請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83293完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃耀輝 | zh_TW |
| dc.contributor.advisor | Yaw-Huei Hwang | en |
| dc.contributor.author | 蔣必如 | zh_TW |
| dc.contributor.author | Bi-Ru Jiang | en |
| dc.date.accessioned | 2023-03-01T17:09:03Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-05-27 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-14 | - |
| dc.identifier.citation | 1.Hsiao H., Simeonov P. Preventing falls from roofs: a critical review. Ergonomics 2001;44:537-561.
2.Kandel E., Schwartz J.H., Jessell T. Principles of neural science, 4th ed. McGraw-Hill, Health Professions Division 2014. 3.Hu K., Rahmandad H., Smith‐Jackson T., Winchester W. Factors influencing the risk of falls in the construction industry: a review of the evidence. Construction Management and Economics 2011;29:397-416. 4.職業安全衛生署. 勞動檢查統計年報2021,勞動部 台北. 5.紀佳芬, 楊漢聲, 陳文雄, 劉國青, 張庭彰, 丁心逸. 營造業墜落重大墜落之情境分析與預防策略. 勞工安全衛生研究季刊 2008;16:383-400. 6.Chander H., Shojaei A., Deb S., Kodithuwakku Arachchige S. N. K., Hudson C., Knight A. C., Carruth D. W. Impact of virtual reality-generated construction environments at different heights on postural stability and fall risk. Workplace Health & Safety 2021;69:32-40. 7.Simeonov P. I., Hsiao H., Dotson B. W., Ammons D. E. Height effects in real and virtual environments. Human Factors 2005;47:430-438. 8.Brandt T., Arnold F., Bles W., Kapteyn T. S. The mechanism of physiological height vertigo. I. Theoretical approach and psychophysics. Acta Oto-Laryngologica 1980;89:513-523. 9.Guerraz M., Sakellari V., Burchill P., Bronstein A. M. Influence of motion parallax in the control of spontaneous body sway. Experimental Brain Research 2000;131:244-252. 10.Brown L. A., Frank J. S. Postural compensations to the potential consequences of instability: kinematics. Gait & Posture 1997;6:89-97. 11.Huppert D., Grill E., Brandt T. Down on heights? One in three has visual height intolerance. Journal of Neurology 2013;260:597-604. 12.Adkin A. L., Frank J. S., Carpenter M. G., Peysar G. W. Postural control is scaled to level of postural threat. Gait & Posture 2000;12:87–93. 13.Davis J. R., Campbell A. D., Adkin A. L., Carpenter M. G. The relationship between fear of falling and human postural control. Gait & Posture 2009;29:275-279. 14.Bles W., Kapteyn T. S., Brandt T., Arnold F. The mechanism of physiological height vertigo. II. Posturography. Acta Oto-Laryngologica 1980;89:534-540. 15.Stephan D. N., Hensen S., Fintor E., Krampe R., Koch I. Influences of postural control on cognitive control in task switching. Frontiers in Psychology 2018;9:1153. 16.Wickens C. D. Attention and skilled performance. In: Holding DH (Ed.). Human skills, 2nd ed. Oxford, England1989;71-105. 17.Stefanucci J. K., Storbeck J. Don't look down: emotional arousal elevates height perception. Jornal of Experimental Psychology: General 2009;138:131-145. 18.Coelho C. M., Wallis G. Deconstructing acrophobia: physiological and psychological precursors to developing a fear of heights. Depression & Anxiety 2010;27:864-870. 19.Cleworth T. W., Horslen B. C., Carpenter M. G. Influence of real and virtual heights on standing balance. Gait & Posture 2012;36:172-176. 20.Schultheis M., Rizzo A. The application of virtual reality technology in rehabilitation. Rehabilitation Psychology 2001;46:296-311. 21.Howard M. C. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Computers in Human Behavior 2017;70:317-327. 22.Coelho C. M., Waters A. M., Hine T. J., Wallis G. The use of virtual reality in acrophobia research and treatment. Journal of Anxiety Disorders 2009;23:563-574. 23.Yoon H. J., Kim J., Park S. W., Heo H. Influence of virtual reality on visual parameters: immersive versus non-immersive mode. BMC Ophthalmol 2020;20:200. 24.Gold J. I., Kant A. J., Kim S. H., Rizzo A. S. Virtual anesthesia: The use of virtual reality for pain distraction during acute medical interventions. Seminars in Anesthesia, Perioperative Medicine and Pain 2005;24:203-210. 25.Cyma-Wejchenig M., Maciaszek J., Marciniak K., Stemplewski R. The effects of cognitive task and change of height on postural stability and cardiovascular stress in workers working at height. International Journal of Environmental Research and Public Health 2020;17. 26.Cleworth T. W., Chua R., Inglis J. T., Carpenter M. G. Influence of virtual height exposure on postural reactions to support surface translations. Gait & Posture 2016;47:96-102. 27.Simeonov P., Hsiao H. Height, surface firmness, and visual reference effects on balance control. Injury Prevention 2001:i50–53. 28.Raffegeau T. E., Fawver B., Young W. R., Williams A. M., Lohse K. R., Fino P. C. The direction of postural threat alters balance control when standing at virtual elevation. Experimental Brain Research 2020;238:2653-2663. 29.Zaback M., Cleworth T. W., Carpenter M. G., Adkin A. L. Personality traits and individual differences predict threat-induced changes in postural control. Human Movement Science 2015;40:393-409. 30.Bzdúšková D., Marko M., Hirjaková Z., Kimijanová J., Hlavačka F., Riečanský I. The effects of virtual height exposure on postural control and psychophysiological stress are moderated by individual height intolerance. Frontiers in Human Neuroscience 2021;15:773091. 31.Slater M. A note on presence terminology. Presence Connect 2003;3:1–5. 32. Shendarkar A., Vasudevan K., Lee S., Son Y.-J. Crowd simulation for emergency response using BDI agents based on immersive virtual reality. Simulation Modelling Practice and Theory 2008;16:1415-1429. 33.Virk S., McConville K. M. Virtual reality applications in improving postural control and minimizing falls. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006;2006:2694-2697. 34.Pitti C., Peñate W., de la Fuente J., Bethencourt J., Acosta L., Villaverde M., Gracia R. Agoraphobia: combined treatment and virtual reality. Preliminary results. Actas Espanolas de Psiquiatria 2008;36:94-101. 35.Sherstyuk A., State A. Dynamic eye convergence for head-mounted displays. Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology 2010:43-46. 36.James Reason, Brand J. J. Motion sickness. London ; New York: Academic Press, 1975. 37.Riccio G. E., Stoffregen T. A. An ecological theory of motion sickness and postural instability. Ecological Psychology 1991;3:195-240. 38.Nashner L. M. Chapter 12: Practical Biomechanics and Physiology of Balance. In G. Jacobsen, C. Newman, & J. Kartush (Eds). Handbook of balance function and testing 1993:pp.261-279. 39.Diener H. C., Dichgans J. Chapter 22: On the role of vestibular, visual and somatosensory information for dynamic postural control in humans. Vestibulospinal Control of Posture and Locomotion1988;253-262. 40.M. Lacour, J. Barthelemy, L. Borel, J. Magnan, C. Xerri, A. Chays, M. Ouaknine. Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Experimental Brain Research 1997;115:300–310. 41.Di Nardo F., Mengarelli A., Maranesi E., Burattini L., Fioretti S. Assessment of the ankle muscle co-contraction during normal gait: a surface electromyography study. Journal of Electromyography and Kinesiology 2015;25:347-354. 42.Nashner L. M., McCollum G. The organization of human postural movements: a formal basis and experimental synthesis. Behavioral and Brain Sciences 1985;8:135-150. 43.Baloh R. W., Fife T. D., Zwerling L., Socotch T., Jacobson K., Bell T., Beykirch K. Comparison of static and dynamic posturography in young and older normal people. Journal of American Geriatrcs Society 1994;42:405-412. 44.Choy N. L., Brauer S., Nitz J. Changes in Postural Stability in Women Aged 20 to 80 Years. The Journals of Gerontology: Series A 2003;58:M525-M530. 45.Socias-Morales C. M., Chaumont Menéndez C. K., Marsh S. M. Fatal work-related falls in the United States, 2003-2014. American Journal of Industrial and Medicine 2018;61:204-215. 46.Alonso A. C., Luna N. M., Mochizuki L., Barbieri F., Santos S., Greve J. M. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults. Clinics (Sao Paulo) 2012;67:1433-1441. 47.de Groot M. H., van Campen J. P. C. M., Moek M. A., Tulner L. R., Beijnen J. H., Lamoth C. J. C. The effects of fall-risk-increasing drugs on postural control: a literature review. Drugs & Aging 2013;30:901-920. 48.Arquillos A., Rubio-Romero J. C., López-Arquillos C. Workers’ medication as occupational risk at construction site with formworks. Work 2017;57:389-395. 49.Tianwu H., Watanabe Y., Asai M., Shimizu K., Takada S., Mizukoshi K. Effects of alcohol ingestion on vestibular function in postural control. Acta Oto-Laryngologica 1995;115:127-131. 50.Sawicki M., Szóstak M. Impact of alcohol on occupational health and safety in the construction industry at workplaces with scaffoldings. Applied Sciences 2020;10:6690. 51.Boffino C. C., de Sá C. S., Gorenstein C., Brown R. G., Basile L. F., Ramos R. T. Fear of heights: cognitive performance and postural control. European Archives of Psychiatry and Clinical Neuroscience 2009;259:114-119. 52.Wühr M., Kugler G., Schniepp R., Eckl M., Pradhan C., Jahn K., Huppert D., Brandt T. Balance control and anti‐gravity muscle activity during the experience of fear at heights. Physiological Reports 2014;2:e00232. 53. Seung-Nam Min J.-Y. K., Mohamad Parnianpour. The effects of safety handrails and the heights of scaffolds on the subjective and objective evaluation of postural stability and cardiovascular stress in novice and expert construction workers. Applied Ergonomics 2012;43:574-581. 54.Wade L. R., Weimar W. H., Davis J. Effect of personal protective eyewear on postural stability. Ergonomics 2004;47:1614-1623. 55.Robbins S., Waked E., Allard P., McClaran J., Krouglicof N. Foot position awareness in younger and older men: the influence of footwear sole properties. Journal of the American Geriatrics Society 1997;45:61-66. 56.Peterka R. J., Benolken M. S. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Experimental Brain Research 1995;105:101-110. 57.Schieb D. A. Walkway surface heights and ground reaction forces. In: Proceedings of the 1995 Fourteenth Southern Biomedical Engineering Conference, 1995;175-178. 58.Patla A. E. Understanding the roles of vision in the control of human locomotion. Gait & Posture 1997;5:54-69. 59.Oullier O., Bardy B. G., Stoffregen T. A., Bootsma R. J. Task-specific stabilization of postural coordination during stance on a beam. Motor Control 2004;8:174-187. 60.Streepey J. W., Kenyon R. V., Keshner E. A. Visual motion combined with base of support width reveals variable field dependency in healthy young adults. Experimental Brain Research 2007;176:182-187. 61.Leclercq S. The prevention of slipping accidents: a review and discussion of work related to the methodology of measuring slip resistance. Safety Science 1999;31:95-125. 62.Wade L. R., Davis J. Experience on an elevated inclined surface and postural control. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2005. 63.Emerich R, Bhattacharya A, Succop P, Bagchee A. Effect of roof inclination on postural stability and perceived sense of fall. Abstracts of the Annual American Industrial Hygiene Conference and Exposition, New Orleans, LA, May 104 1993. 64.Holbein M. A., Redfern M. S. Postural stability while holding loads in various postures. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 1993;37:697-700. 65.Seliga R., Bhattacharya A., Succop P., Wickstrom R., Smith D., Willeke K. Effect of work load and respirator wear on postural stability, heart rate, and perceived exertion. American Industrial Hygiene Association Journal 1991;52:417-422. 66.Zohar D. Why do we bump into things while walking. Human Factors 1978;20:671-679. 67.Oullier O., Bardy B. G., Stoffregen T. A., Bootsma R. J. Postural coordination in looking and tracking tasks. Human Movement Science 2002;21:147-167. 68.Chen H. C., Schultz A. B., Ashton-Miller J. A., Giordani B., Alexander N. B., Guire K. E. Stepping over obstacles: dividing attention impairs performance of old more than young adults. The Journal of Gerontology 1996;51:M116-122. 69.Lanzarin M., Parizzoto P., De T., Libardoni C., Sinhorim L., Morgana G., Tavares G., Gilmar M., Santos G. The influence of dual-tasking on postural control in young adults. Fisioterapia e Pesquisa 2015;22:61-68. 70.Thomas Prieto, Joel Myklebust, R. G. Hoffmann, Eric G. Lovett, Barbara M. Myklebust. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering 1996;43:956–966. 71.Verhagen E., Bobbert M., Inklaar M., Kalken M., van der Beek A., Bouter L., Mechelen W. The effect of a balance training programme on centre of pressure excursion in one-leg stance. Clinical biomechanics 2006;20:1094-1100. 72.Low D. C., Walsh G. S., Arkesteijn M. Effectiveness of exercise interventions to improve postural control in older adults: a systematic review and meta-analyses of centre of pressure measurements. Sports Medicine 2017;47:101-112. 73.Schubert P., Kirchner M. Ellipse area calculations and their applicability in posturography. Gait & Posture 2014;39:518-522. 74.Cohen D. C. Comparison of self-report and overt-behavioral procedures for assessing acrophobia. Behavior Therapy 1977;8:17-23. 75.Steinman S. A., Teachman B. A. Cognitive processing and acrophobia: validating the Heights Interpretation Questionnaire. Journal of Anxiety Disorders 2011;25:896-902. 76.Wuehr M., Breitkopf K., Decker J., Ibarra G., Huppert D., Brandt T. Fear of heights in virtual reality saturates 20 to 40 m above ground. Journal of Neurology 2019;266:80-87. 77.Huppert D., Grill E., Brandt T. A new questionnaire for estimating the severity of visual height intolerance and acrophobia by a metric interval scale. Frontiers in Neurology 2017;8:211. 78.Kennedy R. S., Lane N. E., Berbaum K. S., Lilienthal M. G. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology 1993;3:203-220. 79.Horlings C. G., Carpenter M. G., Kung U. M., Honegger F., Wiederhold B., Allum J. H. Influence of virtual reality on postural stability during movements of quiet stance. Neuroscience Letters 2009;451:227-231. 80.Robert M. T., Ballaz L., Lemay M. The effect of viewing a virtual environment through a head-mounted display on balance. Gait & Posture 2016;48:261-266. 81.Liang H. W., Chi S. Y., Chen B. Y., Li Y. H., Tai T. L., Hwang Y. H. The effects of visual backgrounds in the virtual environments on the postural stability of standing. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2021;29:1129-1137. 82.Kim A., Kretch K. S., Zhou Z., Finley J. M. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation. Journal of Neurophysiology 2018;120:839-847. doi: 10.1152/jn.00931.2017. 83.Pöhlmann K. M. T., Föcker J., Dickinson P., Parke A., O'Hare L. The relationship between vection, cybersickness and head movements elicited by illusory motion in virtual reality. Displays 2022;71:102111. 84.Rothbaum B. O., Hodges L. F., Kooper R., Opdyke D., Williford J. S., North M. Virtual reality graded exposure in the treatment of acrophobia: A case report. Behavior Therapy 1995;26:547-554. 85.Brandt T., Bles W., Arnold F., Kapteyn T. S. Height vertigo and human posture. Advance in Otorhinolaryngol 1979;25:88-92. 86.Maylor E. A., Allison S., Wing A. M. Effects of spatial and nonspatial cognitive activity on postural stability. British Journal of Psychology 2001;92 Part 2:319-338. 87.Maylor E. A., Wing A. M. Age differences in postural stability are increased by additional cognitive demands. The Journals of Gerontology Series B Psychological Sciences and Social Sciences 1996;51:P143-154. 88.Resch J. E., May B., Tomporowski P. D., Ferrara M. S. Balance performance with a cognitive task: a continuation of the dual-task testing paradigm. Journal of Athletic Training 2011;46:170-175. 89.Pellecchia G. L. Postural sway increases with attentional demands of concurrent cognitive task. Gait & Posture 2003;18:29-34. 90.Dault M. C., Frank J. S., Allard F. Influence of a visuo-spatial, verbal and central executive working memory task on postural control. Gait & Posture 2001;14:110-116. 91.Vuillerme N., Vincent H. How performing a mental arithmetic task modify the regulation of centre of foot pressure displacements during bipedal quiet standing. Experimental Brain Research 2006;169:130-134. 92.Richer N., Lajoie Y. Automaticity of postural control while dual-tasking revealed in young and older adults. Experimental Aging Research 2020;46:1-21. 93.Takakusaki K. Functional neuroanatomy for posture and gait control. Journal of Movement Disorders 2017;10:1-17. 94.Vuillerme N., Nafati G. How attentional focus on body sway affects postural control during quiet standing. Psychological Research 2007;71:192-200. 95.Polskaia N., Lajoie Y. Reducing postural sway by concurrently performing challenging cognitive tasks. Human Movement Science 2016;46:177-183. 96.Wulf G., Mercer J., McNevin N., Guadagnoli M. A. Reciprocal influences of attentional focus on postural and suprapostural task performance. Journal of Motor Behavior 2004;36:189-199. 97.Kerr B., Condon S. M., McDonald L. A. Cognitive spatial processing and the regulation of posture. Journal of Experimental Psychology: Human Perception Performance 1985;11:617-622. 98.Oman C. M. Motion sickness: a synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology 1990;68:294-303. 99.Bimberg P., Weissker T., Kulik A. On the usage of the simulator sickness questionnaire for virtual reality research. IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops.Atlanta, GA, USA 2020. 100. Bouchard S., Berthiaume M., Robillard G., Forget H., Daudelin-Peltier C., Renaud P., Blais C., Fiset D. Arguing in Favor of Revising the Simulator Sickness Questionnaire Factor Structure When Assessing Side Effects Induced by Immersions in Virtual Reality. Frontiers in Psychiatry 2021;12:739-742. 101. Brown P., Spronck P., Powell W. The simulator sickness questionnaire, and the erroneous zero baseline assumption. Frontiers in Virtual Reality 2022;3:1-14. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83293 | - |
| dc.description.abstract | 當身處在高處時,受到外界的刺激可能會讓姿勢穩定度下降而影響到平衡,進而增加跌倒或墜落的可能性,故該如何維持平衡避免意外發生是一個重要的議題。在現實環境中評估人身處在高處的姿勢穩定度是一件較困難的事情,但可以利用虛擬實境這項工具。它不僅使用上安全,也可以成功地帶給受試者類似身處在真實世界高處的效果。當人們在高處做事情時,實際上要同時執行任務和保持平衡。
為了解在高處執行任務時的姿勢穩定度,本研究在虛擬實境中設置 0、5 和 12 公尺之高度場景。實驗內容包括站立及站立姿勢下進行視覺類認知任務,期間收集受試者的身體壓力中心參數來評估執行任務時的姿勢穩定度,收集受試者在不同虛擬高度情境下執行視覺反應任務時的反應時間。 結果顯示,受試者在不同虛擬實境高度下,壓力中心參數數值沒有顯著差異。在執行視覺類認知任務時,姿勢穩定度較沒有任務時較好。反應時間在不同虛擬高度間沒有顯著差異。 | zh_TW |
| dc.description.abstract | When people at a height, external stimuli may reduce the postural stability and affect balance, thus increases the possibility of falling, so how to maintain balance and avoid accidents happened at height are important issue. It is difficult to assess postural stability when people in real height environment, but virtual reality is a tool that can be used. Not only is it safe to use, but it can also be used successfully to give subjects a similar effect to being at a real-world height. When people perform tasks at height, they actually perform dual tasks, they need to maintain balance and perform task at the same time.
In order to understand postural stability when performing tasks at heights, virtual reality was set up with height scenarios of 0, 5 and 12 meters. During the experiment, the participants' body center of pressure were collected to assess postural stability when they were with and without cognitive task, and the participants' reaction time was collected while performing the cognitive task at different virtual heights. The results showed that COP (center of pressure) parameters were not significantly different among various virtual heights. Postural stability increased during performing cognitive task compared to without the task. Reaction times were not significantly different among various virtual heights. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-01T17:09:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-03-01T17:09:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
摘要 i Abstract ii 第一章 緒論 1 1.1 簡介 1 1.2 研究目的 2 1.3 研究假說 2 第二章 文獻回顧 3 2.1 高架作業的危害與流行病學 3 2.2 高架作業和身體平衡的相關性 8 2.3 虛擬實境模擬高架作業環境 9 2.3.1 虛擬實境模擬高架作業 9 2.3.2 使用虛擬實境的優缺點 13 2.4 身體平衡 13 2.4.1 身體維持平衡的機制 13 2.5 影響高架作業平衡的因子 15 2.5.1 個人因子 16 2.5.2 環境因子 18 2.5.3 任務內容因子 19 2.6 高架作業平衡測量方式 20 2.7 身體壓力中心在平衡測量的應用 21 第三章 方法與材料 23 3.1 研究設計 23 3.2 實驗設備 23 3.2.1 虛擬實境硬體設備 23 3.2.2 壓力板 24 3.2.3 高空環境設計 26 1. 軟體 26 2. 視覺反應任務 26 3.3 實驗步驟 28 3.3.1 問卷收集 32 1.個人基本資料和懼高傾向問卷 32 2.後測症狀問卷 32 3.模擬器動暈症問卷 33 3.4 資料處理與分析 35 3.4.1 壓力中心參數分析 35 1.身體前後方向平均移動距離與左右方向平均移動距離 35 2.身體前後方向平均移動速度與左右方向平均移動速度 36 3.移動橢圓面積 36 3.4.2 統計方法 37 第四章 結果 39 4.1 受試者基本資料 39 4.2 受試者懼高傾向問卷調查 40 4.3 壓力中心參數 41 4.3.1 受試者在現實環境中及虛擬實境中站立在 0 公尺高度時的 身體壓力中心參數比較 44 4.3.2 不同虛擬實境高度暴露對受試者身體壓力中心參數之影響 44 4.3.3 視覺反應任務之影響 45 4.3.4 虛擬實境及視覺反應任務對受試者身體壓力中心參數的影響 47 4.4 反應時間 50 4.5 後測症狀問卷調查結果 51 4.6 模擬器動暈症問卷調查結果 53 第五章 討論 56 5.1 使用虛擬實境對於受試者身體平衡之影響 56 5.2 虛擬實境高度對於受試者身體平衡之影響 57 5.3 視覺反應任務對於受試者身體平衡之影響 59 5.4 虛擬實境環境暴露之經驗感受 61 5.5 研究限制 63 5.6 未來應用 63 參考文獻 65 第六章 附錄 71 6.1 虛擬實境高度實驗問卷73 圖目錄 圖2.1 國內101至109年的死亡職業災害人數分布 4 圖 2.2 109 國內導致死亡職災發生之原因 5 圖2.3 國內101年至109年的職業災害人數分布 5 圖2.4 姿勢控制系統 15 圖2.5 影響在高架作業中維持控制平衡之因子 16 圖3.1 研究使用的虛擬實境設備 25 圖3.2 測量身體壓力中心使用之軟硬體設備 25 圖3.3 虛擬實境場景,以從地面到受試者站立平面垂直距離5公尺為例 27 圖3.4 受試者配戴虛擬實境頭戴式顯示器接受測試 30 圖3.5 在不同虛擬實境高度情境中有無任務之實驗步驟流程圖 31 圖4.1 受試者在現實環境中及虛擬實境中站立在0公尺高度時的身體壓力 中心軌跡圖 41 圖4.2 在虛擬實境場景不同高度情境中有無視覺反應任務下各種受試者 身體壓力中心參數比較 46 圖6.1 虛擬實境場景 71 圖6.2 受試者配戴虛擬實境頭戴式顯示器接受測試 72 表目錄 表2.1 國內101至109年的死亡職業災害人數分布 4 表2.2 109國內導致死亡職災發生之原因 5 表2.3 國內101年至109年的職業災害人數分布 5 表2.4 2001年至2005年國內營造業發生重大墜落職災世間發生原因之分析 5 表2.5 暴露在虛擬高度下的生理及心理反應的相關文獻整理 10 表3.1 壓力板紀錄輸出之身體壓力中心軌跡座標範例 26 表3.2 模擬器動暈症計分表 34 表4.1 受試者基本人口學資料 39 表4.2 受試者懼高傾向問卷調查結果 40 表4.3 受試者在不同虛擬實境高度情境中的身體壓力中心參數 43 表4.4 在不同虛擬實境高度情境下有無視覺反應任務之間受試者身體壓力中心參數的差異 45 表4.5 虛擬實境高度和視覺反應任務對受試者身體壓力中心參數之影響 48 表4.6 不同虛擬實境高度下受試者視覺反應任務之反應時間 50 表4.7 受試者自行估計身處在虛擬實境中之高度 51 表4.8 受試者在不同虛擬實境站立高度下的後測症狀問卷調查結果 52 表4.9 受試者使用模擬器後動暈症狀分布 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 虛擬實境 | zh_TW |
| dc.subject | 姿勢穩定度 | zh_TW |
| dc.subject | 認知任務 | zh_TW |
| dc.subject | 高度 | zh_TW |
| dc.subject | height | en |
| dc.subject | postural stability | en |
| dc.subject | cognitive task | en |
| dc.subject | virtual reality | en |
| dc.title | 虛擬實境模擬的高度場景對反應時間和靜態平衡的影響 | zh_TW |
| dc.title | The Influence of Stimulated Height on the Reaction Time on Static Balance in the Virtual Reality Environment | en |
| dc.title.alternative | The Influence of Stimulated Height on the Reaction Time on Static Balance in the Virtual Reality Environment | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 梁蕙雯 | zh_TW |
| dc.contributor.coadvisor | Huey-Wen Liang | en |
| dc.contributor.oralexamcommittee | 紀佳芬;劉立文 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Fen Ji;Li-Wen Liu | en |
| dc.subject.keyword | 虛擬實境,高度,姿勢穩定度,認知任務, | zh_TW |
| dc.subject.keyword | virtual reality,height,postural stability,cognitive task, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202300428 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-14 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2028-02-11 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 5.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
