請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83266完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富 | zh_TW |
| dc.contributor.advisor | Jean-Fu Kiang | en |
| dc.contributor.author | 蘇建翰 | zh_TW |
| dc.contributor.author | Chien-Han Su | en |
| dc.date.accessioned | 2023-02-01T17:10:25Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-02-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-15 | - |
| dc.identifier.citation | Masson-Delmotte, V.; Zhai, P.; Portner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R. (Eds.) Annex I: Glossary in Global Warming of 1.5 °C, An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 541-562. https://doi.org/10.1017/9781009157940.008
Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K. ; Boschung, J. (Eds.) Technical Summary. In Climate Change 2013-The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 31-116. https://dx.doi.org/10.1017/cbo9781107415324.005 Douville, H.; Voldoire, A.; Geoffroy, O. The recent global warming hiatus: What is the role of Pacific variability? Geophys. Res. Lett. 2015, 42, 880-888. https://dx.doi.org/10.1002/2014GL062775 Xie, S.P.; Kosaka, Y. What caused the global surface warming hiatus of 1998-2013? Curr. Clim. Change Rep. 2017, 3, 128-140. https://dx.doi.org/10.1007/s40641-017-0063-0 Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. https://dx.doi.org/10.1029/2010RG000345 England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent intensification of winddriven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 2014, 4, 222-227. https://dx.doi.org/10.1038/nclimate2106 Loeb, N.G.; Thorsen, T.J.; Norris, J.R.; Wang, H.; Su, W. Changes in Earths Energy Budget during and after the Pause in Global Warming: An Observational Perspective. Climate 2018, 6, 62. https://dx.doi.org/10.3390/cli6030062 LEcuyer, T.S.; Hang, Y.; Matus, A.V.; Wang, Z. Reassessing the effect of cloud type on earths energy balance in the age of active spaceborne observations, Part I: Top of atmosphere and surface. J. Clim. 2019, 32, 6197-6217. https://dx.doi.org/10.1175/JCLI-D-18-0753.1 Liou, K.N. An Introduction to Atmospheric Radiation, 2nd ed.; Academic Press: New York, NY, USA, 2002. Hang, Y.; LEcuyer, T.S.; Henderson, D.S.; Matus, A.V.; Wang, Z. Reassessing the effect of cloud type on earths energy balance in the age of active spaceborne observations, Part II: Atmospheric heating. J. Clim. 2019, 32, 6219-6236. https://dx.doi.org/10.1175/JCLI-D-18-0754.1 Johansson, E.; Devasthale, A.; Ekman, A.M.L.; Tjernstrom, M.; LEcuyer, T. How does cloud overlap affect the radiative heating in the tropical upper troposphere/lower stratosphere? Geophys. Res. Lett. 2019, 46, 5623-5631. https://dx.doi.org/10.1029/2019GL082602 Mao, K.; Yuan, Z.; Zuo, Z.; Xu, T.; Shen, X.; Gao, C. Changes in Global Cloud Cover Based on Remote Sensing Data from 2003 to 2012. Chin. Geogr. Sci. 2019, 29, 306-315. https://dx.doi.org/10.1007/s11769-019-1030-6 Brient, F.; Bony, S. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim. Dyn. 2012, 40, 2415-2431. https://dx.doi.org/10.1007/s00382-011-1279-7 Kamae, Y.; Ogura, T.; Watanabe, M.; Xie, S.-P.; Ueda, H. Robust cloud feedback over tropical land in a warming climate. J. Geophys. Res. Atmos. 2016, 121, 2593-2609. https://dx.doi.org/10.1002/2015JD024525 Morrison, A.L.; Kay, J.E.; Frey, W.R.; Chepfer, H.; Guzman, R. Cloud Response to Arctic Sea Ice Loss and Implications for Future Feedback in the CESM1 Climate Model. J. Geophys. Res. Atmos. 2019, 124, 1003-1020. https://dx.doi.org/10.1029/2018JD029142 Zhou, C.; Zelinka, M.D.; Klein, S.A. Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J. Adv. Model. Earth Syst. 2017, 9, 2174-2189. https://dx.doi.org/10.1002/2017MS001096 Ceppi, P.; Nowack, P. Observational evidence that cloud feedback amplifies global warming. Proc. Natl. Acad. Sci. USA 2021, 118, e2026290118. https://dx.doi.org/10.1073/pnas.2026290118 Chepfer, H.; Noel, V.; Winker, D.; Chiriaco, M. Where and when will we observe cloud changes due to climate warming? Geophys. Res. Lett. 2014, 41, 8387-8395. https://dx.doi.org/10.1002/2014GL061792 Ohno, T.; Noda, A.T.; Seiki, T.; Satoh, M. Importance of Pressure Changes in High Cloud Area Feedback due to Global Warming. Geophys. Res. Lett. 2021, 48, e2021GL093646. https://dx.doi.org/10.1029/2021GL093646 Wang, Z.; Ge, J.; Yan, J.; Li, W.; Yang, X.; Wang, M.; Hu, X. Interannual shift of tropical high cloud diurnal cycle under global warming. Clim. Dyn. 2022, 59, 3391-3400. https://dx.doi.org/10.1007/s00382-022-06273-6 Fu, Q.; Smith, M.; Yang, Q. The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere 2018, 9, 377. https://dx.doi.org/10.3390/atmos9100377 Manabe, S.; Wetherald, R.T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 1967, 24, 241-259. https://dx.doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2 Thuburn, J.; Craig, G.C. On the temperature structure of the tropical substratosphere. J. Geophys. Res. Atmos. 2002, 107, ACL 10-1-ACL 10-10. https://dx.doi.org/10.1029/2001JD000448 Kluft, L.; Dacie, S.; Buehler, S.A.; Schmidt, H.; Stevens, B. Re-Examining the First Climate Models: Climate Sensitivity of a Modern Radiative-Convective Equilibrium Model. J. Clim. 2019, 32, 8111-8125. https://dx.doi.org/10.1175/JCLI-D-18-0774.1 Dacie, S.; Kluft, L.; Schmidt, H.; Stevens, B.; Buehler, S.A.; Nowack, P.J.; Dietmuller, S.; Abraham, N.L.; Birner, T. A 1D RCE Study of Factors Affecting the Tropical Tropopause Layer and Surface Climate. J. Clim. 2019, 32, 6769-6782. https://dx.doi.org/10.1175/JCLI-D-18-0778.1 O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K. Observations of SST-Induced Perturbations of the Wind Stress Field over the Southern Ocean on Seasonal Timescales. J. Clim. 2003, 16, 2340-2354. https://dx.doi.org/10.1175/2780.1 Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Summertime Coupling between Sea Surface Temperature and Wind Stress in the California Current System. J. Phys. Oceanogr. 2007, 37, 495-517. https://dx.doi.org/10.1175/JPO3025.1 ONeill, L.W.; Chelton, D.B.; Esbensen, S.K. The Effects of SST-Induced Surface Wind Speed and Direction Gradients on Mid-latitude Surface Vorticity and Divergence. J. Clim. 2010, 23, 255-281. https://dx.doi.org/10.1175/2009JCLI2613.1 Fallmann, J.; Lewis, H.; Castillo, J.M.; Arnold, A.; Ramsdale, S. Impact of sea surface temperature on stratiform cloud formation over the North Sea. Geophys. Res. Lett. 2017, 44, 4296-4303. https://dx.doi.org/10.1002/2017GL073105 Ricchi, A.; Bonaldo, D.; Cioni, G.; Carniel, S.; Miglietta, M.M. Simulation of a flashflood event over the Adriatic Sea with a high-resolution atmosphere-ocean-wave coupled system. Sci. Rep. 2021, 11, 9388. https://dx.doi.org/10.1038/s41598-021-88476-1 GISTEMP Team. GISS Surface Temperature Analysis (GISTEMP), Version 4, NASA Goddard Institute for Space Studies. 2021. Available online: https://data.giss.nasa.gov/gistemp/ (accessed on 18 October 2021). Lenssen, N.J.L.; Schmidt, G.A.; Hansen, J.E.; Menne, M.J.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP Uncertainty Model. J. Geophys. Res. Atmos. 2019, 124, 6307-6326. https://dx.doi.org/10.1029/2018JD029522 Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. [ersst.v5]. NOAA Natl. Cent. Environ. Inf. 2017. Pacific Decadal Oscillation. Available online: https://www.ncdc.noaa.gov/teleconnections/pdo/ (accessed on 14 December 2021). Mantua, N.J.; Hare, S.R. The Pacific decadal oscillation. J. Oceanogr. 2002, 58, 35-44. https://dx.doi.org/10.1023/A:1015820616384 Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.; Kennedy, J.; Folland, C.K. A Tripole Index for the Interdecadal Pacific Oscillation. Clim. Dyn. 2015, 45, 3077-3090. https://dx.doi.org/10.1007/s00382-015-2525-1 Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J. G.; Liang, L.; Mitrescu, C.; Rose, F. G.; Kato, S. Clouds and the Earths Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Clim. 2018, 31, 895-918. https://dx.doi.org/10.1175/JCLI-D-17-0208.1 Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; LEcuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bull. Am. Meteorol. Soc. 2018, 99, 569-581. https://dx.doi.org/10.1175/BAMS-D-16-0324.1 Sassen, K.; Wang, Z.; Liu, D. Global distribution of cirrus clouds from CloudSat/cloudaerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements. J. Geophys. Res. Atmos. 2008, 113, D00A12. https://dx.doi.org/10.1029/2008JD009972 Sassen, K.; Wang, Z. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett. 2008, 35, L04805. https://dx.doi.org/10.1029/2007GL032591 Gao, S.; Cui, X.; Li, X. A modeling study of relation between cloud amount and SST over Western Tropical Pacific cloudy regions during TOGA COARE. Prog. Nat. Sci. 2009, 19, 187-193. https://dx.doi.org/10.1016/j.pnsc.2008.07.006 Cesana, G.; Del Genio, A.D.; Ackerman, A.S.; Kelley, M.; Elsaesser, G.; Fridlind, A.M.; Cheng, Y.; Yao, M.-S. Evaluating models’ response of tropical low clouds to SST forcings using CALIPSO observations. Atmos. Chem. Phys. 2019, 19, 2813-2832. https://dx.doi.org/10.5194/acp-19-2813-2019 Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horanyi, A.; Muñoz-Sabater, J. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7?tab=overview (accessed on 5 January 2022). Gentemann, C.; Minnett, P.J.; Ward, B. Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming. J. Geophys. Res. 2009, 114, C07017. https://dx.doi.org/10.1029/2008JC004825 Comstock, J.M.; Protat, A.; McFarlane, S.A.; Delanoë, J.; Deng, M. Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 years of ARM data at Darwin, Australia. J. Geophys. Res. Atmos. 2013, 118, 4549-4571. https://dx.doi.org/10.1002/jgrd.50404 Comstock, J.; McFarlane, S. Atmospheric Radiation Measurement (ARM) User Facility, 1994, Updated Daily. Cloud Properties and Radiative Heating Rates Dataset for Nauru, Manus, and Darwin Sites. January 2008-February 2009, 0° 31' 15.6''S, 166° 54' 57.6''E: Central Facility, Nauru Island (TWP C2); ARM Data Center: Oak Ridge, TN, USA, 2017. Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831-844. https://dx.doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 Wing, A.A.; Reed, K.A.; Satoh, M.; Stevens, B.; Bony, S.; Ohno, T. Radiative-convective equilibrium model intercomparison project. Geosci. Model Dev. 2018, 11, 793-813. https://dx.doi.org/10.5194/gmd-11-793-2018 McLean, A. B,; Mitchell, C. E. J.; Swanston, D. M. Implementation of an efficient analytical approximation to the Voigt function for photoemission lineshape analysis. J. Electron. Spectrosc. Relat. Phenom. 1994, 69, 125-132. https://dx.doi.org/10.1016/0368-2048(94)02189-7 Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3-69. https://dx.doi.org/10.1016/j.jqsrt.2017.06.038 Molina, L.T.; Molina, M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. Atmos. 1986, 91, 14501-14508. https://dx.doi.org/10.1029/JD091iD13p14501 Mlawer, E.J.; Payne, V.H.; Moncet, J.-L.; Delamere, J.S.; Alvarado, M.J.; Tobin, D.C. Development and recent evaluation of the MT_CKD model of continuum absorption. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2520-2556. https://dx.doi.org/10.1098/rsta.2011.0295 Li, M.; Liao, Z.; Coimbra, C.F. Spectral model for clear sky atmospheric longwave radiation. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 196-211. https://dx.doi.org/10.1016/j.jqsrt.2018.01.029 Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765-2773. https://dx.doi.org/10.1364/AO.34.002765 Hu, Y.X.; Stamnes, K. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Clim. 1993, 6, 728-742. https://dx.doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2 Fu, Q. An Accurate Parameterization of the Solar Radiative Properties of Cirrus Clouds for Climate Models. J. Clim. 1996, 9, 2058-2082. https://dx.doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2 Fu, Q.; Yang, P.; Sun, W. B. An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models. J. Clim. 1998, 11, 2223-2237. https://dx.doi.org/10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2 Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. Analytical solution of radiative transfer in the coupled atmos-phere-ocean system with a rough surface. Appl. Opt. 2006, 45, 7443-7455. https://dx.doi.org/10.1364/AO.45.007443 https://www.ncbi.nlm.nih.gov/pubmed/16983433 Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. Efficient and accurate bulk parameterizations of air-sea fluxes for use in general circulation models. J. Atmos. Ocean. Technol. 2000, 17, 1421-1438. https://dx.doi.org/10.1175/1520-0426(2000)017<1421:EAABPO>2.0.CO;2 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83266 | - |
| dc.description.abstract | 本論文研究位於熱帶西太平洋(tropical western Pacific)地區的一局部海域在近年全球暖化趨緩(warming hiatus)結束之前與之後兩個時期的顯著溫度變化。在此二時期,三個可能對區域溫度產生影響的環境因素,包含海面溫度(sea surface temperature)、雲的垂直結構(vertical structure)以及風速(wind speed)也觀察到顯著的改變。在本研究中,我們開發了一個整合對流調整法(convective adjustment)和海面通量(sea surface flux)交換的一維(one-dimensional)大氣輻射傳送模式(radiative transfer model),用以模擬前述三個可能的環境因素在兩個時期的差異對於該區域中接近氣海界面(air-sea interface)溫度的日變化(diurnal variation)的效應。在模擬過程中,該三項環境因素的數值皆根據文獻中提及的資料或模型推算。藉由三項環境因素改變,我們設計了不同組合下的模擬情境(scenario),並以所開發的大氣輻射熱傳模式進行模擬。最後對不同模擬情境下得到的溫度日變化進行統計分析與交叉比較,得到三項環境因素對該地區溫度變化個別與複合的效應。 | zh_TW |
| dc.description.abstract | A region in the tropical western Pacific is selected to study the notable change in temperature between the recent warming hiatus period and the post-hiatus period. In total, three probable factors, namely sea-surface temperature (SST), cloud vertical structure (CVS) and wind speed, which may account for the temperature change are found to exhibit noticeable differences between these two periods. A one-dimensional atmospheric radiative transfer model, incorporating convective adjustment and energy exchange with the ocean, is developed to simulate the diurnal pattern of temperature profile under the influence of the three probable factors in the two concerned periods. Virtual profiles of sea-surface temperature, cloud vertical structure and wind speed in both periods are developed from data available in the literature. Diurnal patterns of temperatures near the air-sea interface are computed with the proposed model over a sufficient number of days. The simulated temperatures under different combinations of factors, in either the hiatus or post-hiatus period, are statistically analyzed to gain insights about the separate and combined effects of these three factors on causing climate change. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:10:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-02-01T17:10:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgment i
中文摘要ii Abstract iii Table of Contents iv List of Figures vii List of Tables xi 1 Introduction 1 2 End of Recent Hiatus and Region of Interest 7 2.1 Determining the End of Recent Hiatus 7 2.2 Region of Interest in This Study 10 3 Variation of Cloud Vertical Structure in ROI 13 3.1 CVS Observed by CloudSat and CALIPSO 13 3.2 Occurrence Rate of CVS in ROI 15 3.3 Occurrence Rate of Regrouped CVS in ROI 18 3.4 Summary of Observation Data in ROI 20 4 Design of Simulation Scenarios 22 4.1 Simulation Model of Probable Factors 23 4.2 Justification of Methodology to Simulate Diurnal Variation 26 4.3 1D-RCM and Relevant Parameters 28 5 Simulation Results and Discussions 30 5.1 Benchmark Cases of Hiatus and Post-Hiatus Periods 31 5.2 Effects of Swapping Probable Factors 37 5.3 Review on Ts 42 5.4 Review on Ta 45 5.5 Review on Td 47 5.6 Summary on Simulation Results 48 5.7 Highlights of Contributions in This Work 49 5.8 Retrospect and Expectation 50 6 Conclusions 53 A Abbreviations 55 B Physical Models 57 B.1 Radiative Transfer in Atmosphere 57 B.2 Convective Adjustment 59 B.3 Heat Exchange with Ocean 60 Bibliography 65 | - |
| dc.language.iso | en | - |
| dc.subject | 輻射傳送 | zh_TW |
| dc.subject | 雲型 | zh_TW |
| dc.subject | 熱帶西太平洋 | zh_TW |
| dc.subject | 多層雲 | zh_TW |
| dc.subject | 風速 | zh_TW |
| dc.subject | 雲的垂直結構 | zh_TW |
| dc.subject | 海面溫度 | zh_TW |
| dc.subject | 溫度分佈 | zh_TW |
| dc.subject | 全球暖化趨緩 | zh_TW |
| dc.subject | cloud type | en |
| dc.subject | radiative transfer | en |
| dc.subject | warming hiatus | en |
| dc.subject | sea surface temperature | en |
| dc.subject | cloud vertical structure | en |
| dc.subject | wind speed | en |
| dc.subject | tropical western Pacific | en |
| dc.subject | temperature profile | en |
| dc.subject | multi-layer cloud | en |
| dc.title | 海面溫度、雲的垂直結構、風速在全球暖化趨緩結束前後對熱帶西太平洋地區溫度變化的效應 | zh_TW |
| dc.title | Effects of Sea-Surface Temperature, Cloud Vertical Structure and Wind Speed on Temperature Change between Hiatus and Post-Hiatus Periods in Tropical Western Pacific | en |
| dc.title.alternative | Effects of Sea-Surface Temperature, Cloud Vertical Structure and Wind Speed on Temperature Change between Hiatus and Post-Hiatus Periods in Tropical Western Pacific | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 丁建均;李翔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jiun Ding;Hsiang-Chieh Lee | en |
| dc.subject.keyword | 全球暖化趨緩,輻射傳送,溫度分佈,海面溫度,雲的垂直結構,風速,多層雲,熱帶西太平洋,雲型, | zh_TW |
| dc.subject.keyword | warming hiatus,radiative transfer,temperature profile,sea surface temperature,cloud vertical structure,wind speed,multi-layer cloud,tropical western Pacific,cloud type, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202300069 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-01-16 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-01-13 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
