Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83276
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧冠宏zh_TW
dc.contributor.advisorKuan-Hung Luen
dc.contributor.author李昀蓉zh_TW
dc.contributor.authorYUN-JUNG LEEen
dc.date.accessioned2023-03-01T17:02:29Z-
dc.date.available2023-11-10-
dc.date.copyright2023-03-01-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAcuff, J. C. (2020). Impacts of low-water activity food type on inactivation kinetics and models of foodborne pathogens treated with low-temperature, vacuum-assisted steam processing Virginia Tech.
Adzitey, F., Huda, N., & Shariff, A. H. M. (2021). Phenotypic antimicrobial susceptibility of Escherichia coli from raw meats, ready-to-eat meats, and their related samples in one health context. Microorganisms, 9(2), 326. https://www.mdpi.com/2076-2607/9/2/326
Aliño, M., Grau, R., Fernández-Sánchez, A., Arnold, A., & Barat, J. (2010). Influence of brine concentration on swelling pressure of pork meat throughout salting. Meat Science, 86(3), 600-606.
Alvarado, C., & McKee, S. (2007). Marination to improve functional properties and safety of poultry meat. Applied Poultry Research, 16(1), 113-120.
American's Test Kitchen. (2018). The history of sous vide. America Test Kitchen. Retrieved Apr. 23, 2022 from https://www.cooksillustrated.com/articles/1142-the-history-of-sous-vide-explained
Ayub, H., & Ahmad, A. (2019). Physiochemical changes in sous-vide and conventionally cooked meat. International Journal of Gastronomy and Food Science, 17, 100145. https://doi.org/https://doi.org/10.1016/j.ijgfs.2019.100145
Baldwin, D. E. (2012). Sous vide cooking: A review. International Journal of Gastronomy and Food Science, 1(1), 15-30.
Baldwin, D. E. (2013). Sous vide for the home cook. Paradox Press.
Baranyi, J., & Tamplin, M. L. (2004). ComBase: A common database on microbial responses to food environments. Food Protection, 67(9), 1967-1971. https://doi.org/10.4315/0362-028x-67.9.1967
Basu, S., Mukherjee, S. K., Hazra, A., & Mukherjee, M. (2013). Molecular characterization of uropathogenic Escherichia coli: Nalidixic acid and ciprofloxacin resistance, virulent factors and phylogenetic background. Clinical and Diagnostic Research, 7(12), 2727-2731. https://doi.org/10.7860/jcdr/2013/6613.3744
BCCDC. (2017). Guidelines for restaurant sous vide cooking safety in British Columbia. British Columbia Centre for Disease Control. Retrieved Apr. 19, 2022 from http://www.bccdc.ca/resource-gallery/Documents/Guidelines%20and%20Forms/Guidelines%20and%20Manuals/EH/FPS/Food/SVGuidelines_FinalforWeb.pdf
Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Food Science and Food Safety, 3(1), 1-20.
Becker, A., Boulaaba, A., Pingen, S., Röhner, A., & Klein, G. (2015). Low temperature, long time treatment of porcine M. longissimus thoracis et lumborum in a combi steamer under commercial conditions. Meat Science, 110, 230-235. https://doi.org/https://doi.org/10.1016/j.meatsci.2015.07.024
Beerepoot, M., & Geerlings, S. (2016). Non-antibiotic prophylaxis for urinary tract infections. Pathogens, 5(2). https://doi.org/10.3390/pathogens5020036
Behzadi, P., Behzadi, E., Yazdanbod, H., Aghapour, R., Akbari Cheshmeh, M., & Salehian Omran, D. (2010). Urinary tract infections associated with candida albicans. Maedica (Bucur), 5(4), 277-279.
Bergeron, C. R., Prussing, C., Boerlin, P., Daignault, D., Dutil, L., Reid-Smith, R. J., Zhanel, G. G., & Manges, A. R. (2012a, Mar). Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerging Infectious Diseases, 18(3), 415-421. https://doi.org/10.3201/eid1803.111099
Bergeron, C. R., Prussing, C., Boerlin, P., Daignault, D., Dutil, L., Reid-Smith, R. J., Zhanel, G. G., & Manges, A. R. (2012b). Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerging Infectious Diseases, 18(3), 415-421. https://doi.org/10.3201/eid1803.111099
Beuchat, L. R. (1983). Influence of water activity on growth, metabolic activities and survival of yeasts and molds. Food Protection, 46(2), 135-141. https://doi.org/10.4315/0362-028x-46.2.135
Bevilacqua, A., Speranza, B., Sinigaglia, M., & Corbo, M. R. (2015). A focus on the death kinetics in predictive microbiology: Benefits and limits of the most important models and some tools dealing with their application in foods. Foods, 4(4), 565-580. https://doi.org/10.3390/foods4040565
Björkroth, J. (2005). Microbiological ecology of marinated meat products. Meat Science, 70(3), 477-480.
Blount, Z. D. (2015). The unexhausted potential of E. coli. Elife, 4. https://doi.org/10.7554/eLife.05826
Bongiorno, T., Tulli, F., Comi, G., Sensidoni, A., Andyanto, D., & Iacumin, L. (2018). Sous vide cook-chill mussel (Mytilus galloprovincialis): Evaluation of chemical, microbiological and sensory quality during chilled storage (3 C). Lebensmittel-Wissenschaft & Technologie, 91, 117-124.
Bono, M. J., & Reygaert, W. C. (2022). Urinary tract infection. In StatPearls. StatPearls Publishing
Copyright © 2022, StatPearls Publishing LLC.
Bono MJ, R. W. (2021). Urinary tract infection. StatPearls Publishing. Retrieved Apr. 19, 2022 from https://www.ncbi.nlm.nih.gov/books/NBK470195/
Brons, J. K., Vink, S. N., de Vos, M. G. J., Reuter, S., Dobrindt, U., & van Elsas, J. D. (2020). Fast identification of Escherichia coli in urinary tract infections using a virulence gene based PCR approach in a novel thermal cycler. Microbiological Methods, 169, 105799. https://doi.org/10.1016/j.mimet.2019.105799
Canadian Food Inspection Agency. (2010). Meat and poultry products. Manual of procedures. Chapter 4. Cooking time/temperature tables. Retrieved Apr, 19, 2022 from https://inspection.canada.ca/food-safety-for-industry/archived-food-guidance/meat-and-poultry-products/manual-of-procedures/chapter-4/annex-d/eng/1370527526866/1370527574493#t1
Center for Disease Dynamics, E. P. (2018). Drug resistance index. Center for Disease Dynamics, Economics & Policy.,. Retrieved Apr. 19, 2022 from https://resistancemap.cddep.org/DRI.php
Chan, B. K. C. (2018). Data analysis using R programming. Advances in Experimental Medicine and Biology, 1082, 47-122. https://doi.org/10.1007/978-3-319-93791-5_2
Choi, Y. S., Jeong, T. J., Hwang, K. E., Song, D. H., Ham, Y. K., Kim, Y. B., Jeon, K. H., Kim, H. W., & Kim, C. J. (2016). Effects of various salts on physicochemical properties and sensory characteristics of cured meat. Food Science of Animal Resources, 36(2), 152-158. https://doi.org/10.5851/kosfa.2016.36.2.152
Chu, C. M., & Lowder, J. L. (2018). Diagnosis and treatment of urinary tract infections across age groups. Am J Obstet Gynecol, 219(1), 40-51. https://doi.org/10.1016/j.ajog.2017.12.231
Clermont, O., Bonacorsi, S., & Bingen, E. (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. Applied and Environmental Microbiology, 66(10), 4555-4558. https://doi.org/doi:10.1128/AEM.66.10.4555-4558.2000
Clermont, O., Christenson, J. K., Denamur, E., & Gordon, D. M. (2013). The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 5(1), 58-65. https://doi.org/10.1111/1758-2229.12019
Clermont, O., Olier, M., Hoede, C., Diancourt, L., Brisse, S., Keroudean, M., Glodt, J., Picard, B., Oswald, E., & Denamur, E. (2011). Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infection, Genetics and Evolution, 11(3), 654-662. https://doi.org/10.1016/j.meegid.2011.02.005
Cochet, F., & Peri, F. (2017). The role of carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling. Molecular Sciences, 18(11). https://doi.org/10.3390/ijms18112318
ComBase. (2022). The combined database for predictive microbiology USDA. Retrieved Apr. 22, 2022 from https://www.combase.cc/index.php/en/
Dogruyol, H., Mol, S., & Cosansu, S. (2020). Increased thermal sensitivity of Listeria monocytogenes in sous-vide salmon by oregano essential oil and citric acid. Food Microbiol, 90, 103496. https://doi.org/10.1016/j.fm.2020.103496
Dominguez-Hernandez, E., Salaseviciene, A., & Ertbjerg, P. (2018, 2018/09/01/). Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Science, 143, 104-113. https://doi.org/https://doi.org/10.1016/j.meatsci.2018.04.032
ESFA. (2018). The European union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. EFSA, 16(12).
Fakruddin, M., Mazumder, R. M., & Mannan, K. S. B. (2011). Predictive microbiology: Modeling microbial responses in food. Ceylon Journal of Science, 40(2), 121-131.
FDA Food Code. College Park, M. (2013). U.S. Department of Health and Human Services,. Retrieved Apr. 19, 2022 from https://inspection.canada.ca/food-safety-for-industry/archived-food-guidance/meat-and-poultry-products/manual-of-procedures/chapter-4/annex-d/eng/1370527526866/1370527574493#t1
Flores-Mireles, A., Hreha, T. N., & Hunstad, D. A. (2019, 2019). Pathophysiology, treatment, and prevention of catheter-associated urinary tract infection. Topics in spinal cord injury rehabilitation, 25(3), 228-240. https://doi.org/10.1310/sci2503-228
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015a, May). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol, 13(5), 269-284. https://doi.org/10.1038/nrmicro3432
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015b). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269-284. https://doi.org/10.1038/nrmicro3432
Fraqueza, M. J., Laranjo, M., Elias, M., & Patarata, L. (2021). Microbiological hazards associated with salt and nitrite reduction in cured meat products: Control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Current Opinion in Food Science, 38, 32-39. https://doi.org/https://doi.org/10.1016/j.cofs.2020.10.027
FSIS. (2021a). Food safety and inspection service cooking guideline for meat and poultry products (revised appendix a). Food Safety and Inspection Service. Retrieved Apr. 21, 2022 from https://www.fsis.usda.gov/sites/default/files/media_file/2021-12/Appendix-A.pdf
FSIS. (2021b). FSIS cooking guideline for meat and poultry products (revised appendix a). Food Safety and Inspection Service. Retrieved Apr. 21, 2022 from https://www.fsis.usda.gov/guidelines/2021-0014
Garcia‐Linares, M., Gonzalez-Fandos, E., García‐Fernández, M., & Garcia‐Arias, M. (2004). Microbiological and nutritional quality of sous vide or traditionally processed fish: Influence of fat content. Food Quality, 27(5), 371-387.
Garretto, A., Miller-Ensminger, T., Ene, A., Merchant, Z., Shah, A., Gerodias, A., Biancofiori, A., Canchola, S., Canchola, S., Castillo, E., Chowdhury, T., Gandhi, N., Hamilton, S., Hatton, K., Hyder, S., Krull, K., Lagios, D., Lam, T., Mitchell, K., Mortensen, C., Murphy, A., Richburg, J., Rokas, M., Ryclik, S., Sulit, P., Szwajnos, T., Widuch, M., Willis, J., Woloszyn, M., Brassil, B., Johnson, G., Mormando, R., Maskeri, L., Batrich, M., Stark, N., Shapiro, J. W., Montelongo Hernandez, C., Banerjee, S., Wolfe, A. J., & Putonti, C. (2020). Genomic survey of E. coli from the bladders of women with and without lower urinary tract symptoms [Original Research]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.02094
GBD. (2019). The Global Health Data Exchange GBD Results Tool. https://ghdx.healthdata.org/
González-Fandos, E., Villarino-Rodrıguez, A., Garcıa-Linares, M., Garcıa-Arias, M., & Garcı́a-Fernández, M. (2005). Microbiological safety and sensory characteristics of salmon slices processed by the sous vide method. Food Control, 16(1), 77-85.
González de Llano, D., Moreno-Arribas, M. V., & Bartolomé, B. (2020). Cranberry polyphenols and prevention against urinary tract infections: Relevant considerations. Molecules, 25(15). https://doi.org/10.3390/molecules25153523
Gould, G. W. (2000). Preservation: Past, present and future. British medical bulletin, 56(1), 84-96.
Govindarajan, D. K., Viswalingam, N., Meganathan, Y., & Kandaswamy, K. (2020). Adherence patterns of Escherichia coli in the intestine and its role in pathogenesis. Medicine in Microecology, 5, 100025. https://doi.org/https://doi.org/10.1016/j.medmic.2020.100025
Goyal, P., Krasteva, P. V., Van Gerven, N., Gubellini, F., Van den Broeck, I., Troupiotis-Tsalaki, A., Jonckheere, W., Péhau-Arnaudet, G., Pinkner, J. S., Chapman, M. R., Hultgren, S. J., Howorka, S., Fronzes, R., & Remaut, H. (2014). Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature, 516(7530), 250-253. https://doi.org/10.1038/nature13768
Gupta, K., Grigoryan, L., & Trautner, B. (2017). Urinary tract infection. Annals of Internal Medicine, 167(7), 49-64. https://doi.org/10.7326/aitc201710030
Hamad, S. H. (2012). 20 factors affecting the growth of microorganisms in food. Progress in food preservation, 405.
Hannan, T. J., & Hunstad, D. A. (2016). A murine model for Escherichia coli urinary tract infection. Methods Mol Biol, 1333, 159-175. https://doi.org/10.1007/978-1-4939-2854-5_14
Hanum, G., Kurniawati, A., & Normaliska, R. (2018). AQ-11 analysis total plate count (TPC) Escherichia coli and Salmonella sp. on frozen beef imported through Tanjung Priok Port. Hemera Zoa.
Hay, A. D., Birnie, K., Busby, J., Delaney, B., Downing, H., Dudley, J., Durbaba, S., Fletcher, M., Harman, K., Hollingworth, W., Hood, K., Howe, R., Lawton, M., Lisles, C., Little, P., MacGowan, A., O'Brien, K., Pickles, T., Rumsby, K., Sterne, J. A., Thomas-Jones, E., van der Voort, J., Waldron, C. A., Whiting, P., Wootton, M., & Butler, C. C. (2016). The diagnosis of urinary tract infection in young children (DUTY): A diagnostic prospective observational study to derive and validate a clinical algorithm for the diagnosis of urinary tract infection in children presenting to primary care with an acute illness. Health Technol Assess, 20(51), 291-294. https://doi.org/10.3310/hta20510
He, X. L., Wang, Q., Peng, L., Qu, Y.-R., Puthiyakunnon, S., Liu, X.-L., Hui, C. Y., Boddu, S., Cao, H., & Huang, S.-H. (2015). Role of uropathogenic Escherichia coli outer membrane protein T in pathogenesis of urinary tract infection. Pathogens and Disease, 73(3). https://doi.org/10.1093/femspd/ftv006
Hernández-Cortez, C., Palma-Martínez, I., Gonzalez-Avila, L. U., Guerrero-Mandujano, A., Solís, R. C., & Castro-Escarpulli, G. (2017). Food poisoning caused by bacteria (food toxins). Poisoning: From specific toxic agents to novel rapid and simplified techniques for analysis, 33.
Huang, L. (2009, 2009/02/01/). Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions. Food Engineering, 90(3), 380-387. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2008.07.011
Huang, L. (2013). Determination of thermal inactivation kinetics of Listeria monocytogenes in chicken meats by isothermal and dynamic methods. Food Control, 33(2), 484-488.
Huang, L. (2014). IPMP 2013 — A comprehensive data analysis tool for predictive microbiology. International Journal of Food Microbiology, 171, 100-107. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2013.11.019
Huang, L. (2017). IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology. International Journal of Food Microbiology, 262, 38-48. https://doi.org/10.1016/j.ijfoodmicro.2017.09.010
Huang, L., & Juneja, V. K. (2003). Thermal inactivation of Escherichia coli O157:H7 in ground beef supplemented with sodium lactate. Food Protection, 66(4), 664-667. https://doi.org/10.4315/0362-028x-66.4.664
Hung, C. S., Dodson, K. W., & Hultgren, S. J. (2009). A murine model of urinary tract infection. Nature Protocols 4(8), 1230-1243. https://doi.org/10.1038/nprot.2009.116
Ijabadeniyi, O. A., & Pillay, Y. (2017). Microbial safety of low water activity foods: Study of simulated and durban household samples. Food Quality, 2017, 4931521. https://doi.org/10.1155/2017/4931521
Jørgensen, F., Sadler-Reeves, L., Shore, J., Aird, H., Elviss, N., Fox, A., Kaye, M., Willis, C., Amar, C., E, D. E. P., & McLauchlin, J. (2017). An assessment of the microbiological quality of lightly cooked food (including sous-vide) at the point of consumption in England. Epidemiology & Infection, 145(7), 1500-1509. https://doi.org/10.1017/s0950268817000048
Jakobsen, L., Hammerum, A. M., & Frimodt-Møller, N. (2010). Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): evidence that UTI is a zoonosis. . Clinical Microbiology, 48(8), 2978-2980. https://doi.org/doi:10.1128/JCM.00281-10
Jakobsen, L., Spangholm, D. J., Pedersen, K., Jensen, L. B., Emborg, H.-D., Agersø, Y., Aarestrup, F. M., Hammerum, A. M., & Frimodt-Møller, N. (2010). Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. International Journal of Food Microbiology, 142(1), 264-272. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2010.06.025
Jay, J. M. (2000). Food microbiology 6th edition. Gaithersburg, Maryland (US).
Jay, J. M., Loessner, M. J., & Golden, D. A. (2008). Modern food microbiology. Springer Science & Business Media.
Johnson, J. R., Brown, J. J., Carlino, U. B., & Russo, T. A. (1998). Colonization with and acquisition of uropathogenic Escherichia coli as revealed by polymerase chain reaction-based detection. Infectious Diseases, 177(4), 1120-1124. https://doi.org/10.1086/517409
Johnson, J. R., & O'Bryan, T. T. (2004). Detection of the Escherichia coli group 2 polysaccharide capsule synthesis gene kpsM by a rapid and specific PCR-based assay. Clinical Microbiology, 42(4), 1773-1776. https://doi.org/doi:10.1128/JCM.42.4.1773-1776.2004
Johnson, J. R., Sannes, M. R., Croy, C., Johnston, B., Clabots, C., Kuskowski, M. A., Bender, J., Smith, K. E., Winokur, P. L., & Belongia, E. A. (2007). Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002-2004. Emerging infectious diseases 13(6), 838-846. https://doi.org/10.3201/eid1306.061576
Johnson, J. R., & Stell, A. L. (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. Infectious Diseases 181(1), 261-272. https://doi.org/10.1086/315217
Johnson, T. J., Wannemuehler, Y., Johnson, S. J., Stell, A. L., Doetkott, C., Johnson, J. R., Kim, K. S., Spanjaard, L., & Nolan, L. K. (2008). Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Applied and Environmental Microbiology, 74(22), 7043-7050.
Juneja, V. K., Bari, M. L., Inatsu, Y., Kawamoto, S., & Friedman, M. (2009). Thermal destruction of Escherichia coli O157:H7 in sous-vide cooked ground beef as affected by tea leaf and apple skin powders. Food Protection, 72(4), 860-865. https://doi.org/10.4315/0362-028x-72.4.860
Juneja, V. K., Cadavez, V., Gonzales-Barron, U., & Mukhopadhyay, S. (2015). Modelling the effect of pH, sodium chloride and sodium pyrophosphate on the thermal resistance of Escherichia coli O157:H7 in ground beef. Food Research International, 69, 289-304. https://doi.org/https://doi.org/10.1016/j.foodres.2014.11.050
Juneja, V. K., & Eblen, B. S. (2000). Heat inactivation of Salmonella typhimurium DT104 in beef as affected by fat content. Letters in applied microbiology, 30(6), 461-467. https://doi.org/10.1046/j.1472-765x.2000.00755.x
Juneja, V. K., & Marmer, B. S. (1996). Growth of Clostridium perfringens from spore inocula in sous-vide turkey products. International Journal of Food Microbiology, 32(1-2), 115-123. https://doi.org/10.1016/0168-1605(96)01111-7
Juneja, V. K., MARMER, B. S., & EBLEN, B. S. (1999). Predictive model for the combined effect of temperature, pH, sodium chloride, and sodium pyrophosphate on the heat resistance of Escherichia coli O157: H7 Food Safety, 19(2), 147-160.
Juneja, V. K., Snyder, O. P. J., & Marmer, B. S. (1997). Thermal destruction of Escherichia coli O157:H7 in beef and chicken: determination of D- and z-values. Food microbiology, 35(3), 231-237. https://doi.org/10.1016/s0168-1605(96)01237-8
Kalantar-Neyestanaki, D., Mansouri, S., Kandehkar Ghahraman, M. R., Tabatabaeifar, F., & Hashemizadeh, Z. (2020). Dissemination of different sequence types lineages harboring bla (CTX-M-15) among uropathogenic Escherichia coli in Kerman, Iran. The Iranian Journal of Basic Medical Sciences, 23(12), 1551-1557. https://doi.org/10.22038/ijbms.2020.47520.10940
Karyotis, D., Skandamis, P. N., & Juneja, V. K. (2017). Thermal inactivation of Listeria monocytogenes and Salmonella spp. in sous-vide processed marinated chicken breast. Food Research International, 100, 894-898. https://doi.org/https://doi.org/10.1016/j.foodres.2017.07.078
Kaur, R., & Kaur, R. (2021). Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgraduate Medical 97(1154), 803-812.
Kiel, M., Sagory-Zalkind, P., Miganeh, C., Stork, C., Leimbach, A., Sekse, C., Mellmann, A., Rechenmann, F., & Dobrindt, U. (2018). Identification of novel biomarkers for priority serotypes of shiga toxin-producing Escherichia coli and the development of multiplex PCR for their detection. Frontiers in Microbiology, 9, 1321.
Kilibarda, N., Brdar, I., Baltić, B., Marković, V., Mahmutović, H., Karabasil, N., & Stanišić, S. (2018). The safety and quality of sous vide food. Meat Technology, 59(1), 38-45.
Klein, R. D., & Hultgren, S. J. (2020). Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol, 18(4), 211-226. https://doi.org/10.1038/s41579-020-0324-0
Kot, B. (2019, Dec). Antibiotic resistance among uropathogenic Escherichia coli. Microbiology, 68(4), 403-415. https://doi.org/10.33073/pjm-2019-048
Kotrola, J. S., & Conner, D. E. (1997). Heat inactivation of Escherichia coli O157:H7 in turkey meat as affected by sodium chloride, sodium lactate, polyphosphate, and fat content Food Protection, 60(8), 898-902. https://doi.org/10.4315/0362-028x-60.8.898
Koutsoumanis, K. P., Lianou, A., & Gougouli, M. (2016). Latest developments in foodborne pathogens modeling. Current Opinion in Food Science, 8, 89-98.
Lara, F. B. M., Nery, D. R., de Oliveira, P. M., Araujo, M. L., Carvalho, F. R. Q., Messias-Silva, L. C. F., Ferreira, L. B., Faria-Junior, C., & Pereira, A. L. (2017). Virulence markers and phylogenetic analysis of Escherichia coli strains with Hybrid EAEC/UPEC genotypes recovered from sporadic cases of extraintestinal infections [Original Research]. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00146
Lee, J., Subhadra, B., Son, Y. J., Kim, D., Park, H., Kim, J., Koo, S., Oh, M., Kim, H. J., & Choi, C. (2016). Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. Letters in applied microbiology, 62(1), 84-90.
Lewis, V. G., Ween, M. P., & McDevitt, C. A. (2012). The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma, 249(4), 919-942. https://doi.org/10.1007/s00709-011-0360-8
Lindquist, S. (1992). Heat-shock proteins and stress tolerance in microorganisms. Current opinion in genetics & development, 2(5), 748-755.
Liu, S. P., Chuang, Y. C., Sumarsono, B., & Chang, H. C. (2019, Jan). The prevalence and bother of lower urinary tract symptoms in men and women aged 40 years or over in Taiwan. Formosan Medical Association, 118(1 Pt 1), 170-178. https://doi.org/10.1016/j.jfma.2018.03.006
Liu, Y., Wang, X., Liu, B., Yuan, S., Qin, X., & Dong, Q. (2021). Microrisk lab: An online freeware for predictive microbiology. Foodborne Pathogens and Disease, 18(8), 607-615. https://doi.org/10.1089/fpd.2020.2919
Lloyd, A. L., Rasko, D. A., & Mobley, H. L. T. (2007). Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. Journal of bacteriology, 189(9), 3532-3546. https://doi.org/doi:10.1128/JB.01744-06
Luo, C., Walk, S. T., Gordon, D. M., Feldgarden, M., Tiedje, J. M., & Konstantinidis, K. T. (2011). Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proceedings of the National Academy of Sciences, 108(17), 7200-7205. https://doi.org/10.1073/pnas.1015622108
Luu-Thi, H., Khadka, D. B., & Michiels, C. W. (2014). Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus. International Journal of Food Microbiology, 189, 183-188. https://doi.org/10.1016/j.ijfoodmicro.2014.07.027
Mañas, P., Pagán, R., Raso, J., & Condón, S. (2003). Predicting thermal inactivation in media of different pH of Salmonella grown at different temperatures. Food microbiology, 87(1-2), 45-53.
Maciel, B. M., de Mello, F. T. B., Lopes, A. T. S., Boehs, G., & Albuquerque, G. R. (2018). Application of multiplex real-time polymerase chain reaction assay for simultaneous quantification of Escherichia coli virulence genes in oysters. Food Science and Technology, 55(7), 2765-2773. https://doi.org/10.1007/s13197-018-3200-4
Mahony, M., McMullan, B., Brown, J., & Kennedy, S. E. (2020). Multidrug-resistant organisms in urinary tract infections in children. Pediatr Nephrol, 35(9), 1563-1573. https://doi.org/10.1007/s00467-019-04316-5
Manges, A. R. (2016). Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect, 22(2), 122-129. https://doi.org/10.1016/j.cmi.2015.11.010
Manges, A. R., & Johnson, J. R. (2012). Food-borne origins of Escherichia coli causing extraintestinal infections. Clinical Infectious Diseases, 55(5), 712-719. https://doi.org/10.1093/cid/cis502
Manges, A. R., Johnson, J. R., Mulvey, M. A., Stapleton, A. E., & Klumpp, D. J. (2015). Reservoirs of extraintestinal pathogenic Escherichia coli. Microbiology Spectrum, 3(5), 3.5.06. https://doi.org/doi:10.1128/microbiolspec.UTI-0006-2012
Manges, A. R., Smith, S. P., Lau, B. J., Nuval, C. J., Eisenberg, J. N., Dietrich, P. S., & Riley, L. W. (2007, Winter). Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Pathogens and Disease, 4(4), 419-431. https://doi.org/10.1089/fpd.2007.0026
Maniam, L., Vellasamy, K. M., Jindal, H. M., Narayanan, V., Danaee, M., Vadivelu, J., & Pallath, V. (2022). Demonstrating the utility of Escherichia coli asymptomatic bacteriuria isolates’ virulence profile towards diagnosis and management—A preliminary analysis. PLoS One, 17(5), e0267296. https://doi.org/10.1371/journal.pone.0267296
Mann, R., Mediati, D. G., Duggin, I. G., Harry, E. J., & Bottomley, A. L. (2017). Metabolic adaptations of uropathogenic E. coli in the urinary tract [Review]. Frontiers in Cellular and Infection Microbiology, 7, 241. https://doi.org/10.3389/fcimb.2017.00241
Mazzariol, A., Bazaj, A., & Cornaglia, G. (2017). Multi-drug-resistant gram-negative bacteria causing urinary tract infections: a review. Chemotherapy, 29(sup1), 2-9. https://doi.org/10.1080/1120009x.2017.1380395
McIntyre, L., Jorgenson, V., & Ritson, M. (2017). Sous vide style cooking practices linked to Salmonella Enteritidis illnesses. Environmental Health Review, 60(2), 42-49. https://doi.org/10.5864/d2017-014
Medina, M., & Castillo-Pino, E. (2019). An introduction to the epidemiology and burden of urinary tract infections. Therapeutic Advances in Urology, 11, 1756287219832172. https://doi.org/10.1177/1756287219832172
Meena, P. R., Yadav, P., Hemlata, H., Tejavath, K. K., & Singh, A. P. (2021). Poultry-origin extraintestinal Escherichia coli strains carrying the traits associated with urinary tract infection, sepsis, meningitis and avian colibacillosis in India. Applied Microbiology, 130(6), 2087-2101. https://doi.org/10.1111/jam.14905
Meng, J., & Genigeorgis, C. (1994). Delaying toxigenesis of Clostridium botulinum by sodium lactate in sous‐vide products. Applied Microbiology 19(1), 20-23.
Mitchell-Natalie, M., Johnson-James, R., Johnston, B., Curtiss, R., Mellata, M., & Bjorkroth, J. (2015). Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Applied and Environmental Microbiology, 81(3), 1177-1187. https://doi.org/10.1128/AEM.03524-14
Mittlböck, M. (2002). Calculating adjusted R2 measures for poisson regression models. Comput Methods Programs Biomed, 68(3), 205-214. https://doi.org/10.1016/s0169-2607(01)00173-0
Mody, L., & Juthani-Mehta, M. (2014). Urinary tract infections in older women: a clinical review. Jama, 311(8), 844-854. https://doi.org/10.1001/jama.2014.303
Mukherjee, A., Yoon, Y., Belk, K. E., Scanga, J. A., Smith, G. C., & Sofos, J. N. (2008). Thermal inactivation of Escherichia coli O157:H7 in beef treated with marination and tenderization ingredients. Food Protection, 71(7), 1349-1356. https://doi.org/10.4315/0362-028x-71.7.1349
Mulvey, M. A. (2002). Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol, 4(5), 257-271. https://doi.org/10.1046/j.1462-5822.2002.00193.x
Munkhdelger, Y., Gunregjav, N., Dorjpurev, A., Juniichiro, N., & Sarantuya, J. (2017). Detection of virulence genes, phylogenetic group and antibiotic resistance of uropathogenic Escherichia coli in Mongolia. Infection in Developing Countries, 11(01), 51-57.
Murphy, R. Y., Martin, E. M., Duncan, L. K., Beard, B. L., & Marcy, J. A. (2004). Thermal process validation for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in ground turkey and beef products. Food Protection, 67(7), 1394-1402. https://doi.org/10.4315/0362-028x-67.7.1394
Nagamatsu, K., Hannan, T. J., Guest, R. L., Kostakioti, M., Hadjifrangiskou, M., Binkley, J., Dodson, K., Raivio, T. L., & Hultgren, S. J. (2015). Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proceedings of the National Academy of Sciences, 112(8), E871-E880. https://doi.org/10.1073/pnas.1500374112
Nagy, G., Dobrindt, U., Kupfer, M., Emödy, L., Karch, H., & Hacker, J. (2001). Expression of hemin receptor molecule ChuA is influenced by RfaH in uropathogenic Escherichia coli strain 536. Infection and immunity, 69(3), 1924-1928. https://doi.org/10.1128/iai.69.3.1924-1928.2001
Najafi, A., Hasanpour, M., Askary, A., Aziemzadeh, M., & Hashemi, N. (2018). Distribution of pathogenicity island markers and virulence factors in new phylogenetic groups of uropathogenic Escherichia coli isolates. Folia Microbiologica, 63(3), 335-343. https://doi.org/10.1007/s12223-017-0570-3
Nakamura, S., & Minamino, T. (2019). Flagella-driven motility of bacteria. Biomolecules, 9(7). https://doi.org/10.3390/biom9070279
NARMS. (2010). 2010 Retail meat report. Food and Drug Administration. Retrieved Apr. 18, 2022 from https://www.fda.gov/media/82822/download
National Healthcare Safety Network. (2022). Urinary tract infection (catheter-associated urinary tract
Infection [cauti] and non-catheter-associated urinary tract
infection [uti]) events Centers for Disease Control and Prevention Retrieved Apr. 19, 2022 from https://www.cdc.gov/nhsn/pdfs/pscmanual/7psccauticurrent.pdf
Neamati, F., Firoozeh, F., Saffari, M., & Zibaei, M. (2015). Virulence genes and antimicrobial resistance pattern in uropathogenic Escherichia coli isolated from hospitalized patients in Kashan, Iran. Jundishapur Journal of Microbiology, 8(2), e17514. https://doi.org/10.5812/jjm.17514
NFCD. (2019). Calculation results of food intake in 2019. National Food Consumption Database. Retrieved Apr. 21, 2022 from
Nordstrom, L., Liu, C. M., & Price, L. B. (2013). Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Frontiers in Microbiology, 4, 29. https://doi.org/10.3389/fmicb.2013.00029
Nyati, H. (2000). An evaluation of the effect of storage and processing temperatures on the microbiological status of sous vide extended shelf-life products. Food Control, 11(6), 471-476.
O'Brien, V. P., Hannan, T. J., Nielsen, H. V., & Hultgren, S. J. (2016). Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiology Spectrum, 4(1). https://doi.org/10.1128/microbiolspec.UTI-0013-2012
Oliveira, F. A., Paludo, K. S., Arend, L. N., Farah, S. M., Pedrosa, F. O., Souza, E. M., Surek, M., Picheth, G., & Fadel-Picheth, C. M. (2011). Virulence characteristics and antimicrobial susceptibility of uropathogenic Escherichia coli strains. Genetics and Molecular Research, 10(4), 4114-4125. https://doi.org/10.4238/2011.October.31.5
Onyeaka, H., Nwabor, O., Jang, S., Obileke, K., Hart, A., Anumudu, C., & Miri, T. (2022, Feb 26). Sous vide processing: a viable approach for the assurance of microbial food safety. The Science of Food and Agriculture https://doi.org/10.1002/jsfa.11836
Osaili, T., Griffis, C. L., Martin, E. M., Beard, B. L., Keener, A., & Marcy, J. A. (2006). Thermal inactivation studies of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in ready-to-eat chicken-fried beef patties. Food Protection, 69(5), 1080-1086. https://doi.org/10.4315/0362-028x-69.5.1080
Oscar, T. P. (2005). Development and validation of primary, secondary, and tertiary models for growth of Salmonella Typhimurium on sterile chicken. Food Protection, 68(12), 2606-2613. https://doi.org/10.4315/0362-028x-68.12.2606
Oscar, T. P. (2021). Development and validation of a neural network model for growth of Salmonella Newport from chicken on cucumber for use in risk assessment. Food Processing and Preservation, 45(10), e15819.
Öztürk, R., & Murt, A. (2020, Nov). Epidemiology of urological infections: a global burden. World J Urol, 38(11), 2669-2679. https://doi.org/10.1007/s00345-019-03071-4
Paniagua-Contreras, G. L., Monroy-Pérez, E., Bautista, A., Reyes, R., Vicente, A., Vaca-Paniagua, F., Díaz, C. E., Martínez, S., Domínguez, P., García, L. R., Uribe-García, A., & Vaca, S. (2018). Multiple antibiotic resistances and virulence markers of uropathogenic Escherichia coli from Mexico. Pathogens and Global Health, 112(8), 415-420. https://doi.org/10.1080/20477724.2018.1547542
Park, C. H., Lee, B., Oh, E., Kim, Y. S., & Choi, Y. M. (2020). Combined effects of sous-vide cooking conditions on meat and sensory quality characteristics of chicken breast meat. Poultry Science, 99(6), 3286-3291. https://doi.org/https://doi.org/10.1016/j.psj.2020.03.004
Pathania, A., McKee, S., Bilgili, S., & Singh, M. (2010). Antimicrobial activity of commercial marinades against multiple strains of Salmonella spp. Food microbiology, 139(3), 214-217.
Peleg, M. (2003). Microbial survival curves: interpretation, mathematical modeling, and utilization. Comments on Theoretical Biology 8(4-5), 357-387.
Pompilio, A., Crocetta, V., Savini, V., Petrelli, D., Di Nicola, M., Bucco, S., Amoroso, L., Bonomini, M., & Di Bonaventura, G. (2018). Phylogenetic relationships, biofilm formation, motility, antibiotic resistance and extended virulence genotypes among Escherichia coli strains from women with community-onset primitive acute pyelonephritis. PLoS One, 13(5), e0196260.
Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology, 53(5), 793-808. https://doi.org/10.1080/10635150490522304
Preetha, S., & Narayanan, R. (2020). Factors influencing the development of microbes in food. Shanlax Journals, 7(3), 57-77.
Przybylski, W., Jaworska, D., Kajak-Siemaszko, K., Sałek, P., & Pakuła, K. (2021). Effect of heat treatment by the sous-vide method on the quality of poultry meat. Foods, 10(7). https://doi.org/10.3390/foods10071610
Ramos, S., Silva, V., Dapkevicius, M. L. E., Caniça, M., Tejedor-Junco, M. T., Igrejas, G., & Poeta, P. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals (Basel), 10(12). https://doi.org/10.3390/ani10122239
Rashki, A., Abdi, H. A., & Shookohi, M. (2017). Prevalence of genes encoding outer membrane virulence factors among fecal Escherichia coli isolates. International Journal of Basic Science in Medicine, 2(1), 52-57.
Rasko, D. A., Rosovitz, M. J., Myers, G. S., Mongodin, E. F., Fricke, W. F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N. R., Chaudhuri, R., Henderson, I. R., Sperandio, V., & Ravel, J. (2008). The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. Bacteriology 190(20), 6881-6893. https://doi.org/10.1128/jb.00619-08
Rasoulinasab, M., Shahcheraghi, F., Feizabadi, M. M., Nikmanesh, B., Hajihasani, A., Sabeti, S., & Aslani, M. M. (2021). Distribution of pathogenicity island markers and H-antigen types of Escherichia coli O25b/ST131 isolates from patients with urinary tract infection in Iran. Microbial Drug Resistance, 27(3), 369-382. https://doi.org/10.1089/mdr.2019.0485
Ravishankar, S., & Juneja, V. K. (2014). PRESERVATIVES | Traditional preservatives – sodium chloride. In C. A. Batt & M. L. Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition) (pp. 131-136). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384730-0.00259-7
Rhoades, J., Kargiotou, C., Katsanidis, E., & Koutsoumanis, K. (2013). Use of marination for controlling Salmonella enterica and Listeria monocytogenes in raw beef. Food microbiology, 36(2), 248-253.
Riley, L. W. (2020, Mar 25). Extraintestinal Foodborne Pathogens. Annual Review of Food Science and Technology, 11, 275-294. https://doi.org/10.1146/annurev-food-032519-051618
Ristow, L. C., & Welch, R. A. (2016). Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? BBA Biomembranes, 1858(3), 538-545. https://doi.org/https://doi.org/10.1016/j.bbamem.2015.08.015
Roca, J., & Brugués, S. (2010). Sous-Vide Cuisine. Montagud Editores.
Rolfe, C., & Daryaei, H. (2020). Intrinsic and extrinsic factors affecting microbial growth in food systems. In Food Safety Engineering (pp. 3-24). Springer.
Ronald, A. (2003). The etiology of urinary tract infection: Traditional and emerging pathogens. Disease-a-Month, 49(2), 71-82. https://doi.org/https://doi.org/10.1067/mda.2003.8
Roos, V., & Klemm, P. (2006). Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infection and immunity, 74(6), 3565-3575. https://doi.org/10.1128/iai.01959-05
Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Applied Bacteriology, 81(5), 501-508. https://doi.org/10.1111/j.1365-2672.1996.tb03539.x
Ross, T., Dalgaard, P., & Tienungoon, S. (2000). Predictive modelling of the growth and survival of Listeria in fishery products. International Journal of Food Microbiology, 62(3), 231-245.
Ross, T., & McMeekin, T. A. (2003). Modeling microbial growth within food safety risk assessments. Risk Analysis, 23(1), 179-197. https://doi.org/https://doi.org/10.1111/1539-6924.00299
Ruiz, J., Calvarro, J., Sánchez del Pulgar, J., & Roldán, M. (2013). Science and technology for new culinary techniques. Culinary Science & Technology, 11(1), 66-79.
Sabaté, M., Moreno, E., Pérez, T., Andreu, A., & Prats, G. (2006). Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clinical Microbiology and Infection, 12(9), 880-886. https://doi.org/10.1111/j.1469-0691.2006.01461.x
Samei, A., Haghi, F., & Zeighami, H. (2016). Distribution of pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Folia Microbiologica, 61(3), 261-268. https://doi.org/10.1007/s12223-015-0433-8
Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathogens 11, 10. https://doi.org/10.1186/s13099-019-0290-0
Shamsuzzaman, K., Lucht, L., & Chuaqui-Ofermanns, N. (1995). Effects of combined electron-beam irradiation and sous-vide treatments on microbiological and other qualities of chicken breast meat. Food Protection, 58(5), 497-501.
Sheldon, J. R., Yim, M. S., Saliba, J. H., Chung, W. H., Wong, K. Y., & Leung, K. T. (2012). Role of rpoS in Escherichia coli O157:H7 strain H32 biofilm development and survival. Appl Environ Microbiol, 78(23), 8331-8339. https://doi.org/10.1128/aem.02149-12
Sivick, K. E., & Mobley, H. L. (2010). Waging war against uropathogenic Escherichia coli: Winning back the urinary tract. Infection and immunity, 78(2), 568-585. https://doi.org/10.1128/iai.01000-09
Smith, Y. C., Rasmussen, S. B., Grande, K. K., Conran, R. M., & O'Brien, A. D. (2008). Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infection and immunity, 76(7), 2978-2990.
Stringer, S., & Pin, C. (2005). Microbial risks associated with salt reduction in certain foods and alternative options for preservation. Institute of Food Research: Norwich. Available online: https://www. food. gov. uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/acm740a. pdf [Accessed: 20 June 2017].
Syamaladevi, R. M., Tang, J., Villa-Rojas, R., Sablani, S., Carter, B., & Campbell, G. (2016). Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. Food Science & Technology, 15(2), 353-370. https://doi.org/10.1111/1541-4337.12190
Tamadonfar, K. O., Omattage, N. S., Spaulding, C. N., & Hultgren, S. J. (2019). Reaching the end of the line: Urinary tract infections. Microbiology Spectrum, 7(3). https://doi.org/10.1128/microbiolspec.BAI-0014-2019
Tarchouna, M., Ferjani, A., Ben-Selma, W., & Boukadida, J. (2013). Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Infectious Diseases, 17(6), e450-e453.
TCDC. (2016). Taiwan Nosocomial Infections Surveillance System. Taiwan Centers for Disease Control
te Giffel, M. C., & Zwietering, M. H. (1999). Validation of predictive models describing the growth of Listeria monocytogenes. International Journal of Food Microbiology, 46(2), 135-149. https://doi.org/10.1016/s0168-1605(98)00189-5
Tenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal Escherichia coli. Nature Reviews Microbiology, 8(3), 207-217. https://doi.org/10.1038/nrmicro2298
Terlizzi, M. E., Gribaudo, G., & Maffei, M. E. (2017a). UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Frontiers in Microbiology, 8, 1566. https://doi.org/10.3389/fmicb.2017.01566
Terlizzi, M. E., Gribaudo, G., & Maffei, M. E. (2017b). Uropathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies [Review]. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01566
TFDA. (2022). Nutrition and food component data. Taiwan Food and Drug Administration.,. Retrieved 04.20 from https://consumer.fda.gov.tw//Food/tfndDetail.aspx?nodeID=178&f=0&id=974
Thomas-White, K., Forster, S. C., Kumar, N., Van Kuiken, M., Putonti, C., Stares, M. D., Hilt, E. E., Price, T. K., Wolfe, A. J., & Lawley, T. D. (2018). Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nature Communications, 9(1), 1557. https://doi.org/10.1038/s41467-018-03968-5
Tivendale, K. A., Logue, C. M., Kariyawasam, S., Jordan, D., Hussein, A., Li, G., Wannemuehler, Y., & Nolan, L. K. (2010). Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infection and immunity, 78(8), 3412-3419.
Touchon, M., Perrin, A., de Sousa, J. A. M., Vangchhia, B., Burn, S., O'Brien, C. L., Denamur, E., Gordon, D., & Rocha, E. P. (2020). Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS genetics, 16(6), e1008866. https://doi.org/10.1371/journal.pgen.1008866
TUA. (2017). Health handbook of urinary tract infection v12.0. Taiwan Urological Association. Retrieved Apr. 18, 2022 from https://www.syh.mohw.gov.tw/public/hygiene/98899d5b3ec09d2c8c933775d658bfce.pdf
USDA. (2022). Pathogen Modeling Program (PMP) Online. United States Department of Agriculture
Agricultural Research Service. https://pmp.errc.ars.usda.gov/overview.aspx
USDA/FSIS. (2012). Microbial Risk Assessment Guideline: Pathogenic Organisms with Focus on Food and Water. 2012. FSIS publication No. USDA/FSIS/2012-001; EPA publication No. EPA/100/J12/001., Washington, DC. . https://www.fsis.usda.gov/policy/fsis-notice/Microbial_Risk_Assessment_Guideline_2012-001
USFDA. (2017). FDA food code 2017 3-401.11. U.S. Food and Drug Administration Retrieved Apr. 23, 2022 from https://www.fda.gov/media/110822/download
Vandeputte-Rutten, L., Kramer, R. A., Kroon, J., Dekker, N., Egmond, M. R., & Gros, P. (2001). Crystal structure of the outer membrane protease ompT from Escherichia coli suggests a novel catalytic site. European Molecular Biology Organization, 20(18), 5033-5039. https://doi.org/10.1093/emboj/20.18.5033
Verma, A. K., & Banerjee, R. (2012). Low-sodium meat products: Retaining salty taste for sweet health. Critical reviews in food science and nutrition, 52(1), 72-84. https://doi.org/10.1080/10408398.2010.498064
Vila, J., Sáez-López, E., Johnson, J. R., Römling, U., Dobrindt, U., Cantón, R., Giske, C. G., Naas, T., Carattoli, A., Martínez-Medina, M., Bosch, J., Retamar, P., Rodríguez-Baño, J., Baquero, F., & Soto, S. M. (2016). Escherichia coli: an old friend with new tidings. FEMS Microbiology Reviews, 40(4), 437-463. https://doi.org/10.1093/femsre/fuw005
Vincent, C., Boerlin, P., Daignault, D., Dozois, C. M., Dutil, L., Galanakis, C., Reid-Smith, R. J., Tellier, P. P., Tellis, P. A., Ziebell, K., & Manges, A. R. (2010). Food reservoir for Escherichia coli causing urinary tract infections. Emerging Infectious Diseases, 16(1), 88-95. https://doi.org/10.3201/eid1601.091118
Wareing, P., & Fernandes, R. (2010). Micro-facts: The working companion for food microbiologists. Royal Society of Chemistry.
Wasiński, B. (2019, 2019). Extra-intestinal pathogenic Escherichia coli – threat connected with food-borne infections. Annals of Agricultural and Environmental Medicine, 26(4), 532-537. https://doi.org/10.26444/aaem/111724
Welch, R. A. (2016). Uropathogenic Escherichia coli-associated exotoxins. Microbiology Spectrum, 4(3). https://doi.org/10.1128/microbiolspec.UTI-0011-2012
Whiting, R. C., & Buchanan, R. L. (1993). A classification of models for predictive microbiology. Food Microbiol, 10(2), 175-177. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000641649&partnerID=40&md5=9b772f99a1678bac1dfaddaf4aa3e50e
WHO. (2021). Antimicrobial resistance. World Health Organization Retrieved 04/22 from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Wijnker, J. J., Koop, G., & Lipman, L. J. A. (2006). Antimicrobial properties of salt (NaCl) used for the preservation of natural casings. Food microbiology, 23(7), 657-662. https://doi.org/https://doi.org/10.1016/j.fm.2005.11.004
Xia, X., Meng, J., Zhao, S., Bodeis-Jones, S., Gaines, S. A., Ayers, S. L., & McDermott, P. F. (2011). Identification and antimicrobial resistance of extraintestinal pathogenic Escherichia coli from retail meats. Food Protection, 74(1), 38-44. https://doi.org/10.4315/0362-028x.Jfp-10-251
Xing, T., Zhao, X., Han, M., Cai, L., Deng, S., Zhou, G., & Xu, X. (2017). A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition1 1This research was funded by China Agricultural Research System (Beijing, China, CARS-42) and National Natural Science Foundation of China (31571854). Poultry Science, 96(9), 3473-3481. https://doi.org/https://doi.org/10.3382/ps/pex116
Yamaji, R., Friedman, C. R., Rubin, J., Suh, J., Thys, E., McDermott, P., Hung-Fan, M., & Riley, L. W. (2018). A population-based surveillance study of shared genotypes of Escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere, 3(4). https://doi.org/10.1128/mSphere.00179-18
Yun, K. W., Kim, H. Y., Park, H. K., Kim, W., & Lim, I. S. (2014). Virulence factors of uropathogenic Escherichia coli of urinary tract infections and asymptomatic bacteriuria in children. Microbiology, Immunology and Infection, 47(6), 455-461. https://doi.org/https://doi.org/10.1016/j.jmii.2013.07.010
Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C., & Min, S. K. (2013). Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 40(19), 5252-5257.
Zhao, L., Gao, S., Huan, H., Xu, X., Zhu, X., Yang, W., Gao, Q., & Liu, X. (2009). Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology, 155(5), 1634-1644.
Zhao, S., Blickenstaff, K., Bodeis-Jones, S., Gaines, S. A., Tong, E., & McDermott, P. F. (2012). Comparison of the prevalences and antimicrobial resistances of Escherichia coli isolates from different retail meats in the United States, 2002 to 2008. Applied and Environmental Microbiology, 78(6), 1701-1707. https://doi.org/10.1128/aem.07522-11
Zhu, C., Wang, D.-Q., Zi, H., Huang, Q., Gu, J.-M., Li, L.-Y., Guo, X.-P., Li, F., Fang, C., Li, X.-D., & Zeng, X.-T. (2021, 2021/12/09). Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019. Military Medical Research, 8(1), 64. https://doi.org/10.1186/s40779-021-00359-8
Zwietering, M., Jongenburger, I., Rombouts, F., & Van't Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875-1881.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83276-
dc.description.abstract泌尿道感染 (urinary tract infections, UTIs) 為多種微生物感染性疾病,其中泌尿致病性大腸桿菌 (uropathogenic Escherichia coli UPEC) 約佔 65-75%。近年來許多研究表明,家禽,尤其是雞肉,可能為人類腸道外致病性大腸桿菌 (extraintestinal pathogenic E. coli, ExPEC) 的主要宿主,而研究證據皆指向食物來源的泌尿致病性大腸桿菌會引發食源性泌尿道感染。因此,新興食源性泌尿道感染為不容忽視的食安議題。然而,據我們所知,目前關於臺灣市售肉品是否為泌尿致病性大腸桿菌宿主的文獻資料相對較少。舒肥法 (sous-vide) 是將真空包裝的食材,在穩定的低溫下長時間烹煮 (low-temperature long-time, LTLT),使食物口感質地較佳並保留更多的營養成分。然而有研究發現沙門氏菌 (Salmonella spp.) 仍可以從舒肥烹煮過的雞肉中被分離。這表明低溫長時間烹煮過程可能無法滅活所有病原菌。鹽 (sodium chloride, NaCl) 是肉類在舒肥烹調過程中最廣泛使用的醃料之一。更重要的是研究指出由於鹽水溶液的低 pH 值和低水活性而具有抑菌作用,可延長肉類的保質期、減少細菌滋生與改善食物質地。如:研究表明2.5% NaCl溶液可抑制牛肉中O157:H7大腸桿菌的生長。這顯示舒肥食品仍存在微生物危害的食安問題,故舒肥烹調法應設置額外的措施,即鹽水醃漬,以確保即食舒肥產品的安全。
因此,本研究將著重於:(1) 調查臺灣市售肉類中泌尿致病性大腸桿菌的盛行率 (2) 從消費者的角度,選擇最具食源性泌尿道感染危害風險的肉類 (雞肉),並以我國市售雞胸肉上仍存在泌尿致病性大腸桿菌的假設為前提,透過預測微生物學去建立熱失活模型,用以預測在不同溫度 (50、55、60及63°C) 舒肥烹調過程時有無使用鹽水醃漬對雞胸肉中泌尿致病性大腸桿菌的生長和存活情況的影響。本研究從臺灣的傳統市場和超市共收集了 65 個生肉樣品 (包含雞肉、豬肉和牛肉)。從樣品中分離出的大腸桿菌使用聚合酶鏈反應 (PCR) 被進一步鑑定 UPEC的特異性基因、系統分群基因與毒力因子。接著,將泌尿致病性大腸桿菌接種至雞胸肉以獲得存活曲線。同時額外建立58°C的存活曲線作為驗證,並以均方根誤差 (RMSE)、殘差平方和 (SSE)、調整後R平方 (Adjusted R2)、赤池資訊量準則 (AIC)、準確因子 (Af)、偏差因子 (Bf) 和可接受預測區域法 (APZ) 作為統計指標。
本研究結果顯示,臺灣市售肉類中存在泌尿致病性大腸桿菌,其中雞肉 (22.6%) 是受泌尿致病性大腸桿菌污染最多的肉類,其次是豬肉 (14.6%) 與牛肉 (13.5%)。從臺灣市售生肉中共分離了861 株大腸桿菌,其中156 株 (18.1%) 被鑑定為 UPEC。UPEC分離株中以系統分群 F 最佔優勢 (36.5%),其次為 D (24.4%)和 B1 (11.5%)。在10個毒力基因中以fimH (69.2%)、traT (57.7%)、iutA (51.9%) 和ompT (46.8%) 為最常見。黏附素基因fimH主要分布在系統分群A、B1、E及F,而保護蛋白基因traT、ompT與鐵載體基因iutA則主要分布在系統分群B1、D、B2及A。在熱失活模型中,有無鹽水醃漬樣本的存活菌量皆會隨著加熱時間越久而下降。而鹽水醃漬是個有效的措施可在舒肥烹調過程時降低雞胸肉中 UPEC 菌量與其D 值。本實驗所建立的存活模式與驗證的存活曲線皆符合統計指標的標準,顯示此熱失活模型可準確進行預測。因此,本研究指出臺灣市售肉類存在泌尿致病性大腸桿菌污染的風險,並表明黏附素、鐵載體、保護蛋白等毒力因子對於UPEC能入侵泌尿系統並引起泌尿道感染扮演重要角色。而系統分群與毒力因子的分佈結果有助於了解我國泌尿致病性大腸桿菌生態並建立我國食源性泌尿道感染的流行病學資料庫,進而提出泌尿致病性大腸桿菌在即食舒肥雞胸肉之存活模式的預測公式 (the Linear model),此模型可作為控制該類型產品的微生物危害並進行暴露評估的工具,來預防未來食源性泌尿道感染的發生。
zh_TW
dc.description.abstractUrinary tract infection (UTI) is known as a multi-microbial infectious disease, in which uropathogenic Escherichia coli (UPEC) accounts for about 65-75% of UTIs. Recent studies indicated that poultry products, especially chicken, could be a reservoir for human extraintestinal pathogenic E. coli (ExPEC) and UPEC was suspected the pathogen resulting in emerging foodborne UTIs. As a result, it is a food safety issue problem that should not be ignored. However, to our knowledge, there is no data on whether retail meats in Taiwan can be the reservoirs of UPEC.
Sous-vide defines raw ingredients packaged in a vacuum under low-temperature long-time (LTLT) cooking, making food be better sensory quality and preserving more nutrients. Nevertheless, previous research found that Salmonella could still be isolated from sous-vide cooked chicken, suggesting that the LTLT process might not inactivate all kinds of pathogens. Salt (sodium chloride, NaCl) marinade is one of the most widely used poultry marinades during sous-vide cooking. More importantly, the studies have shown the efficacy of salt marinade in reduction pathogens among meat that can prolong the shelf life of meat, reducing bacterial growth as well as improving its texture. For example, Mukherjee et al. reported that a 2.5% NaCl solution can inhibit the growth of E. coli O157:H7 in ground beef. This means that safety concerns about the presence of microbial hazards in sous-vide food products still exist; hence, sous-vide treatment should apply extra hurdles as salt marinade for the assurance of these products’ safety.
Therefore, the objectives of this study were proposed as follows: (1) investigate the prevalence of UPEC isolated from retail meats in Taiwan; (2) form the consumer’s perspective, choosing the meat (chicken) with the highest risk of foodborne UTI, assuming that UPEC remains on the retail chicken breast in Taiwan, and applying predictive microbiology to establish inactivation modeling of UPEC in chicken breast samples with or without salt marinade via sous-vide processing at different temperatures to evaluate the behavior of UPEC. A total of 65 raw meat samples (chicken, pork, and beef) were collected from traditional markets and supermarkets in Taiwan. The E. coli strains isolated from meat samples were further identified the expression of UPEC-specific, phylogenetic, and virulence genes by polymerase chain reaction (PCR). Then, the chicken breast meat was inoculated with a four-strain UPEC cocktail to obtain the survival curves via sous-vide processing at 50, 55, 60 and 63°C. Meanwhile, survival curves at 58°C were constructed for external validation and RMSE, SSE, adjusted R2, AIC, Af, Bf, and the APZ method (pRE) were used as the statistical indices.
The results in the study showed that the presence of UPEC among various retail meat in Taiwan, which chicken (22.6%) was with the highest number of the meat contaminated with UPEC, followed by pork (14.6%) and beef (13.5%). All the 861 E. coli isolates from retail raw meat in Taiwan, 156 (18.1%) strains were identified as UPEC. In UPEC isolates, phylogenetic group F was predominant (36.5%), followed by D (24.4%), and B1 (11.5%). Among 10 virulence genes, fimH (69.2%), traT (57.7%), iutA (51.9%), and ompT (46.8%) genes were the most frequently observed. Adhesin gene of fimH was mainly detected in strains of phylogroups A, B1, E, and F, whereas protection protein genes of traT and ompT and siderophore gene of iutA were commonly found in groups B1, D, B2, and A. For inactivation models, the numbers of survival bacterial cells exhibit a decline with time in all treatments. Salt marination is an effective hurdle resulting in lower survival UPEC populations and D-values in the chicken breast during sous-vide cooking. All the models for all treatments fitted well with UPEC survival curves; while the Linear model fitted much better. In conclusion, retail meat in Taiwan has the risk of UPEC contamination. Our findings demonstrate the distribution of phylogenetic groups and virulence factors in UPEC isolates from retail raw meat in Taiwan. It also indicates an important role of adhesins, protection protein, and iron acquisition systems that allowed UPEC to enhance their capacity to colonize the genitourinary system and cause UTIs. The developed survival functions based on the Linear model of UPEC in sous-vide ready-to-eat (RTE) chicken breast can be a tool for controlling the microbial hazards and for exposure assessment to prevent future foodborne UTIs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-01T17:02:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-03-01T17:02:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書.........................................I
誌謝......................................................II
中文摘要..................................................III
ABSTRACT..................................................V
CONTENT...................................................IX
LIST OF FIGURES...........................................XIII
LIST OF TABLES............................................XV
CHAPTER 1 INTRODUCTION....................................1
CHAPTER 2 BACKGROUND AND LITERATURE REVIEW................7
2.1 Urinary tract infection (UTI).........................7
2.1.1 Clinical features...................................7
2.1.2 Uropathogenic bacteria..............................8
2.1.3 Pathogenesis and pathway............................9
2.1.4 Foodborne urinary tract infection (Foodborne UTI)...11
2.2 Uropathogenic Escherichia coli (UPEC).................15
2.2.1 Classifying Escherichia coli (E. coli)..............15
2.2.2 UPEC................................................17
2.2.3 Phylogenetic group..................................18
2.2.4 Virulence factors...................................19
2.3 Factors affecting bacterial growth....................23
2.3.1 Intrinsic factors...................................23
2.3.2 Extrinsic factors...................................24
2.3.3 Other factors.......................................25
2.4 Sous-vide.............................................25
2.4.1 History of sous-vide................................26
2.4.2 Principle and benefits of sous-vide.................27
2.4.3 Microbiological hazards in sous-vide food products..28
2.4.4 High risk for microbial contamination of sous-vide RTE poultry products...30
2.4.5 Extra hurdle technology of sous-vide................31
2.5 Salt marinade for sous-vide cooking...................32
2.5.1 Principle and benefits of salt marinade.............32
2.5.2 Control strategies based on antimicrobial effect of brine solution........33
2.6 Predictive microbiology...............................34
2.6.1 Primary model.......................................35
2.6.2 Secondary model.....................................36
2.6.3 Tertiary model......................................36
2.6.4 Validation..........................................37
2.7 Study aims............................................40
CHAPTER 3 MATERIALS AND METHODS...........................42
3.1 The study design......................................42
3.2 UPEC identification...................................43
3.2.1 Sampling............................................43
3.2.2 Microbiological analyses............................43
3.2.3 Physical analyses...................................44
3.2.4 Isolation and DNA extraction........................44
3.2.5 Clinical reference strains and culturing............45
3.2.6 UPEC identification.................................46
3.2.7 Phylogenetic genes and virulence genes..............46
3.2.8 Polymerase chain reaction condition.................47
3.3 Inactivation models of sous-vide cooking..............48
3.3.1 A cocktail of UPEC..................................48
3.3.2 Salt marinade.......................................49
3.3.3 Preparation and inoculation of chicken breast meat..49
3.3.4 Sous-vide cooking...................................50
3.3.5 Bacterial enumeration...............................51
3.3.6 Parameters and survival modeling....................51
3.3.7 Model evaluation and validation.....................53
3.3.8 Statistical methods.................................55
CHAPTER 4 RESULTS AND DISCUSSION..........................57
4.1 Physical analyses.....................................57
4.2 Microbiological analyses..............................57
4.2.1 Prevalence of E. coli from retail meat..............57
4.2.2 Contamination scenario of E. coli and total bacterial in meat.....58
4.3 E. coli isolates from samples.........................60
4.3.1 Final E. coli recovery..............................60
4.3.2 Identification as UPEC from E. coli isolates........61
4.3.3 Phylogenetic distribution among UPEC isolates.......62
4.3.4 Virulence genotyping of UPEC isolates...............64
4.3.5 Relation among phylogenetic group and virulence genes.....66
4.3.6 Phylogenetic group and virulence genes of UPEC reference strains....67
4.4 Construct the predictive inactivation models..........67
4.4.1 Survival curves of UPEC under sous-vide cooking.....67
4.4.2 Primary models of UPEC under sous-vide cooking......70
4.4.3 Impact of salt marinade on UPEC inactivation........73
4.4.4 Secondary models of UPEC under sous-vide cooking....75
4.4.5 Model validation....................................76
CHAPTER 5 RESEARCH LIMITATIONS AND RECOMMENDATIONS........78
CHAPTER 6 CONCLUSION......................................80
REFERENCES................................................83
FIGURES...................................................106
TABLES....................................................125
APPENDIXES................................................162
Figure 1. Meat consumption worldwide from 1990 to 2021....106
Figure 2. Poultry meat consumption........................106
Figure 3. Meat consumption per capita.....................107
Figure 4. Epidemiology of UTIs............................107
Figure 5. The urinary tract and sits of infection.........108
Figure 6. UTI pathogenesis................................108
Figure 7. The association between food and UTIs...........109
Figure 8. Virulence factors of surface structural in UPEC.109
Figure 9. Classification of E. coli into three main groups.110
Figure 10. The phylogenetic tree identification method by (Clermont et al., 2000) ....111
Figure 11. The phylogenetic tree identification method by (Clermont et al., 2003) ....112
Figure 12. The pH growth ranges for foodborne pathogens...113
Figure 13. Sous-vide cooking temperature safety zones.....113
Figure 14. The association between food and UTIs..........114
Figure 15. The framework of this study....................115
Figure 16. Sampling location..............................116
Figure 17. Prevalence of E. coli recovered from retail meat in Taiwan....117
Figure 18. The schematic diagram of UPEC determination described in the study. 118
Figure 19. Prevalence of UPEC from E. coli isolates among retail meat in traditional markets and supermarkets...................................119
Figure 20. Survivor curves of UPEC in (A) untreated, (B) NaCl-treated chicken breast under sous-vide cooking....................................120
Figure 21. The experimental populations of UPEC with a comparison between untreated and treated chicken breast under sous-vide cooking.........121
Figure 22. Effect of temperature on the D-values in untreated chicken breast....122
Figure 23. Effect of temperature on the D-values in NaCl-treated chicken breast.122
Figure 24. The observed data and predicted survivor curve of UPEC in chicken breast under sous-vide cooking at 58°C............................123
Figure 25. The observed data and predicted survivor curve of UPEC in NaCl-treated chicken breast under sous-vide cooking at 58°C.............123
Figure 26. Relative error plots with APZ method in chicken breast under sous-vide cooking at 58°C............................................124
Figure 27. Relative error plots with APZ method in NaCl-treated chicken breast under sous-vide cooking at 58°C..................................124
Table 1. The number of raw meat samples....................125
Table 2. pH value of samples...............................126
Table 3. Aw value of samples...............................127
Table 4. Prevalence of E. coli recovered from retail meat in traditional markets and supermarkets...............................................128
Table 5. E. coli count and total plate count averages of various meat.....129
Table 6. E. coli count and total plate count averages of various meat from traditional markets and supermarkets.......................130
Table 7. The primer sequences and sizes of UPEC determination.....131
Table 8. The primer sequences and sizes of the phylogenetic group.....132
Table 9. The primer sequences and sizes of the virulence factors.....133
Table 10. PCR conditions for each gene.....134
Table 11. Strains used as the cocktail in the study.........135
Table 12. Phylogenetic type of reference strains and the strains used in the cocktail....................................................136
Table 13. Virulence factors of reference strains and the strains used in the cocktail....................................................137
Table 14. Prevalence of UPEC from E. coli isolates among retail meat in traditional markets and supermarkets....................................138
Table 15. Prevalence of UPEC-specific genes combinations used for the identification of UPEC from E. coli isolates...............................139
Table 16. Phylogenetic group distribution among UPEC strains from retail meat in traditional markets and supermarkets by (Clermont et al., 2000)....140
Table 17. Phylogenetic group distribution among UPEC strains from retail meat in traditional markets and supermarkets by (Clermont et al., 2013)....141
Table 18. Virulence factors of UPEC strains from retail meat in Taiwan.....142
Table 19. Virulence factors of UPEC strains from retail meat in traditional markets and supermarkets............................................143
Table 20. Relation among phylogenetic group and virulence factors of UPEC strains from traditional markets....................................144
Table 21. Relation among phylogenetic group and virulence factors of UPEC strains from supermarkets...........................................145
Table 22. Evaluation microbiological analyses of raw chicken breast samples after exposing under UV light.....................................146
Table 23. The equation of the TDT curve in untreated and NaCl-treated chicken breast under sous-vide cooking.....................................147
Table 24. The observed counts and predicted counts from Weibull and Linear models of UPEC in chicken breast under sous-vide cooking at 50°C......148
Table 25. The observed counts and predicted counts from Weibull and Linear models of UPEC in NaCl-treated chicken breast under sous-vide cooking at 50°C.....149
Table 26. The observed counts and predicted counts from Weibull and Linear models of UPEC in chicken breast under sous-vide cooking at 55°C.......150
Table 27. The observed counts and predicted counts from Weibull and Linear models of UPEC in NaCl-treated chicken breast under sous-vide cooking at 55°C.....151
Table 28. The observed counts and predicted counts from Weibull and Linear models of UPEC in chicken breast under sous-vide cooking at 60°C.......152
Table 29. The observed counts and predicted counts from Weibull and Linear models of UPEC in NaCl-treated chicken breast under sous-vide cooking at 60°C.....153
Table 30. The observed counts and predicted counts from Weibull and Linear models of UPEC in chicken breast under sous-vide cooking at 63°C.......154
Table 31. The observed counts and predicted counts from Weibull and Linear models of UPEC NaCl-treated chicken breast under sous-vide cooking at 63°C........155
Table 32. The thermal inactivation parameters and statistical indices of UPEC growth in untreated and NaCl-treated chicken breast under sous-vide cooking evaluated with different primary models at 50, 55, 60 and 63°C..............156
Table 33. Thermal inactivation kinetics of the 4-strains of UPEC analyzed by Linear model at 50, 55, 60 and 63°C.................................158
Table 34. Aw and pH value of chicken breast samples..........159
Table 35. NaCl content of chicken breast samples.............160
Table 36. The validation for the performance of developed models of UPEC in untreated and NaCl-treated chicken breast under sous-vide cooking at 58°C.......161
-
dc.language.isoen-
dc.subject舒肥法zh_TW
dc.subject雞胸肉zh_TW
dc.subject預測微生物學zh_TW
dc.subject熱失活zh_TW
dc.subject低溫長時間烹煮法zh_TW
dc.subject即食食品zh_TW
dc.subject泌尿道致病性大腸桿菌zh_TW
dc.subjectpredictive microbiologyen
dc.subjectsous-videen
dc.subjecturopathogenic Escherichia colien
dc.subjectready-to-eaten
dc.subjectlow-temperature long-timeen
dc.subjectthermal inactivationen
dc.subjectchicken breasten
dc.title泌尿道致病性大腸桿菌於臺灣市售雞肉之盛行率及其於舒肥雞胸肉之熱失活預測模型zh_TW
dc.titlePrevalence of uropathogenic Escherichia coli in retail chicken meat and predictive models for the thermal inactivation in sous-vide processed chicken breasten
dc.title.alternativePrevalence of uropathogenic Escherichia coli in retail chicken meat and predictive models for the thermal inactivation in sous-vide processed chicken breast-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張靜文;楊登傑;陳鑫昌zh_TW
dc.contributor.oralexamcommitteeChing-Wen Chang;Deng-Jye Yang;Hsin-Chang Chenen
dc.subject.keyword泌尿道致病性大腸桿菌,舒肥法,即食食品,低溫長時間烹煮法,熱失活,預測微生物學,雞胸肉,zh_TW
dc.subject.keyworduropathogenic Escherichia coli,sous-vide,ready-to-eat,low-temperature long-time,thermal inactivation,predictive microbiology,chicken breast,en
dc.relation.page181-
dc.identifier.doi10.6342/NTU202201820-
dc.rights.note未授權-
dc.date.accepted2022-07-29-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept食品安全與健康研究所-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
5.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved