeutically Active Antibodies Specifically Into the Brain. ACS nano. 2020;14(6):6729-6742.
Yamada Y. Nucleic Acid Drugs-Current Status, Issues, and Expectations for Exosomes. Cancers. 2021;13(19):5002.
Yamano S, Dai J, Moursi AM. Comparison of Transfection Efficiency of Nonviral Gene Transfer Reagents. Molecular Biotechnology. 2010;46(3):287-300.
Yanat M, Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers. 2021;161:104849.
Yang L, Ren L, Zhao Y, Liu S, Wang H, Gao X, et al. Preparation and Characterization of PVA/Arginine Chitosan/ZnO NPs Composite Films. International Journal of Biological Macromolecules. 2023;226:184-193.
Yang S, Mei S, Jin H, Zhu B, Tian Y, Huo J, et al. Identification of Two Immortalized Cell Lines, ECV304 and bEnd3, for in vitro Permeability Studies of Blood-Brain Barrier. PLoS One. 2017;12(10):e0187017.
Yang X, Shang P, Ji J, Malichewe C, Yao Z, Liao J, et al. Hyaluronic Acid-Modified Nanoparticles Self-Assembled from Linoleic Acid-Conjugated Chitosan for the Codelivery of miR34a and Doxorubicin in Resistant Breast Cancer. Molecular Pharmaceutics. 2021;19(1):2-17.
Yin H, Liao L, Fang J, editors. Enhanced Permeability and Retention ( EPR ) Effect Based Tumor Targeting : The Concept , Application and Prospect2014.
Zar JH. Biostatistical analysis: Pearson Education India; 1999.
Zeng X, Fan X, Fu C, Yang J, Tian J, Peng Q, et al. Codelivery of Doxorubicin/PI3K Inhibitor Nanomicelle Linked with Phenylboronic Acid for Enhanced Cytotoxicity to Pancreatic Cancer. Journal of Nanomaterials. 2022;2022.
Zhang J, Xu Y, Li D, Fu L, Zhang X, Bao Y, et al. Review of the Correlation of LAT1 With Diseases: Mechanism and Treatment. Frontiers in Chemistry. 2020;8:564809.
Zhang X, Yan R, Wei Z, Yang D, Hu Z, Zhang Y, et al. Folate Decorated Multifunctional Biodegradable Nanoparticles for Gastric Carcinoma Active Targeting Theranostics International Journal of Nanomedicine. 2022;17:3097-3098.
Zhao X, Li H, Lee RJ. Targeted Drug Delivery via Folate Receptors. Expert Opinion on Drug Delivery. 2008;5(3):309-319.
Zur AA, Chien H-C, Augustyn E, Flint A, Heeren N, Finke K, et al. LAT1 Activity of Carboxylic Acid Bioisosteres: Evaluation of Hydroxamic Acids as Substrates. Bioorganic & medicinal chemistry letters. 2016;26(20):5000-5006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83296-
dc.description.abstract核酸藥物是一類新型的生物製劑,在治療多種癌症方面有著臨床潛力。然而,強負電荷,親水性以及對於核酸降解酶的高度敏感限制了其臨床應用。奈米粒子(NPs)遞輸系統有望為上述的缺點帶來改進。儘管奈米粒子擁有被動靶向作用,但主動靶向作用有助於通過一些生物屏障並增加藥物在細胞内的濃度。
幾丁聚醣是一種有幾丁質中萃取出的陽離子聚合物。幾丁聚醣因爲其生物降解性以及良好的生物相容性而常作爲奈米粒子研究中的主要材料。幾丁聚醣上的官能基可以接枝上配體以實現核酸藥物的主動靶向遞輸。奈米載體通過細胞膜的能力對於轉染的效率至關重要。受體介導胞吞作用(Receptor-mediated endocytosis, RME)是靶向遞輸的主要途徑之一。近年來轉運蛋白介導胞吞作用(Transporter-mediated endocytosis, TME)被提出並研究作爲奈米粒子攝取的替代途徑。
在這項研究中,我們通過EDC/NHS偶聯反應將苯丙氨酸(LAT1 轉運蛋白的配體)、葉酸(FOLR1 受體的配體)或 PEG(非靶向配體對照組)接枝到幾丁聚醣上以提高靶向與癌細胞的轉染效率。實驗使用離子凝膠法在交聯劑三磷酸鈉(TPP)的作用下製備奈米粒子。聚合物與TPP重量比2.5以及聚合物與TPP莫耳比5.5所製備之奈米粒子用於癌細胞轉染的評估。配體接枝之幾丁聚醣聚合物用於製備配體修飾之奈米粒子。
通過動態光散射(Dynamic light scattering, DLS)分析,所製備的奈米粒子直徑皆小於200奈米且分佈較密集(PDI<0.3)。表面電位值也顯示正電荷,説明質體DNA被完全包覆在劑型中。凝膠阻滯分析結果也證實了奈米粒子的形成,其穩定性以及對於質體DNA的保護作用。
癌細胞轉染實驗顯示所製備之奈米粒子具有劑量依賴性。當質體DNA的濃度從10 µg/mL 增加到 30 µg/mL 時,EGFP 陽性細胞群的百分比與 gMFI 值都有顯著的增加。EGFP蛋白相對表現量結果顯示CPhe2 與CFA2奈米粒子相較於CPhe1與CFA1奈米粒子在A549人類非小細胞肺癌細胞,bEnd.3小鼠腦微血管內皮細胞,U87-MG惡性神經膠質細胞瘤以及HCT 116人類結腸直腸癌細胞中有著1.3-6.3倍的變化。
苯丙氨酸的靶向效率在 U87-MG 細胞中最高,其次是 A549、bEnd.3 和 HCT116 細胞。葉酸的靶向效率與其在細胞中的表達相關,其中 FOLR1 受體的表達按 A549、bEnd.3、U87-MG 和 HCT116 細胞的依序增加。儘管 LAT1 轉運蛋白的基因表現量高於 FOLR1 受體,但FA接枝之奈米粒子有著相對更好的結果。實驗結果説明RME相對與TME為更佳的靶向遞輸途徑。
zh_TW
dc.description.abstractNucleic acid therapeutics is a class of biologics drugs that exhibit great clinical potential in the treatment of a variety of cancers. Yet some unfavorable properties including strong negative charge, hydrophilic nature, and highly sensitive to nuclease degradation of nucleic acid therapeutics restrain its clinical applications. The nanoparticles (NPs) delivery system may be a key to the solution. Despite the passive targeting effect of NPs enhancing cellular uptake, active targeting may help in passing through biological barriers and increased drug accumulation in the human body.
Chitosan is a natural cationic biopolymer derived from chitin with renowned biodegradable and biocompatible properties it is often used in studies as the main composition of NPs. Chitosan with various functional groups can be functionalized by a ligand to obtain desired targeted delivery of nucleic acid therapeutics. The entry of cargo-loaded NPs through the cellular membrane is critical for achieving high transfection efficiency. Receptor-mediated endocytosis (RME) is one of the main pathways to achieve targeting delivery. In recent years, transporter-mediated endocytosis (TME) has been proposed and studied as an alternative pathway for NPs cellular uptake.
In this study, we conjugated phenylalanine (ligand of LAT1 transporter), folic acid (ligand of FOLR1 receptor), and PEG (non-targeting control ligand) onto the chitosan backbone via EDC/NHS coupling method to improve the targeting and transfection efficiency in cancer cells. Ionic gelation method with sodium triphosphate (TPP) as a crosslinking agent was employed to prepare NPs. Chitosan-based NPs with a weight ratio of 2.5 and a molar ratio of 5.5 of polymer-to-TPP was selected for cancer cell transfection evaluation. Ligand-modified chitosan was used to prepare ligand-modified NPs.
Through dynamic light scattering (DLS) analysis, most of the NPs established possessed a size <200 nm with narrow distribution (PDI < 0.3). The positive values of zeta potential indicate full encapsulation of pDNA in the NPs. The electrophoretic mobility shift assay confirms the formation, stability, and protective effect of NPs.
The transfection study showed that the prepared NPs possess a dose-dependent manner. The percentage of EGFP positive cell population and gMFI values increase when the concentration of pDNA increase from 10 µg/mL to 30 µg/mL. The relative EGFP expression results showed that CPhe2 and CFA2 NPs have 1.3-6.3 folds change compared to CPhe1 and CFA1 NPs in A549 human lung carcinoma, bEnd.3 mouse brain endothelioma, U87-MG human glioblastoma, and HCT116 human colorectal carcinoma.
The targeting efficiency of phenylalanine is highest in U87-MG cells, followed by A549, bEnd.3, and HCT116 cells. The targeting efficiency of folic acid is correlated to its expression in cells where the expression of FOLR1 receptor increases in the order of A549, bEnd.3, U87-MG and HCT116 cells. Although LAT1 transporter has higher gene expression than FOLR1 receptor, FA-conjugated NPs showed better performance in our study, suggesting that RME pathway may have more potential for the targeting delivery of NPs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-02T17:01:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-03-02T17:01:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract III
Table of Contents V
List of Figures XI
List of Tables XVIII
Abbreviation XX
Chapter I Introduction 1
1.1 Genetic-base therapy 1
1.1.1 Gene therapy 1
1.1.2 Nucleic acid-based vaccines 1
1.1.3 Class of Nucleic acid therapeutics 2
1.1.4 Challenges and strategy of gene delivery 4
1.2 Nanoparticles delivery system 5
1.2.1 Nanoparticles 5
1.2.2 Lipid nanoparticles (LNPs) 6
1.2.3 Polymeric nanoparticles 7
1.3 Nanoparticles for cancer therapy 8
1.3.1 Delivery strategy of nanoparticles 8
1.3.2 Passive targeting 8
1.3.3 Active targeting 9
1.4 FOLR1 receptor 11
1.4.1 Introduction of FOLR 11
1.4.2 Expression of FOLR1 on cancer cells 12
1.5 LAT1 transporter 13
1.5.1 Introduction of LAT 13
1.5.2 Expression in Cancer 14
1.6 Materials for nanoparticles (NPs) 16
1.6.1 Chitosan (CS) 16
1.6.2 Phenylalanine (Phe) 19
1.6.3 Folic acid (FA) 21
1.6.4 Polyethylene glycol (PEG) 22
1.7 Tripolyphosphate (TPP) 23
1.8 Plasmid DNA (pEGFP-N1) 23
1.9 Commercial transfection reagent 25
1.10 Tumor Cell lines 27
1.10.1 A549 cell line 27
1.10.2 bEnd.3 cell line 27
1.10.3 U87-MG cell line 27
1.10.4 HCT-116 cell lines 28
Chapter II Purpose 29
Chapter III Materials 31
3.1 Chemical reagent 31
3.2 Cell culture 34
3.3 Microbial culture 35
3.4 Equipment 36
3.5 Consumable 37
3.6 Solution and buffer preparation 38
Chapter IV Methods 40
4.1 Preparation of ligand-modified Chitosan 41
4.1.1 Synthesis of CS-Phe 41
4.1.2 Synthesis CS-FA 43
4.1.3 Synthesis CS-PEG 45
4.2 Characterization of ligand-modified Chitosan 47
4.2.1 Proton nuclear magnetic resonance (1H-NMR) 47
4.3 Preparation and transfection of control groups 48
4.3.1 Naked pDNA 48
4.3.2 jetPrime-pDNA 49
4.4 Preparation of NPs 50
4.4.1 Preparation of CS/pDNA NPs (Valente et al., 2021) 50
4.4.2 Preparation of CS/TPP-pDNA NPs (Madheswaran, 2019; Maryam and Azarpanah, 2015) 53
4.4.3 Preparation of ligand-modified CS/TPP-pDNA NPs 55
4.5 Characterization of NPs 57
4.5.1 Dynamic light scattering (DLS) analysis 57
4.5.2 Gel retardation assay 57
4.5.3 Enzymatic digestion assay 57
4.6 Transfection of Chitosan-based NPs 59
4.6.1 Transfection of CS/pDNA and CS/TPP-pDNA NPs formulations 59
4.6.2 Transfection of ligand-modified CS/TPP-pDNA NPs 60
4.6.3 Relative protein expression level 61
4.6.4 Targeting efficiency of ligand-modified NPs 61
4.7 Cytotoxicity 62
4.8 Statistic 63
Chapter V Result 64
5.1 Characterization of ligand modified Chitosan 64
5.1.1 Proton nuclear magnetic resonance (1H-NMR) 64
5.1.1.11H-NMR of Chitosan, Phenylalanine, Folic acid, and NH2-PEG5K-COOH 64
5.1.1.2 1H-NMR of ligand modified Chitosan 67
5.2 Characterization of NPs 70
5.2.1 DLS analysis of chitosan-based NPs 70
5.2.1.1 Size, PDI, and Zeta-potential of CS/pDNA NPs 70
5.2.1.2 Size, PDI, and Zeta-potential of CS/TPP-pDNA NPs 72
5.2.2 Physicochemical characterization of ligand-modified CS/TPP-pDNA NPs 74
5.2.2.1 Size, PDI, and Zeta-potential 74
5.2.3 Electrophoretic mobility shift assay (EMSA) 77
5.2.3.1 Gel retardation assay 77
5.2.3.2 Enzymatic digestion assay 78
5.2.3.2.1 Depolymerization of NPs by chitosanase 79
5.2.3.2.2 Treated with DNase I 80
5.2.3.2.3 Treated with Chitosanase and DNase I 81
5.2.3.2.4 Treated with BamHI 82
5.2.4.2.5 Treated with Chitosanase and BamHI 83
5.3 In vitro transfection activity of chitosan-based NPs 84
5.3.1 CS/pDNA and CS/TPP-pDNA NPs in A549, bEnd.3, U87-MG, and HCT116 cells for formulation selection 84
5.3.2 Transfection activity of ligand-modified CS/TPP-pDNA NPs 87
5.3.2.1 Concentration-dependent transfection activity in cancer cells 87
5.3.2.2 Relative EGFP expression 93
5.5 Cytotoxicity 96
Chapter VI Discussion 100
6.1 Chemical synthesis 100
6.1.1 Functional group selection for conjugation 100
6.2 Preparation and characterization of NPs 103
6.2.1 Role of TPP in ionic gelation 103
6.2.2 DLS analysis 105
6.3 In vitro cellular model for transfection study 106
6.3.1 LAT1 expression in various cancer tissues 106
6.3.2 FOLR1 expression in various cancer tissues 109
6.3.3 LAT1 and FOLR1 expression in A549, U87-MG and HCT116 human cancer cell lines 112
6.3.3.1 Expression data retrieved from GENEVESTIGATOR 112
6.3.3.2 Expression data retrieved from DepMap Portal 114
6.3.4 LAT1 and FOLR1 expression in bEnd.3 cell lines 116
6.4 Correlation between LAT1 transporter expression and transfection efficiency in cancer cells 117
6.5 Correlation between FOLR1 receptor expression and transfection efficiency in cancer cells 118
6.6 Flow cytometer analysis 119
Chapter VII Conclusion 121
Chapter VIII Appendix 126
Chapter IX Reference 143
-
dc.language.isoen-
dc.subjectLAT1 轉運蛋白zh_TW
dc.subject幾丁聚醣奈米粒子zh_TW
dc.subject核酸遞送zh_TW
dc.subject癌細胞轉染zh_TW
dc.subjectFOLR1 受體zh_TW
dc.subjectchitosan-base NPsen
dc.subjectLAT1 transporteren
dc.subjectFOLR1 receptoren
dc.subjectnucleic acid deliveryen
dc.subjectcancer cells transfectionen
dc.title轉運體與受體標靶修飾之幾丁聚醣奈米顆粒應用於質體DNA遞送之潛力zh_TW
dc.titlePotential of Transporter and Receptor Ligand-Modified Chitosan Nanoparticles for Plasmid DNA Deliveryen
dc.title.alternativePotential of Transporter and Receptor Ligand-Modified Chitosan Nanoparticles for Plasmid DNA Delivery-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊家榮;方嘉佑zh_TW
dc.contributor.oralexamcommitteeChia-Ron Yang;Jia-You Fangen
dc.subject.keyword幾丁聚醣奈米粒子,核酸遞送,LAT1 轉運蛋白,FOLR1 受體,癌細胞轉染,zh_TW
dc.subject.keywordchitosan-base NPs,nucleic acid delivery,LAT1 transporter,FOLR1 receptor,cancer cells transfection,en
dc.relation.page153-
dc.identifier.doi10.6342/NTU202300602-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-20-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2028-02-20-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
6.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved