請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83267完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任 | zh_TW |
| dc.contributor.advisor | Yuh-Renn Wu | en |
| dc.contributor.author | 黃雋宇 | zh_TW |
| dc.contributor.author | Jun-Yu Huang | en |
| dc.date.accessioned | 2023-02-01T17:10:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-02-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-10 | - |
| dc.identifier.citation | [1] Jun-Yu Huang, Jiun-Haw Lee, Yuh-Renn Wu, Tse-Ying Chen, Yu-Cheng Chiu, Jau-Jiun Huang, Man-kit Leung, and Tien-Lung Chiu. Revealing the mechanism of carrier transport in host-guest systems of organic materials with a modified poisson and drift-diffusion solver. Physical Review Materials, 4(12):125602, 2020.
[2] Jun-Yu Huang, Hsiao-Chun Hung, Kung-Chi Hsu, Chia-Hsun Chen, Pei-His Lee, Hung-Yi Lin, Bo-Yen Lin, Man-kit Leung, Tien-Lung Chiu, Jiun-Haw Lee, et al. Numerical analysis and optimization of a hybrid layer structure for triplet– triplet fusion mechanism in organic light-emitting diodes. Advanced Theory and Simulations, page 2200633. [3] Jun-Yu Huang, You-Wei Yang, Wei-Hsuan Hsu, En-Wen Chang, Mei-Hsin Chen, and Yuh-Renn Wu. Influences of dielectric constant and scan rate on hysteresis effect in perovskite solar cell with simulation and experimental analyses. Scientific Reports, 12(1):1–13, 2022. [4] Jun-Yu Huang, Mei-Tan Wang, Guan-Yu Chen, Jung-Yu Li, Shih-Pu Chen, Jiun-Haw Lee, Tien-Lung Chiu, and Yuh-Renn Wu. Analysis of the triplet exciton transfer mechanism at heterojunction of organic light-emitting diodes. Journal of Physics D: Applied Physics, 2020. [5] P López Varo, JA Jiménez Tejada, JA López Villanueva, JE Carceller, and MJ Deen. Modeling the transition from ohmic to space charge limited current in organic semiconductors. Organic Electronics, 13(9):1700–1709, 2012. [6] Josef Breu, Philipp Stössel, Sigurd Schrader, Alexander Starukhin, Walter J Finkenzeller, and Hartmut Yersin. Crystal structure of f ac- ir (ppy) 3 and emission properties under ambient conditions and at high pressure. Chemistry of materials, 17(7):1745–1752, 2005. [7] M-L Xu, G-B Che, X-Y Li, and Qi Xiao. Bis [3, 5-difluoro-2-(2-pyridyl) phenyl] (picolinato) iridium (iii). Acta Crystallographica Section E: Structure Reports Online, 65(1):m28–m28, 2009. [8] Bixin Li, Jiangshan Chen, Dezhi Yang, Yongbiao Zhao, and Dongge Ma. The effects of tris (2-phenylpyridine) iridium on the hole injection and transport properties of 4, 4’, 4’- tri (n-carbazolyl)-triphenylamine thin films. Thin Solid Films, 522:352–356, 2012. [9] Noriyuki Matsusue, Yuichiro Suzuki, and Hiroyoshi Naito. Charge carrier transport in neat thin films of phosphorescent iridium complexes. Japanese journal of applied physics, 44(6R):3691, 2005. [10] Ching W Tang and Steven A VanSlyke. Organic electroluminescent diodes. Applied physics letters, 51(12):913–915, 1987. [11] Amin Salehi, Xiangyu Fu, Dong-Hun Shin, and Franky So. Recent advances in OLED optical design. Adv. Funct. Mater., 29(15):1808803, 2019. [12] C David Müller, Aurelie Falcou, Nina Reckefuss, Markus Rojahn, Valèrie Wiederhirn, Paula Rudati, Holger Frohne, Oskar Nuyken, Heinrich Becker, and KlausMeerholz. Multi-colour organic light-emitting displays by solution processing. Nature, 421(6925):829, 2003. [13] Sebastian Reineke, Frank Lindner, Gregor Schwartz, Nico Seidler, Karsten Walzer, Björn Lüssem, and Karl Leo. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 459(7244):234, 2009. [14] Vitor C Bender, Tiago B Marchesan, and J Marcos Alonso. Solid-state lighting: A concise review of the state of the art on LED and OLED modeling. IEEE Ind. Electron. Mag., 9(2):6, 2015. [15] Yuge Huang, En-Lin Hsiang, Ming-Yang Deng, and Shin-Tson Wu. Mini-LED, micro LED and OLED displays: Present status and future perspectives. Light: Sci. Appl., 9(1):1, 2020. [16] En-Lin Hsiang, Zhiyong Yang, Qian Yang, Yi-Fen Lan, and Shin-Tson Wu. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J. Soc. Inf. Disp., 29(6):446, 2021. [17] Hannes Kraus, Michael C Heiber, Stefan Väth, Julia Kern, Carsten Deibel, Andreas Sperlich, and Vladimir Dyakonov. Analysis of triplet exciton loss pathways in ptb7: Pc 71 bm bulk heterojunction solar cells. Scientific Reports, 6:29158, 2016. [18] Li Song, Yongsheng Hu, Zheqin Liu, Ying Lv, Xiaoyang Guo, and Xingyuan Liu. Harvesting triplet excitons with exciplex thermally activated delayed fluorescence emitters toward high performance heterostructured organic light-emitting field effect transistors. ACS applied materials & interfaces, 9(3):2711–2719, 2017. [19] V Alek Dediu, Luis E Hueso, Ilaria Bergenti, and Carlo Taliani. Spin routes in organic semiconductors. Nature materials, 8(9):707, 2009. [20] Marc A Baldo, David F O’Brien, Y You, A Shoustikov, S Sibley, Mark E Thompson, and Stephen R Forrest. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395(6698):151, 1998. [21] MAa Baldo, Sb Lamansky, PEc Burrows, MEb Thompson, and SRl Forrest. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett., 75(1):4, 1999. [22] Chihaya Adachi, Marc A Baldo, Mark E Thompson, and Stephen R Forrest. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys., 90(10):5048, 2001. [23] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17):6050–6051, 2009. [24] NREL. Research cell efficiency record. 2020. [25] Yuki Seino, Susumu Inomata, Hisahiro Sasabe, Yong-Jin Pu, and Junji Kido. High performance green oleds using thermally activated delayed fluorescence with a power efficiency of over 100 lm w- 1. Advanced Materials, 28(13):2638–2643, 2016. [26] Ryutaro Komatsu, Hisahiro Sasabe, Yuki Seino, Kohei Nakao, and Junji Kido. Light-blue thermally activated delayed fluorescent emitters realizing a high external quantum efficiency of 25% and unprecedented low drive voltages in oleds. Journal of Materials Chemistry C, 4(12):2274–2278, 2016. [27] Arnout Ligthart, Xander de Vries, Le Zhang, Mike CWM Pols, Peter A Bobbert,Harm van Eersel, and Reinder Coehoorn. Effect of triplet confinement on triplet– triplet annihilation in organic phosphorescent host–guest systems. Advanced Functional Materials, 28(52):1804618, 2018. [28] Wei-Lung Tsai, Ming-Hao Huang, Wei-Kai Lee, Yi-Jiun Hsu, Kuan-Chung Pan, Yi-Hsiang Huang, Hao-Chun Ting, Monima Sarma, Yu-Yi Ho, Hung-Chieh Hu, et al. A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chemical Communications, 51(71):13662–13665, 2015. [29] Seunguk Noh, CK Suman, Yongtaek Hong, and Changhee Lee. Carrier conduction mechanism for phosphorescent material doped organic semiconductor. Journal of Applied Physics, 105(3):033709, 2009. [30] Wing-Hong Choi, Guiping Tan, Wai-Yu Sit, Cheuk-Lam Ho, Cyrus Yiu-Him Chan, Wenwei Xu, Wai-Yeung Wong, and Shu-Kong So. Charge conduction study of phosphorescent iridium compounds for organic light-emitting diodes application. Organic Electronics, 24:7–11, 2015. [31] Mile Gao, Thomas Lee, Paul L Burn, Alan E Mark, Almantas Pivrikas, and Paul E Shaw. Revealing the interplay between charge transport, luminescence efficiency, and morphology in organic light-emitting diode blends. Advanced Functional Materials, page 1907942, 2019. [32] Noriyuki Matsusue, Satoshi Ikame, Yuichiro Suzuki, and Hiroyoshi Naito. Charge carrier transport in an emissive layer of green electrophosphorescent devices. Applied physics letters, 85(18):4046–4048, 2004. [33] Shipan Wang, Yuewei Zhang, Weiping Chen, Jinbei Wei, Yu Liu, and Yue Wang. Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants. Chemical Communications, 51(60):11972–11975, 2015. [34] Yoshimasa Wada, Katsuyuki Shizu, Shosei Kubo, Tatsuya Fukushima, Takuya Miwa, Hiroyuki Tanaka, Chihaya Adachi, and Hironori Kaji. Highly efficient solution-processed host-free organic light-emitting diodes showing an external quantum efficiency of nearly 18% with a thermally activated delayed fluorescence emitter. Applied Physics Express, 9(3):032102, 2016. [35] Yang Luo, Yu Duan, Ping Chen, and Yi Zhao. Effect of hole mobilities through the emissive layer on space charge limited currents of phosphorescent organic light-emitting diodes. Optical and Quantum Electronics, 47(2):375–385, 2015. [36] NJ van der Kaap and L Jan Anton Koster. Massively parallel kinetic monte carlo simulations of charge carrier transport in organic semiconductors. Journal of Computational Physics, 307:321–332, 2016. [37] JS Brown and SE Shaheen. Introducing correlations into carrier transport simulations of disordered materials through seeded nucleation: impact on density of states, carrier mobility, and carrier statistics. Journal of Physics: Condensed Matter, 30(13):135702, 2018. [38] Michael C Heiber, Klaus Kister, Andreas Baumann, Vladimir Dyakonov, Carsten Deibel, and Thuc-Quyen Nguyen. Impact of tortuosity on charge-carrier transport in organic bulk heterojunction blends. Physical Review Applied, 8(5):054043, 2017. [39] Haoyuan Li and Jean-Luc Brédas. Kinetic monte carlo modeling of charge carriersin organic electronic devices: Suppression of the self-interaction error. The journal of physical chemistry letters, 8(11):2507–2512, 2017. [40] Tamika A Madison, Adam G Gagorik, and Geoffrey R Hutchison. Charge transport in imperfect organic field effect transistors: effects of charge traps. The Journal of Physical Chemistry C, 116(22):11852–11858, 2012. [41] Peter K Watkins, Alison B Walker, and Geraldine LB Verschoor. Dynamical monte carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology. Nano letters, 5(9):1814–1818, 2005. [42] Upendra Neupane, Behzad Bahrami, Matt Biesecker, Mahdi Farrokh Baroughi, and Qiquan Qiao. Kinetic monte carlo modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness. Nano energy, 35:128–137, 2017. [43] Armantas Melianas, Vytenis Pranculis, Yuxin Xia, Nikolaos Felekidis, OlleInganäs, Vidmantas Gulbinas, and Martijn Kemerink. Photogenerated carrier mobility significantly exceeds injected carrier mobility in organic solar cells. Advanced Energy Materials, 7(9):1602143, 2017. [44] SLM. Van Mensfoort, JGJE Billen, SIE. Vulto, RAJ. Janssen, and R Coehoorn. Electron transport in polyfluorene-based sandwich-type devices: Quantitative analysis of the effects of disorder and electron traps. Physical Review B, 80(3):033202, 2009. [45] SLM Van Mensfoort, JGJE Billen, M Carvelli, SIE Vulto, RAJ Janssen, and R Coehoorn. Predictive modeling of the current density and radiative recombination in blue polymer-based light-emitting diodes. Journal of Applied Physics, 109(6):064502, 2011. [46] Lin-Song Cui, Hiroko Nomura, Yan Geng, Jong Uk Kim, Hajime Nakanotani, and Chihaya Adachi. Controlling singlet–triplet energy splitting for deep-blue thermally activated delayed fluorescence emitters. Angewandte Chemie International Edition, 56(6):1571, 2017. [47] Tzu-Chieh Lin, Monima Sarma, Yi-Ting Chen, Shih-Hung Liu, Ke-Ting Lin, Pin- Yi Chiang, Wei-Tsung Chuang, Yi-Chen Liu, Hsiu-Fu Hsu, Wen-Yi Hung, et al. Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nat. Commun., 9(1):1, 2018. [48] Ting-An Lin, Tanmay Chatterjee, Wei-Lung Tsai, Wei-Kai Lee, Meng-Jung Wu, Min Jiao, Kuan-Chung Pan, Chih-Lung Yi, Chin-Lung Chung, Ken-Tsung Wong, et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid. Adv. Mater., 28(32):6976, 2016. [49] DY Kondakov, TD Pawlik, TK Hatwar, and JP Spindler. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. Journal of Applied Physics, 106(12):124510, 2009. [50] Can Gao, Wallace WH Wong, Zhengsheng Qin, Shih-Chun Lo, Ebinazar B Namdas, Huanli Dong, and Wenping Hu. Application of triplet–triplet annihilation upconversion in organic optoelectronic devices: Advances and perspectives. Adv. Mater., 33(45):2100704, 2021. [51] Denis Y Kondakov. Triplet–triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook. PhilosophicalTransactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2044):20140321, 2015. [52] Dawei Di, Le Yang, Johannes M Richter, Lorenzo Meraldi, Rashid M Altamimi, Ahmed Y Alyamani, Dan Credgington, Kevin P Musselman, Judith L MacManus Driscoll, and Richard H Friend. Efficient triplet exciton fusion in molecularly doped polymer light-emitting diodes. Adv. Mater., 29(13):1605987, 2017. [53] Jiun-Haw Lee, Chia-Hsun Chen, Pei-Hsi Lee, Hung-Yi Lin, Man-kit Leung, Tien- Lung Chiu, and Chi-Feng Lin. Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C, 7(20):5874– 5888, 2019. [54] Chia-Hsun Chen, Pei-Hsi Lee, Hung-Yi Lin, Bo-Yen Lin, Man-kit Leung, Tien- Lung Chiu, and Jiun-Haw Lee. Hyper triplet-triplet fusion blue fluorescent organic light-emitting diode. Res. Square (preprint version), 2022. [55] Satomi Tasaki, Kazuki Nishimura, Hiroaki Toyoshima, Tetsuya Masuda, Masato Nakamura, Yuki Nakano, Hiroaki Itoi, Emiko Kambe, Yuichiro Kawamura, and Hitoshi Kuma. Realization of ultra-high-efficient fluorescent blue OLED. J. Soc. Inf. Disp., 2022. [56] Sebastian Reineke, Karsten Walzer, and Karl Leo. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with ir-based emitters. Physical Review B, 75(12):125328, 2007. [57] Dandan Song, Suling Zhao, Yichun Luo, and Hany Aziz. Causes of efficiency rolloff in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching. Applied Physics Letters, 97(24):268, 2010. [58] AK Mishra, Jorge Catalan, Diana Camacho, Miguel Martinez, and D Hodges. Evaluation of physics-based numerical modelling for diverse design architecture of perovskite solar cells. Materials Research Express, 4(8):085906, 2017. [59] Gijs Dingemans and WMM Kessels. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(4):040802, 2012. [60] Juan A Anta, Fabiola Casanueva, and Gerko Oskam. A numerical model for charge transport and recombination in dye-sensitized solar cells. The Journal of Physical Chemistry B, 110(11):5372–5378, 2006. [61] Te-Jen Kung, Jun-Yu Huang, Jau-Jiun Huang, Snow H Tseng, Man-Kit Leung, Tien-Lung Chiu, Jiun-Haw Lee, and Yuh-Renn Wu. Modeling of carrier transport in organic light emitting diode with random dopant effects by two-dimensional simulation. Optics express, 25(21):25492–25503, 2017. [62] Jiangtao Zhao, Bing Cai, Zhenlin Luo, Yongqi Dong, Yi Zhang, Han Xu, Bin Hong, Yuanjun Yang, Liangbin Li, Wenhua Zhang, et al. Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment. Scientific Reports, 6:21976, 2016. [63] Dian Wang, Matthew Wright, Naveen Kumar Elumalai, and Ashraf Uddin. Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 147:255–275, 2016. [64] Henry J Snaith, Antonio Abate, James M Ball, Giles E Eperon, Tomas Leijtens, Nakita K Noel, Samuel D Stranks, Jacob Tse-Wei Wang, Konrad Wojciechowski,and Wei Zhang. Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, 5(9):1511–1515, 2014. [65] Philip Schulz, David Cahen, and Antoine Kahn. Halide perovskites: is it all about the interfaces? Chemical reviews, 119(5):3349–3417, 2019. [66] Pengyun Liu, Wei Wang, Shaomin Liu, Huagui Yang, and Zongping Shao. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Advanced Energy Materials, 9(13):1803017, 2019. [67] Yongbo Yuan and Jinsong Huang. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of chemical research, 49(2):286–293, 2016. [68] Philip Calado, Andrew M Telford, Daniel Bryant, Xiaoe Li, Jenny Nelson, Brian C O'Regan, and Piers RF Barnes. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nature communications, 7(1):1–10, 2016. [69] Jie Xing, Qi Wang, Qingfeng Dong, Yongbo Yuan, Yanjun Fang, and Jinsong Huang. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 18(44):30484–30490, 2016. [70] Heejae Lee, Sofia Gaiaschi, Patrick Chapon, Arthur Marronnier, Heeryung Lee, Jean-Charles Vanel, Denis Tondelier, Jean-Eric Bouree, Yvan Bonnassieux, and Bernard Geffroy. Direct experimental evidence of halide ionic migration under bias in CH3NH3PbI3−xClx-based perovskite solar cells using GD-OES analysis. ACS Energy Letters, 2(4):943–949, 2017. [71] Huichao Zhang, Xu Fu, Ying Tang, Hua Wang, Chunfeng Zhang, W Yu William, Xiaoyong Wang, Yu Zhang, and Min Xiao. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nature communications, 10(1):1–8, 2019. [72] Giles Richardson, Simon EJ O’Kane, Ralf G Niemann, Timo A Peltola, Jamie M Foster, Petra J Cameron, and Alison B Walker. Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy & Environmental Science, 9(4):1476–1485, 2016. [73] Sandheep Ravishankar, Osbel Almora, Carlos Echeverría-Arrondo, Elnaz Ghahremanirad, Clara Aranda, Antonio Guerrero, Francisco Fabregat-Santiago, Arie Zaban, Germà Garcia-Belmonte, and Juan Bisquert. Surface polarization model for the dynamic hysteresis of perovskite solar cells. The journal of physical chemistry letters, 8(5):915–921, 2017. [74] Yong Huang, Pilar Lopez-Varo, Bernard Geffroy, Heejae Lee, Jean-Eric Bourée, Arpit Mishra, Philippe Baranek, Alain Rolland, Laurent Pedesseau, Jean-Marc Jancu, et al. Detrimental effects of ion migration in the perovskite and hole transport layers on the efficiency of inverted perovskite solar cells. Journal of Photonics for Energy, 10(2):024502, 2020. [75] Daniel A Jacobs, Yiliang Wu, Heping Shen, Chog Barugkin, Fiona J Beck, Thomas P White, Klaus Weber, and Kylie R Catchpole. Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Physical Chemistry Chemical Physics, 19(4):3094–3103, 2017. [76] Jin Xiang, Yana Li, Feng Huang, and Dingyong Zhong. Effect of interfacial recom bination, bulk recombination and carrier mobility on the J–V hysteresis behaviors of perovskite solar cells: a drift-diffusion simulation study. Physical Chemistry Chemical Physics, 21(32):17836–17845, 2019. [77] James M Cave, Nicola E Courtier, Isabelle A Blakborn, Timothy W Jones, Dibyajyoti Ghosh, Kenrick F Anderson, Liangyou Lin, Andrew A Dijkhoff, Gregory J Wilson, Krishna Feron, et al. Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. Journal of Applied Physics, 128(18):184501, 2020. [78] Luca Bertoluzzi, Caleb C Boyd, Nicholas Rolston, Jixian Xu, Rohit Prasanna, Brian C O'Regan, and Michael D McGehee. Mobile ion concentration measurement and open-access band diagram simulation platform for halide perovskite solar cells. Joule, 4(1):109–127, 2020. [79] Tianyang Chen, Zhe Sun, Mao Liang, and Song Xue. Correlating hysteresis phenomena with interfacial charge accumulation in perovskite solar cells. Physical Chemistry Chemical Physics, 22(1):245–251, 2020. [80] Daniel Walter, Andreas Fell, Yiliang Wu, The Duong, Chog Barugkin, Nandi Wu, Thomas White, and Klaus Weber. Transient photovoltage in perovskite solar cells: interaction of trap-mediated recombination and migration of multiple ionic species. The Journal of Physical Chemistry C, 122(21):11270–11281, 2018. [81] Daniel A Jacobs, Heping Shen, Florian Pfeffer, Jun Peng, Thomas P White, Fiona J Beck, and Kylie R Catchpole. The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis. Journal of Applied Physics, 124(22):225702, 2018. [82] Stephan van Reenen, Martijn Kemerink, and Henry J Snaith. Modeling anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, 6(19):3808–3814, 2015. [83] Jun-Yu Huang, En-Wen Chang, and Yuh-Renn Wu. Optimization of MAPbI3- based perovskite solar cell with textured surface. IEEE Journal of Photovoltaics, 9(6):1686–1692, 2019. [84] Heinz Bässler. Charge transport in disordered organic photoconductors a monte carlo simulation study. physica status solidi (b), 175(1):15–56, 1993. [85] Yuh-Renn Wu. Optoelectronic device simulation laboratory. http://yrwu-wk. ee.ntu.edu.tw/. [86] Marcos Soldera, Kurt Taretto, and Thomas Kirchartz. Comparison of device models for organic solar cells: Band-to-band vs. tail states recombination. physica status solidi (a), 209(1):207–215, 2012. [87] M Kuik, LJA Koster, GAH Wetzelaer, and PWM Blom. Trap-assisted recombination in disordered organic semiconductors. Physical review letters, 107(25):256805, 2011. [88] Reinder Coehoorn, WF Pasveer, PA Bobbert, and MAJ Michels. Charge-carrier concentration dependence of the hopping mobility in organic materials with gaussian disorder. Physical Review B, 72(15):155206, 2005. [89] W Chr Germs, JJM Van der Holst, SLM Van Mensfoort, PA Bobbert, and R Coehoorn. Modeling of the transient mobility in disordered organic semiconductors with a gaussian density of states. Physical Review B, 84(16):165210, 2011. [90] Heinz Bässler. Charge transport in disordered organic photoconductors a monte carlo simulation study. physica status solidi (b), 175(1):15–56, 1993. [91] M Bouhassoune, SLM Van Mensfoort, PA Bobbert, and Reinder Coehoorn. Carrierdensity and field-dependent charge-carrier mobility in organic semiconductors with correlated gaussian disorder. Organic Electronics, 10(3):437–445, 2009. [92] Samir Cherian, Carrie Donley, David Mathine, Lynn LaRussa, Wei Xia, and Neal Armstrong. Effects of field dependent mobility and contact barriers on liquid crystalline phthalocyanine organic transistors. Journal of applied physics, 96(10):5638– 5643, 2004. [93] Joseph Mort and Gustav Pfister. Electronic properties of polymers. John Wiley & Sons, 1982. [94] L Friedman and M Pollak. The hall effect in the variable-range-hopping regime. Philosophical Magazine B, 44(4):487–507, 1981. [95] VI Arkhipov, Paul Heremans, EV Emelianova, and Heinz Baessler. Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Physical Review B, 71(4):045214, 2005. [96] Rudolph A Marcus and Norman Sutin. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 811(3):265–322, 1985. [97] Anna Köhler and Heinz Bässler. What controls triplet exciton transfer in organic semiconductors? Journal of Materials Chemistry, 21(12):4003–4011, 2011. [98] Björn Kriete, Julian Lüttig, Tenzin Kunsel, Pavel Malỳ, Thomas LC Jansen,Jasper Knoester, Tobias Brixner, and Maxim S Pshenichnikov. Interplay between structural hierarchy and exciton diffusion in artificial light harvesting. Nature communications, 10(1):1–11, 2019. [99] Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3):302–307, 1966. [100] Philip A Leighton. Electronic processes in ionic crystals (mott, nf; gurney, rw), 1941. [101] Peter Mark and Wolfgang Helfrich. Space-charge-limited currents in organic crystals. Journal of Applied Physics, 33(1):205–215, 1962. [102] VD Mihailetchi, J Wildeman, and PWM Blom. Space-charge limited photocurrent. Physical review letters, 94(12):126602, 2005. [103] Shi Tang, Petri Murto, Jia Wang, Christian Larsen, Mats R Andersson, Ergang Wang, and Ludvig Edman. On the design of host–guest light-emitting electrochemical cells: Should the guest be physically blended or chemically incorporated into the host for efficient emission? Advanced Optical Materials, 7(18):1900451, 2019. [104] Peter K Watkins, Alison B Walker, and Geraldine LB Verschoor. Dynamical monte carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology. Nano letters, 5(9):1814–1818, 2005. [105] Armantas Melianas, Vytenis Pranculis, Yuxin Xia, Nikolaos Felekidis, Olle Inganäs, Vidmantas Gulbinas, and Martijn Kemerink. Photogenerated carrier mobility significantly exceeds injected carrier mobility in organic solar cells. Advanced Energy Materials, 7(9):1602143, 2017. [106] Michael C Heiber, Klaus Kister, Andreas Baumann, Vladimir Dyakonov, Carsten Deibel, and Thuc-Quyen Nguyen. Impact of tortuosity on charge-carrier transport in organic bulk heterojunction blends. Physical Review Applied, 8(5):054043, 2017. [107] Jau-Jiun Huang, Yu-Hsiang Hung, Pei-Ling Ting, Yu-Ning Tsai, Huan-Jie Gao, Tien-Lung Chiu, Jiun-Haw Lee, Chi-Lin Chen, Pi-Tai Chou, and Man-kit Leung. Orthogonally substituted benzimidazole-carbazole benzene as universal hosts for phosphorescent organic light-emitting diodes. Organic letters, 18(4):672–675, 2016. [108] Chih-Hung Hsiao, Shun-Wei Liu, Chin-Ti Chen, and Jiun-Haw Lee. Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices. Organic Electronics, 11(9):1500–1506, 2010. [109] Mile Gao, Thomas Lee, Paul L Burn, Alan E Mark, Almantas Pivrikas, and Paul E Shaw. Revealing the interplay between charge transport, luminescence efficiency, and morphology in organic light-emitting diode blends. Advanced Functional Materials, page 1907942, 2019. [110] Noriyuki Matsusue, Yuichiro Suzuki, and Hiroyoshi Naito. Charge carrier transport in red electro-phosphorescent emitting layer. Japanese journal of applied physics, 45(7R):5966, 2006. [111] Noriyuki Matsusue, Satoshi Ikame, Yuichiro Suzuki, and Hiroyoshi Naito. Charge carrier transport and triplet exciton diffusion in a blue electro-phosphorescent emitting layer. Journal of applied physics, 97(12):123512, 2005. [112] Dal Ho Huh, Gyeong Woo Kim, Gyeong Heon Kim, Chandramouli Kulshreshtha, and Jang Hyuk Kwon. High hole mobility hole transport material for organic light-emitting devices. Synthetic metals, 180:79–84, 2013. [113] Bixin Li, Jiangshan Chen, Dezhi Yang, Yongbiao Zhao, and Dongge Ma. The effects of tris (2-phenylpyridine) iridium on the hole injection and transport properties of 4, 4′, 4 ″-tri (n-carbazolyl)-triphenylamine thin films. Thin Solid Films, 522:352–356, 2012. [114] Shi-Jian Su, Takayuki Chiba, Takashi Takeda, and Junji Kido. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent oleds. Advanced Materials, 20(11):2125–2130, 2008. [115] Caroline Murawski, Karl Leo, and Malte C Gather. Efficiency roll-off in organic light-emitting diodes. Adv. Mater., 25(47):6801, 2013. [116] Yi-Hsiang Chen, Chih-Chun Lin, Min-Jie Huang, Kevin Hung, Yi-Ching Wu, Wei- Chieh Lin, Ren-Wu Chen-Cheng, Hao-Wu Lin, and Chien-Hong Cheng. Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices. Chem. Sci., 7(7):4044, 2016. [117] P-Y Chou, H-H Chou, Y-H Chen, T-H Su, C-Y Liao, H-W Lin, W-C Lin, H-Y Yen, I-C Chen, and C-H Cheng. Efficient delayed fluorescence via triplet–triplet annihilation for deep-blue electroluminescence. Chem. Commun., 50(52):6869, 2014. [118] Lei Wang, Zhi-Yong Wu, Wai-Yeung Wong, Kok-Wai Cheah, Hong Huang, and Chin H Chen. New blue host materials based on anthracene-containing dibenzothiophene. Org. Electron., 12(4):595, 2011. [119] S Matthew Menke and Russell J Holmes. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci., 7(2):499, 2014. [120] A Monguzzi, R Tubino, and F Meinardi. Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer. Phys. Rev. B, 77(15):155122, 2008. [121] Heejae Lee, Sofia Gaiaschi, Patrick Chapon, Denis Tondelier, Jean-Eric Bourée, Yvan Bonnassieux, Vincent Derycke, and Bernard Geffroy. Effect of halide ion migration on the electrical properties of methylammonium lead tri-iodide perovskite solar cells. The Journal of Physical Chemistry C, 123(29):17728–17734, 2019. [122] Subodh K Gautam, Minjin Kim, Douglas R Miquita, Jean-Eric Bourée, Bernard Geffroy, and Olivier Plantevin. Reversible photoinduced phase segregation and origin of long carrier lifetime in mixed-halide perovskite films. Advanced Functional Materials, page 2002622, 2020. [123] Constantinos C Stoumpos, Christos D Malliakas, and Mercouri G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry, 52(15):9019–9038, 2013. [124] Jinfeng Zhang, Peng Zhou, Jianjun Liu, and Jiaguo Yu. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 16(38):20382–20386, 2014. [125] Yuan Li, Haoyuan Li, Cheng Zhong, Gjergji Sini, and Jean-Luc Brédas. Characterization of intrinsic hole transport in single-crystal Spiro-OMeTAD. npj Flexible Electronics, 1(1):1–8, 2017. [126] Brian Maynard, Qi Long, Eric A Schiff, Mengjin Yang, Kai Zhu, Ranjith Kottokkaran, Hisham Abbas, and Vikram L Dalal. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Applied Physics Letters, 108(17):173505, 2016. [127] Jongchul Lim, Maximilian T Hörantner, Nobuya Sakai, James M Ball, Suhas Mahesh, Nakita K Noel, Yen-Hung Lin, Jay B Patel, David P McMeekin, Michael B Johnston, et al. Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy & Environmental Science, 12(1):169–176, 2019. [128] Alain Rolland, Laurent Pedesseau, Mickaël Kepenekian, Claudine Katan, Yong Huang, Shijian Wang, Charles Cornet, Olivier Durand, and Jacky Even. Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a Si tunnel junction. Optical and Quantum Electronics, 50(1):21, 2018. [129] L Forro, O Chauvet, D Emin, L Zuppiroli, H Berger, and F Levy. High mobility n-type charge carriers in large single crystals of anatase (TiO2). Journal of Applied Physics, 75(1):633–635, 1994. [130] Dane W de Quilettes, Sarah M Vorpahl, Samuel D Stranks, Hirokazu Nagaoka, Giles E Eperon, Mark E Ziffer, Henry J Snaith, and David S Ginger. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 348(6235):683–686, 2015. [131] Tuan KA Hoang, Yasuyoshi Kurokawa, Noritaka Usami, et al. The impact of highlyexcessive PbI2 on the correlation of MAPbI3 perovskite morphology and carrier lifetimes. Journal of Materials Chemistry C, 8(41):14481–14489, 2020. [132] Fengwan Guo, Xiangyu Sun, Bing Liu, Zijiang Yang, Jing Wei, and Dongsheng Xu. Enhanced lifetime and photostability with low-temperature mesoporous ZnTiO3/compact SnO2 electrodes in perovskite solar cells. Angewandte Chemie International Edition, 58(51):18460–18465, 2019. [133] Yasuhiro Yamada and Yoshihiko Kanemitsu. Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals. Applied Physics Letters, 101(13):133907, 2012. [134] Daniel A Jacobs, Yiliang Wu, Heping Shen, Chog Barugkin, Fiona J Beck, Thomas P White, Klaus Weber, and Kylie R Catchpole. Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Physical Chemistry Chemical Physics, 19(4):3094–3103, 2017. [135] Eva Lisa Unger, Eric T Hoke, Colin D Bailie, William H Nguyen, Andrea Ruth Bowring, T Heumüller, Mark Greyson Christoforo, and Michael D McGehee. Hysteresis and transient behavior in current–voltage measurements of hybridperovskite absorber solar cells. Energy & Environmental Science, 7(11):3690– 3698, 2014. [136] Yaoguang Rong, Yue Hu, Sandheep Ravishankar, Huawei Liu, Xiaomeng Hou, Yusong Sheng, Anyi Mei, Qifei Wang, Daiyu Li, Mi Xu, et al. Tunable hysteresis effect for perovskite solar cells. Energy & Environmental Science, 10(11):2383– 2391, 2017. [137] Wolfgang Tress, Nevena Marinova, Thomas Moehl, Shaik Mohammad Zakeeruddin, Mohammad Khaja Nazeeruddin, and Michael Grätzel. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3):995–1004, 2015. [138] Severin N Habisreutinger, Nakita K Noel, and Henry J Snaith. Hysteresis index: A figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Letters, 3(10):2472–2476, 2018. [139] Nicola E Courtier, James M Cave, Jamie M Foster, Alison B Walker, and Giles Richardson. How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy & Environmental Science, 12(1):396–409, 2019. [140] Igal Levine, Pabitra K Nayak, Jacob Tse-Wei Wang, Nobuya Sakai, Stephan Van Reenen, Thomas M Brenner, Sabyasachi Mukhopadhyay, Henry J Snaith, Gary Hodes, and David Cahen. Interface-dependent ion migration/accumulation controls hysteresis in MAPbI3 solar cells. The Journal of Physical Chemistry C, 120(30):16399–16411, 2016. [141] Yanjun Fang, Cheng Bi, Dong Wang, and Jinsong Huang. The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Letters, 2(4):782–794, 2017. [142] Dong-Ho Kang and Nam-Gyu Park. On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 31(34):1805214, 2019. [143] Juan Pablo Correa Baena, Ludmilla Steier, Wolfgang Tress, Michael Saliba, Stefanie Neutzner, Taisuke Matsui, Fabrizio Giordano, T Jesper Jacobsson, Ajay Ram Srimath Kandada, Shaik M Zakeeruddin, et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science, 8(10):2928–2934, 2015. [144] Jung Hwan Lee, Dongguen Shin, Ryan Rhee, Sangeun Yun, Kyung Mun Yeom, Do Hyung Chun, Sunje Lee, Dongho Kim, Yeonjin Yi, Jun Hong Noh, et al. Band alignment engineering between planar SnO2 and halide perovskites via two-step annealing. The journal of physical chemistry letters, 10(21):6545–6550, 2019. [145] Mohammad Mahdi Tavakoli, Fabrizio Giordano, Shaik Mohammed Zakeeruddin, and Michael Gratzel. Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics. Nano letters, 18(4):2428– 2434, 2018. [146] Meltem F Ayguler, Alexander G Hufnagel, Philipp Rieder, Michael Wussler, Wolfram Jaegermann, Thomas Bein, Vladimir Dyakonov, Michiel L Petrus, Andreas Baumann, and Pablo Docampo. Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS applied materials & interfaces, 10(14):11414–11419, 2018. [147] Zhe Sun, Yanan Kang, Guoguo Wang, Mao Liang, and Song Xue. Impact of interface energetic alignment on the dynamic current-voltage response of perovskite solar cells. The Journal of Physical Chemistry C, 2020. [148] Shuai You, Hui Wang, Shiqing Bi, Jiyu Zhou, Liang Qin, Xiaohui Qiu, Zhiqiang Zhao, Yun Xu, Yuan Zhang, Xinghua Shi, et al. A biopolymer heparin sodium in-terlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Advanced materials, 30(22):1706924, 2018. [149] Jin Hyuck Heo and Sang Hyuk Im. Highly reproducible, efficient hysteresisless CH3NH3PbI3−xClx planar hybrid solar cells without requiring heat-treatment. Nanoscale, 8(5):2554–2560, 2016. [150] Jin-Wook Lee, Seul-Gi Kim, June-Mo Yang, Yang Yang, and Nam-Gyu Park. Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 7(4):041111, 2019. [151] Yi-Cheng Zhao, Wen-Ke Zhou, Xu Zhou, Kai-Hui Liu, Da-Peng Yu, and Qing Zhao. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light: Science & Applications, 6(5):e16243– e16243, 2017. [152] Michael Saliba, Taisuke Matsui, Konrad Domanski, Ji-Youn Seo, Amita Ummadisingu, Shaik M Zakeeruddin, Juan-Pablo Correa-Baena, Wolfgang R Tress, Antonio Abate, Anders Hagfeldt, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309):206–209, 2016. [153] Tongle Bu, Xueping Liu, Yuan Zhou, Jianpeng Yi, Xin Huang, Long Luo, Junyan Xiao, Zhiliang Ku, Yong Peng, Fuzhi Huang, et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 10(12):2509–2515, 2017. [154] YC Kim, T-Y Yang, NJ Jeon, J Im, S Jang, TJ Shin, H-W Shin, S Kim, E Lee, Jun Hong Noh, et al. Engineering interface structures between lead halide per-ovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy & Environmental Science, 10(10):2109–2116, 2017. [155] Hui-Seon Kim and Nam-Gyu Park. Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. The journal of physical chemistry letters, 5(17):2927–2934, 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83267 | - |
| dc.description.abstract | 本論文使用了實驗室自主開發的Poisson & drift-diffusion軟體(DDCC)來探討有機發光二極體以及鈣鈦礦太陽能電池的元件表現,並且針對元件的特性進行模擬上的優化。例如,在有機發光二極體以及鈣鈦礦太陽能電池中使用了高斯態密度以及Poole-Frenkel場效載子遷移率模型來模擬載子在有機主動層以及傳輸層的傳輸情形、透過求解激子擴散模型來探討激子在有機發光二極體中對於效率的影響以及優化以及透過time-dependent離子擴散模型探討鈣鈦礦太陽能電池中由移動離子造成的遲滯效應的影響。各章節的細節如下:(1) 以及探討在有機主客混合系統中的載子遷移率變化模型,電子電洞在發光層中平衡分佈是各種有機發光二極體中的重要課題,然而目前大部分高效的有機發光二極體需要藉由摻雜主客體有機材料來增加發光效率,許多研究指出有機系統摻雜後的載子遷移率變化是非線性的變化,因此這讓載子平衡在設計上變成一件困難的事情。我們利用上述提到的求解器並且配合易辛模型來展示主客體材料中載子遷移的變化,為了驗證求解器的正確性,我們分別製備了不同濃度的單一電子/電洞元件以及參考文獻中三種不同的有機主客體混合系統的量測資料來確認求解器的正確性和可靠度。驗證過後則透過模擬結果可以發現產生這種非線性變化的原因為在客體材料濃度較低時,客體材料在系統中扮演了類似缺陷陷阱的角色,由於濃度太低以及主客材料能量差過大,因此將會導致系統大部分載子被局域化至客體材料且系統整體的移動性載子數量大量下降,而造成載子遷移率的大幅下降。而在摻雜濃度漸漸上升的過程中,對於載子而言,客體材料會漸漸形成通道的角色因而使載子能夠在這些低能態的通道上傳輸,因此載子遷移率會漸漸上升至接近客體材料本身的載子遷移率。(2) 探討TTF-OLEDs的電性模擬,在這此工作中,該求解器用於探討TTF 和hyper-TTF-OLEDs的電性差異。 並且能夠用於解釋hyper-TTF-OLEDs的機制並且分析不同激子機制造成效率的耗損。透過模擬結果可以將內量子效率由23%提升至35%。 (3) 並且透過時變離子遷移模型,能夠探討由離子引起的鈣鈦礦太陽能電池中的電流電壓遲滯效應,並且透過模擬結果可以發現造成遲滯效應最關鍵的因素為鈣鈦礦材料中的內建電場,並且透過模擬以及實驗對比展示了在不同電壓掃描速率下的非線性遲滯曲線。此外,透過模擬可以發現影響遲滯程度的關鍵在於鈣鈦礦材料的解離程度、 鈣鈦礦晶體的品質以及載子傳輸層的材料。其中載子傳輸層的影響來自於所選材料的介電常數,選擇介電常數較低的材料作為載子傳輸層,由於能夠將整體的電壓較大程度的分壓至傳輸層,進而讓鈣鈦礦材料層的分壓較低而降低離子帶來的遲滯效應。 | zh_TW |
| dc.description.abstract | In this thesis, an in-house Poisson & drift-diffusion solver (DDCC) is implemented to calculate the performances of organic light-emitting diodes (OLEDs) and perovskite solar cells (PSCs) and optimize the characteristics of the device. The multi-Gaussian shape density of state and Poole-Frenkel field-dependent mobility model are introduced to describe the carrier distribution and transport mechanism in organic materials. Moreover, an advanced exciton diffusion model considering most exciton behavior and the interaction of singlet and triplet exciton is developed to demonstrate the radiative recombination mechanism. This exciton model can be utilized for fluorescent, phosphorescent (Ph), TADF, and TTF-OLEDs. Also, this solver can couple with optical modeling program to calculate the optical field of PSCs to demonstrate the performance of PSCs and utilize the time-dependent ion migration model to discuss the effect of mobile ions on the hysteresis phenomenon. The details of all work are shown in the following: (1) Discussing the carrier mobility change in the organic-based host-guest system. The balance of electron and hole distribution in EML is a crucial issue in optimizing the performance of OLEDs. Doping is a standard method to achieve the high performance of OLEDs. However, many studies have shown that the carrier change is non-linear and unpredictable for the host-guest system, making the design of carrier balance tough to achieve. We applied this solver, Ising model, and SCLC model to demonstrate the carrier mobility under different doping concentrations. Also, this model is verified by different electron- and hole-only devices prepared by ourselves and other measurement data from previous studies. Modeling results show that the reason for this non-linear change is that the guest materials act as a trap state when the doping concentration is low. Due to the difference in host-guest energy being too high, most carriers would be localized in the guest materials, resulting in the number of mobile carriers decreasing significantly and the mobility declines simultaneously. However, the number of mobile carriers would grow when the doping concentration increases. The guest materials would cluster together gradually and form the channel in the system, which causes the mobility increases smoothly to approach the mobility of pure guest material. (2) Discussing on modeling of TTF-OLEDs. In this work, this solver is applied to demonstrate the characteristics of TTF- and hyper-TTF-OLEDs. Also, This solver can be used to explain the mechanism of hyper-TTF-OLEDs and analysis the loss from different exciton mechanisms. Furthermore, we can do further optimization for hyper-TTF-OLEDs to achieve an internal quantum efficiency increase of 23% (from 29% to 35%). (3) Moreover, a time-dependent ion migration model coupled with a Poisson-DD solver is presented in this thesis to demonstrate the hysteresis of PSCs. Modeling results show that the crucial issue in hysteresis is the built-in electric field. Also, three different factors of PSCs (carrier lifetime, scan rates, and dielectric constant of transport layer) were demonstrated to understand hysteresis. Finally, we found that choosing a transport layer with a lower dielectric constant can decline the hysteresis of PSCs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:10:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-02-01T17:10:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents ix List of Figures xiii List of Tables xxi Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Organic Light-Emitting Diodes . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Perovskite Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Organic Light-Emitting Diodes . . . . . . . . . . . . . . . . . . . . 3 1.2.1.1 Carrier Transport in Host-Guest system for Phosphorescent OLEDs . . . 3 1.2.1.2 Triplet-Triplet Fusion OLEDs . . . . . . . . . . . . . . 5 1.2.2 Perovskite Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2.1 Hysteresis effect on Perovskite Solar Cells . . . . . . . 6 Chapter 2 Methodology 11 2.1 Simulation of Electrical Property . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Poisson and Dirft-Diffusion Equation . . . . . . . . . . . . . . . . 11 2.1.1.1 Gaussian Density of State . . . . . . . . . . . . . . . . 13 2.1.1.2 Poole-Frenkel Field-Dependent Mobility Model . . . . 15 2.1.1.3 Exciton Diffusion Solver . . . . . . . . . . . . . . . . 16 2.2 Simulation of Optical Property . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Finite-Difference Time-Domain Method . . . . . . . . . . . . . . . 19 Chapter 3 The Carrier Transportation in Host-Guest System 21 3.1 Modelling Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 Space-Charge-Limited Current Model . . . . . . . . . . . . . . . . 22 3.1.2 Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.3 Gaussian Averaging Method . . . . . . . . . . . . . . . . . . . . . 26 3.2 Model Correctness Verification . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Modeling of Electron Only Device and Hole Only Device . . . . . . 30 3.2.2 Modeling of Iridium-based Compounds . . . . . . . . . . . . . . . 35 3.3 Modeling of Different Conditions . . . . . . . . . . . . . . . . . . . 39 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter 4 Modeling of Triplet-Triplet Fusion-based OLEDs 47 4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.1 Exciton diffusion solver . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1 Device modeling of hyper-TTF-OLEDs . . . . . . . . . . . . . . . 53 4.2.2 Optimization of hyper-TTF-OLEDs . . . . . . . . . . . . . . . . . 55 4.2.2.1 Optimization of hyper-TTF-OLEDs—LUMO of TTL . 56 4.2.2.2 Optimization of hyper-TTF-OLEDs—electron mobility of NPAN layer . . 57 4.2.2.3 Optimization of hyper-TTF-OLEDs—Dexter energy transfer of TTL . . . 58 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Chapter 5 Numerical Analysis of Hysteresis Effect in Perovskite Solar Cell 63 5.1 Modeling Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.1.1 Simulation of Optical Properties . . . . . . . . . . . . . . . . . . . 64 5.1.2 Poisson and Drift-Diffusion Solver . . . . . . . . . . . . . . . . . . 67 5.1.3 Time-Dependent Ion Migration Model . . . . . . . . . . . . . . . . 67 5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2.1 Hysteresis of the J-V curve based on Ion Accumulation . . . . . . . 68 5.2.2 Effect of Scan Rate on Hysteresis . . . . . . . . . . . . . . . . . . . 72 5.2.3 Effect of transport layer’s Dielectric Constant on Hysteresis . . . . . 77 5.2.4 Effect of Total Ion Density on Hysteresis . . . . . . . . . . . . . . . 80 5.2.5 Effect of Carrier Lifetime on Hysteresis . . . . . . . . . . . . . . . 83 5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Appendix A — Publication List 89 A.1 First Author x5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A.2 Co-author x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Appendix B — Re-use Permission Licence for my Publications 91 B.1 Re-use Permission Licence . . . . . . . . . . . . . . . . . . . . . . . 91 References 95 | - |
| dc.language.iso | en | - |
| dc.subject | 激子擴散 | zh_TW |
| dc.subject | 元件模擬 | zh_TW |
| dc.subject | Poisson and Drift-Diffusion Solver | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | TCAD | zh_TW |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | TCAD | en |
| dc.subject | Poisson and Drift-Diffusion Solver | en |
| dc.subject | Device Modeling | en |
| dc.subject | Exciton Diffusion | en |
| dc.subject | Perovskite | en |
| dc.subject | Organic Light-Emitting Diodes | en |
| dc.title | 有機發光二極體以及鈣鈦礦太陽能電池的電性以及光學元件模擬 | zh_TW |
| dc.title | Device Modeling of Organic Light-Emitting Diodes and Perovskite Solar Cell including Electrical and Optical Properties | en |
| dc.title.alternative | Device Modeling of Organic Light-Emitting Diodes and Perovskite Solar Cell including Electrical and Optical Properties | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李君浩;邱天隆;陳美杏;陳昭宇;林皓武;陳奕君 | zh_TW |
| dc.contributor.oralexamcommittee | Jiun-Haw Lee;Tien-Lung Chiu;Mei-Hsin Chen;Peter Chen;Hao-Wu Lin;I-Chun Cheng | en |
| dc.subject.keyword | Poisson and Drift-Diffusion Solver,元件模擬,激子擴散,鈣鈦礦太陽能電池,有機發光二極體,TCAD, | zh_TW |
| dc.subject.keyword | Poisson and Drift-Diffusion Solver,Device Modeling,Exciton Diffusion,Perovskite,Organic Light-Emitting Diodes,TCAD, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202300007 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-01-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1009230103571080.pdf | 7.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
