請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林菀俞 | zh_TW |
| dc.contributor.advisor | Wan-Yu Lin | en |
| dc.contributor.author | 羅筠翔 | zh_TW |
| dc.contributor.author | Yun-Hsiang Lo | en |
| dc.date.accessioned | 2023-03-01T17:03:15Z | - |
| dc.date.available | 2025-10-01 | - |
| dc.date.copyright | 2023-03-03 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-11-17 | - |
| dc.identifier.citation | Lo, Y.H. and W.Y. Lin, Cardiovascular health and four epigenetic clocks. Clin Epigenetics, 2022. 14(1): p. 73.
Belsky, D.W., et al., DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife, 2022. 11. Li, Z., et al., Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology, 2021. 22(2): p. 165-187. Ferrucci, L. and G.A. Kuchel, Heterogeneity of Aging: Individual Risk Factors, Mechanisms, Patient Priorities, and Outcomes. Journal of the American Geriatrics Society, 2021. 69(3): p. 610-612. Belsky, D.W., et al., Quantification of biological aging in young adults. Proc Natl Acad Sci U S A, 2015. 112(30): p. E4104-10. Diebel, L.W.M. and K. Rockwood, Determination of Biological Age: Geriatric Assessment vs Biological Biomarkers. Curr Oncol Rep, 2021. 23(9): p. 104. Jones, M.J., S.J. Goodman, and M.S. Kobor, DNA methylation and healthy human aging. Aging Cell, 2015. 14(6): p. 924-32. Saul, D. and R.L. Kosinsky, Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci, 2021. 22(1). He, X., et al., The use of DNA methylation clock in aging research. Exp Biol Med (Maywood), 2021. 246(4): p. 436-446. Hannum, G., et al., Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell, 2013. 49(2): p. 359-367. Horvath, S., DNA methylation age of human tissues and cell types. Genome Biol, 2013. 14(10): p. R115. Levine, M.E., et al., An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 2018. 10(4): p. 573-591. Lu, A.T., et al., DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 2019. 11(2): p. 303-327. Bocklandt, S., et al., Epigenetic predictor of age. PLoS One, 2011. 6(6): p. e14821. Zou, H. and T. Hastie, Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005. 67(2): p. 301-320. Horvath, S. and K. Raj, DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet, 2018. 19(6): p. 371-384. Noroozi, R., et al., DNA methylation-based age clocks: From age prediction to age reversion. Ageing Res Rev, 2021. 68: p. 101314. McCrory, C., et al., GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. J Gerontol A Biol Sci Med Sci, 2021. 76(5): p. 741-749. Elliott, M.L., et al., Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging, 2021. 1(3): p. 295-308. Lloyd-Jones, D.M., et al., Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation, 2010. 121(4): p. 586-613. Agostinis-Sobrinho, C., et al., IDEAL CARDIOVASCULAR HEALTH STATUS AND HEALTH-RELATED QUALITY OF LIFE IN ADOLESCENTS: THE LABMED PHYSICAL ACTIVITY STUDY. Rev Paul Pediatr, 2021. 39: p. e2019343. Gao, B., et al., Cardiovascular health metrics and all-cause mortality and mortality from major non-communicable chronic diseases among Chinese adult population. Int J Cardiol, 2020. 313: p. 123-128. Mur, J., et al., DNA methylation in APOE: The relationship with Alzheimer's and with cardiovascular health. Alzheimers Dement (N Y), 2020. 6(1): p. e12026. Agha, G., et al., Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease. Circulation, 2019. 140(8): p. 645-657. Kim, M., et al., DNA methylation as a biomarker for cardiovascular disease risk. PLoS One, 2010. 5(3): p. e9692. Pottinger, T.D., et al., Association of cardiovascular health and epigenetic age acceleration. Clinical Epigenetics, 2021. 13(1): p. 42. Joyce, B.T., et al., Epigenetic Age Acceleration Reflects Long-Term Cardiovascular Health. Circ Res, 2021. 129(8): p. 770-781. Wei, C.Y., et al., Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med, 2021. 6(1): p. 10. Chen, C.H., et al., Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet, 2016. 25(24): p. 5321-5331. Bibikova, M., et al., High-throughput DNA methylation profiling using universal bead arrays. Genome Res, 2006. 16(3): p. 383-93. Archer, K.J. and S.E. Reese, Detection call algorithms for high-throughput gene expression microarray data. Brief Bioinform, 2010. 11(2): p. 244-52. Maksimovic, J., B. Phipson, and A. Oshlack, A cross-package Bioconductor workflow for analysing methylation array data. F1000Res, 2016. 5: p. 1281. Lena, P.D., et al., Methylation data imputation performances under different representations and missingness patterns. BMC Bioinformatics, 2020. 21(1): p. 268. Triche, T.J., Jr., et al., Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res, 2013. 41(7): p. e90. Aryee, M.J., et al., Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 2014. 30(10): p. 1363-9. Osondu, C.U., et al., Favorable Cardiovascular Health Is Associated With Lower Health Care Expenditures and Resource Utilization in a Large US Employee Population: The Baptist Health South Florida Employee Study. Mayo Clinic Proceedings, 2017. 92(4): p. 512-524. Roger, V.L., et al., Recommendations for Cardiovascular Health and Disease Surveillance for 2030 and Beyond: A Policy Statement From the American Heart Association. Circulation, 2020. 141(9): p. e104-e119. Benjamin, E.J., et al., Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 2019. 139(10): p. e56-e528. Lin, W.Y., et al., Optimal cut-off values for obesity: using simple anthropometric indices to predict cardiovascular risk factors in Taiwan. Int J Obes Relat Metab Disord, 2002. 26(9): p. 1232-8. Zeng, Q., et al., Optimal cut-off values of BMI, waist circumference and waist:height ratio for defining obesity in Chinese adults. Br J Nutr, 2014. 112(10): p. 1735-44. Hwang, L.C., et al., Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan. Asia Pac J Clin Nutr, 2012. 21(2): p. 227-33. Hwang, L.C., C.H. Bai, and C.J. Chen, Prevalence of obesity and metabolic syndrome in Taiwan. J Formos Med Assoc, 2006. 105(8): p. 626-35. Finesso, G.E., et al., Impact of Large Granular Lymphocyte Leukemia on Blood DNA Methylation and Epigenetic Clock Modeling in Fischer 344 Rats. J Gerontol A Biol Sci Med Sci, 2022. 77(5): p. 956-963. Pottinger, T.D., et al., Association of cardiovascular health and epigenetic age acceleration. Clin Epigenetics, 2021. 13(1): p. 42. Quach, A., et al., Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY), 2017. 9(2): p. 419-446. Zhao, W., et al., Education and Lifestyle Factors Are Associated with DNA Methylation Clocks in Older African Americans. Int J Environ Res Public Health, 2019. 16(17). Fuchs, F.D. and S.C. Fuchs, The Effect of Alcohol on Blood Pressure and Hypertension. Curr Hypertens Rep, 2021. 23(10): p. 42. van de Wiel, A., Diabetes mellitus and alcohol. Diabetes Metab Res Rev, 2004. 20(4): p. 263-7. Knief, U. and W. Forstmeier, Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 2021. 53(6): p. 2576-2590. Newcombe, R.G., Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med, 1998. 17(8): p. 873-90. Levine, M.E., Assessment of Epigenetic Clocks as Biomarkers of Aging in Basic and Population Research. J Gerontol A Biol Sci Med Sci, 2020. 75(3): p. 463-465. Maddock, J., et al., DNA Methylation Age and Physical and Cognitive Aging. J Gerontol A Biol Sci Med Sci, 2020. 75(3): p. 504-511. Kresovich, J.K., et al., Associations of Body Composition and Physical Activity Level With Multiple Measures of Epigenetic Age Acceleration. Am J Epidemiol, 2021. 190(6): p. 984-993. Lei, M.K., et al., The Effect of Tobacco Smoking Differs across Indices of DNA Methylation-Based Aging in an African American Sample: DNA Methylation-Based Indices of Smoking Capture These Effects. Genes (Basel), 2020. 11(3). Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials, 1998. 19(1): p. 61-109. Mendelson, M.M., Epigenetic Age Acceleration: A Biological Doomsday Clock for Cardiovascular Disease? Circ Genom Precis Med, 2018. 11(3): p. e002089. Ammous, F., et al., Epigenetic age acceleration is associated with cardiometabolic risk factors and clinical cardiovascular disease risk scores in African Americans. Clin Epigenetics, 2021. 13(1): p. 55. McCartney, D.L., et al., Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol, 2021. 22(1): p. 194. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83278 | - |
| dc.description.abstract | 人類的老化速率受到諸多健康因素影響。老化加速(age acceleration)則是指個體的老化速率更甚於其實際年齡(chronological age)所預期。近年,隨著各種DNA甲基化年齡生物標記研究的蓬勃發展,個體生理年齡(biological age)與表觀遺傳學年齡加速(epigenetic age acceleration)可以透過第一代與第二代表觀遺傳學時鐘(epigenetic clock)估計;藉此探究個體健康與老化加速的關聯性成為可行的研究方向。美國心臟協會在(the American Heart Association)在2010年時以四種臨床數據指標與三種生活型態因素定義心血管健康(cardiovascular health)狀態,並且提出創新的七分制心血管健康分數 (cardiovascular health score)用以評估個體心血管健康的優劣程度。近來,部分研究指出較為理想的心血管健康狀態與減緩老化加速的關聯性。然而多數研究僅針對歐裔族群資料進行探討,缺乏應用亞裔族群資料的研究結果相互驗證。
為了探究老化加速與心血管健康之關聯性,吾人分析臺灣人體生物資料庫(the Taiwan Biobank)中2,474名受試者的DNA甲基化樣本資料,將表觀遺傳學年齡加速數值作為應變數、心血管健康分數作為自變數施行複迴歸分析同時調整性別、喝酒與否,與教育程度,用以探究心血管健康狀態與老化加速間的關聯性。其中,四種表觀遺傳學生物鐘被用以計算老化加速,包含基於Horvath’ clock計算的內源性年齡加速(IEAA)、基於Hannum’s clock計算的HannumEAA年齡加速、基於Levine等人提出的PhenoAge計算的表年齡加速(PhenoEAA),與基於Lu 等人提出的GrimAge計算的GrimEAA年齡加速;前兩者屬第一代表觀遺傳學時鐘,後二者屬第二代表觀遺傳學時鐘。心血管健康分數則是根據美國心臟協會對七個理想心血管健康指標的評分標準計算。七個衡量指標包含:抽煙行為、運動習慣、飲食、身體質量指數(BMI)、空腹血糖、血壓、總膽固醇。 研究結果顯示,基於第二代表觀遺傳年齡計算的老化加速與心血管健康分數呈現顯著負向關聯性 (p ≤ 4.5E-4)。相較之下,第一代表觀遺傳年齡加速與心血管健康分數的關聯性卻未達統計上的顯著。此結果進一步支持過去研究對於第二代表觀遺傳學時鐘較能反應個體生理功能與病理狀態之論述。 總結而言,較理想的心血管健康程度與減緩老化加速之關聯性在第二代表觀遺傳學年齡加速模式中達統計上的顯著。維持各項心血管健康指標在理想的標準有助於減緩生理年齡老化加速。此研究為少數針對亞裔族群年齡加速與心血管健康之關聯性探討的研究。透過相對較大的臺灣人族群DNA甲基化資料樣本數,這個研究能為心血管健康衛教相關政策制定提供參考,亦可在預防醫學領域提供減緩、降低老化相關疾病負擔之洞見。 | zh_TW |
| dc.description.abstract | The human aging rate is affected by several health-related factors. Age acceleration refers to an individual aging faster than the expected aging rate regarding his/her chronological age. Recently, with the vigorous development of DNA methylation (DNAm) aging biomarker, the first- and second-generation epigenetic clocks can be used to evaluate biological age and age acceleration, whereby exploring the association between age acceleration and an individual’s health status becomes a feasible research topic. In 2010, the American Heart Association (AHA) defined cardiovascular health (CVH) from four clinical and three lifestyle factors, along with a novel 7-point CVH measure (CVH score) to evaluate an individual’s CVH status. Although ideal CVH has been shown to be associated with a slower aging rate in a few recent studies, most of them were only conducted with European ancestry data. The association between age acceleration and CVH has not been fully investigated for the Asian population.
To investigate the association between age acceleration and CVH, we analyzed 2,474 subjects’ DNAm data from the Taiwan Biobank (TWB) and performed multiple linear regression analysis by treating epigenetic age acceleration (EAA) as the response variable, CVH score as the primary explanatory variable while adjusting for sex, drinking, and education level. Four measures of EAA calculated from the corresponding epigenetic clocks were applied to evaluate subjects’ age acceleration, including IEAA based on Horvath’s clock, HannumEAA based on Hannum’s clock, PhenoEAA based on Levine’s PhenoAge, and GrimEAA based on Lu’s GrimAge. Among the four clocks, Horvath’s and Hannum’s clocks were categorized as first-generation epigenetic clocks, whereas Levine’s PhenoAge and Lu’s GrimAge were categorized as the second-generation clocks. CVH score was calculated according to the AHA’s definition with the ideal criteria for seven CVH components, including smoking behavior, physical activity habit, diet, body mass index (BMI), fasting glucose, total cholesterol, and blood pressure levels. The results showed that CVH was negatively associated with both PhenoEAA and GrimEAA (p ≤ 4.5E-4), which were calculated from the second-generation epigenetic clocks. In contrast, associations between age acceleration and CVH were not significant for the EAA calculated from the first-generation clocks (i.e., IEAA and HannumEAA). These results further validated the conclusion of several previous studies that second-generation epigenetic clocks reflect an individual’s physiological and pathological conditions better than first-generation epigenetic clocks. In summary, an ideal CVH is significantly associated with a lower age acceleration when assessing the second-generation EAA. Maintaining each CVH component in the ideal status may help slow down the aging rate. This is one of the first studies exploring the association between CVH and age acceleration based on the Asian population. Benefiting from the relatively large sample size of the DNAm data from the Taiwanese population, this study provides a reference for policy-making in cardiovascular health education. It also offers insights into reducing the disease burden of aging-related disorders in preventive medicine. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-01T17:03:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-03-01T17:03:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF TABLES ix LIST OF ABBREVIATIONS x SUPPORTING PUBLICATION xi Chapter 1 Introduction 1 1.1 A brief introduction to biological age, epigenetic clocks derived from DNA methylation aging biomarkers, and age acceleration 1 1.2 Cardiovascular health and the accelerated biological aging rate 8 1.3 The objective of this study 10 1.4 Ethical declaration 11 Chapter 2 Methods 12 2.1 Taiwan Biobank 12 2.2 DNA methylation data processing 13 2.2.1 Quantification 13 2.2.2 Quality control and normalization 14 2.3 Epigenetic age acceleration 15 2.4 Cardiovascular health score 16 2.5 Statistical analysis 19 2.5.1 Exclusion criteria 19 2.5.2 Regression analysis 20 2.5.3 Model evaluation 21 Chapter 3 Results 23 Chapter 4 Discussions 27 4.1 Main findings 27 4.2 Possible reason for the inconsistent results of the association between CVH and EAA across two generations of epigenetic clocks 27 4.3 Comparison with previous studies 30 4.4 Ideal CVH is also associated with a new epigenetic clock of aging rate–DunedinPACE 32 4.5 Using EAA to predict individual CVH status 32 4.6 The strengths and limitations 34 Chapter 5 Conclusions 35 Chapter 6 Tables 36 REFERENCE 42 APPENDIX 45 | - |
| dc.language.iso | en | - |
| dc.subject | 心血管健康 | zh_TW |
| dc.subject | 表觀遺傳學時鐘 | zh_TW |
| dc.subject | 生理年齡 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | aging | en |
| dc.subject | biological age | en |
| dc.subject | epigenetic clock | en |
| dc.subject | cardiovascular health | en |
| dc.title | 以DNA甲基化老化生物標記探討老化加速與心血管健康之關聯性 | zh_TW |
| dc.title | Utilizing DNA methylation aging biomarkers to investigate the association between age acceleration and cardiovascular health | en |
| dc.title.alternative | Utilizing DNA methylation aging biomarkers to investigate the association between age acceleration and cardiovascular health | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 杜裕康;李文宗 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Kang Tu;Wen-Chung Lee | en |
| dc.subject.keyword | 老化,生理年齡,表觀遺傳學時鐘,心血管健康, | zh_TW |
| dc.subject.keyword | aging,biological age,epigenetic clock,cardiovascular health, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202210046 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-11-17 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0454221112019008.pdf 未授權公開取用 | 17.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
