Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83265
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-Chih Wuen
dc.contributor.author李章誠zh_TW
dc.contributor.authorChang-Cheng Leeen
dc.date.accessioned2023-02-01T17:10:00Z-
dc.date.available2023-11-09-
dc.date.copyright2023-02-01-
dc.date.issued2023-
dc.date.submitted2023-01-17-
dc.identifier.citationM. Pope, H. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics 38, 2042-2043 (1963).
C.W. Tang, and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters 51, 913-915 (1987).
P. Burrows, G. Gu, V. Bulovic, Z. Shen, S. Forrest, and M. Thompson, Achieving full-color organic light-emitting devices for lightweight, flat-panel displays. IEEE Transactions on Electron Devices 44, 1188-1203 (1997).
W. Brütting, J. Frischeisen, T.D. Schmidt, B.J. Scholz, and C. Mayr, Device efficiency of organic light‐emitting diodes: Progress by improved light outcoupling. Physica Status Solidi (a) 210, 44-65 (2013).
G. Turkoglu, M.E. Cinar, and T. Ozturk, Triarylborane-based materials for OLED applications. Molecules 22, 1522 (2017).
S. Möller, and S. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics 91, 3324-3327 (2002).
W. Youn, J. Lee, M. Xu, R. Singh, and F. So, Corrugated sapphire substrates for organic light-emitting diode light extraction. ACS Applied Materials & Interfaces 7, 8974-8978 (2015).
Q. Yue, W. Li, F. Kong, and K. Li, Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures. Advances in Materials Science and Engineering 2012, (2012).
G. Gu, D. Garbuzov, P. Burrows, S. Venkatesh, S. Forrest, and M. Thompson, High-external-quantum-efficiency organic light-emitting devices. Optics Letters 22, 396-398 (1997).
K. A. Neyts, Simulation of light emission from thin-film microcavities. Journal of Optical Society of America 15, 962-971 (1998).
X.-W. Chen, W. C. Choy, and S. He, Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes. Journal of Display Technology 3, 110-117 (2007).
L. Zschiedrich, H. J. Greiner, S. Burger, F. Schmidt, Numerical analysis of nanostructures for enhanced light extraction from OLEDs, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVII, SPIE 8641, 33-41 (2013).
Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y.R. Do, A high-extraction-efficiency nanopatterned organic light-emitting diode. Applied Physics Letters 82, 3779-3781 (2003).
W. Lukosz, and R. Kunz, Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power. Journal of Optical Society of America 67, 1607-1615 (1977).
W. Lukosz, and R. Kunz, Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. Journal of Optical Society of America 67, 1615-1619 (1977).
A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods. Organic Electronics 6, 3-9 (2005).
M. K. Callens, H. Marsman, L. Penninck, P. Peeters, H. de Groot, J. M. ter Meulen, and K. Neyts, RCWA and FDTD modeling of light emission from internally structured OLEDs. Optics Express 22, A589-A600 (2014).
H. Lüder, and M. Gerken, FDTD modelling of nanostructured OLEDs: analysis of simulation parameters for accurate radiation patterns. Optical and Quantum Electronics 51, 1-20 (2019).
H. Azarinia, S. Mladenovski, and K. Neyts, FDTD simulation of Photonic crystal enhanced OLED, Proc. Symp. IEEE/Laser Electro-Optics and Apps Society, Brussels, 223-226 (2007)
L. Wang, J. Amano, and P.-C. Hung, Simulating Plasmon Effect in Nanostructured OLED Cathode Using Finite Element Method. Konica Minolta Technology Report 13, 101-106 (2016).
Y. Qu, J. Kim, C. Coburn, and S.R. Forrest, Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays. ACS Photonics 5, 2453-2458 (2018).
N. Narendran, Y. Gu, J. Freyssinier, H. Yu, and L. Deng, Solid-state lighting: failure analysis of white LEDs. Journal of Crystal Growth 268, 449-456 (2004).
N. Chang, I. Choi, and H. Shim, DLS: dynamic backlight luminance scaling of liquid crystal display. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12, 837-846 (2004).
Y. Ishii, S. Mizushima, and M. Hijikigawa, 41.1: Invited Paper: High Performance TFT‐LCDs for AVC Applications, SID Symposium Digest of Technical Papers 32, 1090-1093 (2001).
S. Jin, J. Li, J. Li, J. Lin, and H. Jiang, GaN microdisk light emitting diodes. Applied Physics Letters 76, 631-633 (2000).
T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. Huang Chen, W. Guo, H.-C. Kuo, and Z. Chen, Mini-LED and micro-LED: promising candidates for the next generation display technology. Applied Sciences 8, 1557 (2018).
T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate. Optics Express 15, 6670-6676 (2007).
S. Liu, and X. Luo, LED packaging for lighting applications: design, manufacturing, and testing, John Wiley & Sons, Hoboken, United States (2011).
A. Kitai, Principles of Solar Cells, LEDs and Diodes: The role of the PN junction, John Wiley & Sons, Hoboken, United States (2011).
Z. Chen, S. Yan, and C. Danesh, MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. Journal of Physics D: Applied Physics 54, 123001 (2021).
S. Lu, J. Li, K. Huang, G. Liu, Y. Zhou, D. Cai, R. Zhang, and J. Kang, Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density. Nanoscale Research Letters 16, 1-16 (2021).
X. Jia, Y. Zhou, B. Liu, H. Lu, Z. Xie, R. Zhang, and Y. Zheng, A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications. Materials Research Express 6, 105915 (2019).
F. Gou, E.-L. Hsiang, G. Tan, P.-T. Chou, Y.-L. Li, Y.-F. Lan, and S.-T. Wu, Angular color shift of micro-LED displays. Optics Express 27, A746-A757 (2019).
S. Lan, H. Wan, J. Zhao, and S. Zhou, Light extraction analysis of AlGaInP based red and GaN based blue/green flip-chip micro-LEDs using the Monte Carlo Ray tracing method. Micromachines 10, 860 (2019).
C. Qian, Y. Li, J. Fan, X. Fan, J. Fu, L. Zhao, and G. Zhang, Studies of the light output properties for a GaN based blue LED using an electro-optical simulation method. Microelectronics Reliability 74, 173-178 (2017).
D. J. E. Harvie, An implicit finite volume method for arbitrary transport equations. ANZIAM Journal 52, C1126-C1145 (2010).
M.C. Suh, D.Y. Kim, S.H. Jung, and N.S. Kim, Suppression of viewing angle dependence of TEOLED devices with internal nano-wrinkle structure. Organic Electronics 77, 105493 (2020).
C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H.-Y. Lin, and C.-C. Wu, Enhancing optical out‐coupling of organic light‐emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer. Advanced Materials 27, 4883-4888 (2015).
Y. Sun, and S. R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature photonics 2, 483-487 (2008).
H.-W. Chang, J. Lee, S. Hofmann, Y. Hyun Kim, L. Müller-Meskamp, B. Lüssem, C.-C. Wu, K. Leo, and M.C. Gather, Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells. Journal of Applied Physics 113, 204502 (2013).
Y. R. Do, Y. C. Kim, Y.-W. Song, C.-O. Cho, H. Jeon, Y.-J. Lee, S.-H. Kim, and Y.-H. Lee, Enhanced light extraction from organic light‐emitting Diodes with 2D SiO2/SiNx photonic crystals. Advanced Materials 15, 1214-1218 (2003).
S. Jeon, J.-h. Jeong, Y.S. Song, W.-I. Jeong, J.-J. Kim, and J.R. Youn, Vacuum nano-hole array embedded organic light emitting diodes. Nanoscale 6, 2642-2648 (2014).
S. Möller, and S. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics 91, 3324-3327 (2002).
Y.-J. Chen, W.-K. Lee, Y.-T. Chen, C.-Y. Lin, S.-W. Wen, M. Jiao, G.-D. Su, H.-Y. Lin, R. J. Visser, and B. L. Kwak, A vision toward ultimate optical out‐coupling for organic light‐emitting diode displays: 3D pixel configuration. Advanced Science 5, 1800467 (2018).
W.-K. Lee, Y.-T. Chen, S.-W. Wen, P.-H. Liao, M.-C. Lee, T.-S. Hsu, Y.-J. Chen, G.-D. Su, H.-Y. Lin, and C.-C. Chen, Three‐dimensional pixel configurations for optical outcoupling of OLED displays—optical simulation. Journal of the Society for Information Display 27, 273-284 (2019).
Y.-T. Chen, S.-W. Wen, P.-H. Liao, W.-K. Lee, C.-C. Lee, C.-W. Huang, Y.-H. Yang, K.-C. Lin, C.-J. Chang, and G.-D. Su, Reflective 3D pixel configuration for enhancing efficiency of OLED displays. Organic Electronics 103, 106451 (2022).
J. Hoffmann, C. Hafner, P. Leidenberger, J. Hesselbarth, and S. Burger, Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nanoantennas, Modeling Aspects in Optical Metrology II, SPIE 7390, 174-184 (2009).
M.K. Callens, H. Marsman, L. Penninck, P. Peeters, H. de Groot, J.M. ter Meulen, and K. Neyts, RCWA and FDTD modeling of light emission from internally structured OLEDs. Optics Express 22, A589-A600 (2014).
H. Lüder, and M. Gerken, FDTD modelling of nanostructured OLEDs: analysis of simulation parameters for accurate radiation patterns. Optical and Quantum Electronics 51, 1-20 (2019).
L. Wang, J. Amano, and P.-C. Hung, Simulating Plasmon Effect in Nanostructured OLED Cathode Using Finite Element Method. Konica Minolta Technology Report 13, 101-106 (2016).
M. Kovačič, Effect of Dipole Position and Orientation on Light Extraction for Red OLEDs on Periodically Corrugated Substrate-FEM Simulations Study. Informacije MIDEM 51, 73-84 (2021).
A. Voorhees, H. Millwater, and R. Bagley, Complex variable methods for shape sensitivity of finite element models. Finite Elements in Analysis and Design 47, 1146-1156 (2011).
W. Lukosz, and R. Kunz, Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power. Journal of the Society for Information Display 67, 1607-1615 (1977).
W. Lukosz, and R. Kunz, Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. Journal of the Society for Information Display 67, 1615-1619 (1977).
J. Sipe, The dipole antenna problem in surface physics: a new approach. Surface Science 105, 489-504 (1981).
C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Applied Physics Letters 88, 081114 (2006).
K.-C. Tien, M.-S. Lin, Y.-H. Lin, C.-H. Tsai, M.-H. Shiu, M.-C. Wei, H.-C. Cheng, C.-L. Lin, H.-W. Lin, and C.-C. Wu, Utilizing surface plasmon polariton mediated energy transfer for tunable double-emitting organic light-emitting devices. Organic Electronics 11, 397-406 (2010).
C.-L. Lin, H.-W. Lin, and C.-C. Wu, Examining microcavity organic light-emitting devices having two metal mirrors. Applied Physics Letters 87, 021101 (2005).
P. K. Jain, J. D. Freels, and D. H. Cook, COMSOL-Based Multiphysics Simulations to Support HFIR's Conversion to LEU Fuel. Transactions of the American Nuclear Society 104, 1064 (2011).
J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, Design of a multiplexing grating for color holographic waveguide. Optical Engineering 54, 125105 (2015).
M. Zhang, and T. Coombs, 3D modeling of high-Tc superconductors by finite element software. Superconductor Science and Technology 25, 015009 (2011).
J.-S. Lee, T.-L. Song, J.-K. Du, and J.-G. Yook, Near-field to far-field transformation based on stratton-chu fomula for EMC measurements, 2013 IEEE Antennas and Propagation Society International Symposium, 606-607 (2013).
S. Jin, J. Li, J. Li, J. Lin, and H. Jiang, GaN microdisk light emitting diodes. Applied Physics Letters 76, 631-633 (2000).
H. Jiang, S. Jin, J. Li, J. Shakya, and J. Lin, III-nitride blue microdisplays. Applied Physics Letters 78, 1303-1305 (2001).
S. Lu, J. Li, K. Huang, G. Liu, Y. Zhou, D. Cai, R. Zhang, and J. Kang, Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density. Nanoscale Research Letters 16, 1-16 (2021).
X. Jia, Y. Zhou, B. Liu, H. Lu, Z. Xie, R. Zhang, and Y. Zheng, A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications. Materials Research Express 6, 105915 (2019).
F. Gou, E.-L. Hsiang, G. Tan, P.-T. Chou, Y.-L. Li, Y.-F. Lan, and S.-T. Wu, Angular color shift of micro-LED displays. Optics Express 27, A746-A757 (2019).
Z. Liu, K. Wang, X. Luo, and S. Liu, Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing. Optics Express 18, 9398-9412 (2010).
C. Qian, Y. Li, J. Fan, X. Fan, J. Fu, L. Zhao, and G. Zhang, Studies of the light output properties for a GaN based blue LED using an electro-optical simulation method. Microelectronics Reliability 74, 173-178 (2017).
C. A. Bower, B. Raymond, C. Verreen, C. Prevatte, S. Bonafede, A. Pearson, N. Rivers, B. Keller, T. Weeks, and B. Trinh, PixelEngine TM All-in-One: a Printable Pixel-Driver MicroIC with Three-Dimensionally Integrated Red, Green, and Blue MicroLEDs. IEEE Journal of Selected Topics in Quantum Electronics (2022).
M.-s. Xu, H. Zhang, Q.-b. Zhou, and H. Wang, Effects of p-type GaN thickness on optical properties of GaN-based light-emitting diodes. Optoelectronics Letters 12, 249-252 (2016).
J. Kou, C.-C. Shen, H. Shao, J. Che, X. Hou, C. Chu, K. Tian, Y. Zhang, Z.-H. Zhang, and H.-C. Kuo, Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes. Optics Express 27, A643-A653 (2019).
Y. Li, F. Yun, X. Su, S. Liu, W. Ding, and X. Hou, Deep hole injection assisted by large V-shape pits in InGaN/GaN multiple-quantum-wells blue light-emitting diodes. Journal of Applied Physics 116, 123101 (2014).
D. Kim, Y. Sung, J. Park, and G. Yeom, A study of transparent indium tin oxide (ITO) contact to p-GaN. Thin Solid Films 398, 87-92 (2001).
H. Guo, X. Zhang, H. Chen, H. Liu, P. Zhang, Q. Liao, S. Hu, H. Chang, B. Sun, and S. Wang, High-Performance GaN-Based Light-Emitting Diodes on Patterned Sapphire Substrate with a Novel Patterned SiO2/Al2O3 Passivation Layer. Applied Physics Express 6, 072103 (2013).
Z. Qin, Z. Chen, Y. Tong, X. Ding, X. Hu, T. Yu, and G. Zhang, Study of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au ohmic contacts to n-GaN. Applied Physics A 78, 729-731 (2004).
Y.-K. Su, J.-J. Chen, C.-L. Lin, S.-M. Chen, W.-L. Li, and C.-C. Kao, Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates. Journal of Crystal Growth 311, 2973-2976 (2009).
S. Zhou, S. Yuan, S. Liu, and H. Ding, Improved light output power of LEDs with embedded air voids structure and SiO2 current blocking layer. Applied Surface Science 305, 252-258 (2014).
T. Kim, M. C. Yoo, and T. Kim, Cr/Ni/Au ohmic contacts to the moderately doped p-and n-GaN. MRS Online Proceedings Library (OPL): Cambridge, UK 449, (1996).
H.-Y. Ryu, G.-H. Ryu, Y.-H. Choi, and B. Ma, Modeling and simulation of efficiency droop in GaN-based blue light-emitting diodes incorporating the effect of reduced active volume of InGaN quantum wells. Current Applied Physics 17, 1298-1302 (2017).
R. Zhou, M. Ikeda, F. Zhang, J. Liu, S. Zhang, A. Tian, P. Wen, D. Li, L. Zhang, and H. Yang, Total-InGaN-thickness dependent Shockley-Read-Hall recombination lifetime in InGaN quantum wells. Journal of Applied Physics 127, 013103 (2020).
K. A. Bulashevich, and S. Y. Karpov, Impact of surface recombination on efficiency of III‐nitride light‐emitting diodes. Physica Status Solidi (RRL)–Rapid Research Letters 10, 480-484 (2016).
Y.-S. Yoo, J.-H. Na, S.J. Son, and Y.-H. Cho, Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field. Scientific Reports 6, 1-9 (2016).
K.-M. Chang, J.-Y. Chu, and C.-C. Cheng, Investigation of indium–tin-oxide ohmic contact to p-GaN and its application to high-brightness GaN-based light-emitting diodes. Solid-State Electronics 49, 1381-1386 (2005).
F. Li, C. Chen, F. Tan, C. Li, G. Yue, L. Shen, and W. Zhang, Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO 2 electron-selective layer on FTO and MoO 3/Ag/MoO 3 transparent electrode. Nanoscale Research Letters 9, 1-5 (2014).
T. Margalith, O. Buchinsky, D. Cohen, A. Abare, M. Hansen, S. DenBaars, and L. Coldren, Indium tin oxide contacts to gallium nitride optoelectronic devices. Applied Physics Letters 74, 3930-3932 (1999).
S. Hang, M. Zhang, Y. Zhang, C. Chu, Y. Zhang, Q. Zheng, Q. Li, and Z.-H. Zhang, Artificially formed resistive ITO/p-GaN junction to suppress the current spreading and decrease the surface recombination for GaN-based micro-light emitting diodes. Optics Express 29, 31201-31211 (2021).
G. Yuan, X. Chen, T. Yu, H. Lu, Z. Chen, X. Kang, J. Wu, and G. Zhang, Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes. Journal of Applied Physics 115, 093106 (2014).
G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. Journal of Applied Physics 114, 071101 (2013).
C.-J. Chen, H.-C. Chen, J.-H. Liao, C.-J. Yu, and M.-C. Wu, Fabrication and Characterization of Active-Matrix 960×540 Blue GaN-Based Micro-LED Display. IEEE Journal of Quantum Electronics 55, 1-6 (2019).
X. Guo, and E. Schubert, Current crowding in GaN/InGaN light emitting diodes on insulating substrates. Journal of Applied Physics 90, 4191-4195 (2001).
A.-C. Liu, K.J. Singh, Y.-M. Huang, T. Ahmed, F.-J. Liou, Y.-H. Liou, C.-C. Ting, C.-C. Lin, and Y. Li, S. Samukawa, Increase in the efficiency of III-nitride micro-LEDs: atomic-layer deposition and etching. IEEE Nanotechnology Magazine 15, 18-34 (2021).
T. Mukai, M. Yamada, and S. Nakamura, Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes. Japanese Journal of Applied Physics 37, L1358 (1998).
S. Lu, Y. Zhang, Y. Qiu, X. Liu, M. Zhang, and D. Luo, Efficiency Boosting by Thermal Harvesting in InGaN/GaN Light-Emitting Diodes. Frontiers in Physics 526 (2021).
H.-Y. Ryu, G.-H. Ryu, C. Onwukaeme, and B. Ma, Temperature dependence of the Auger recombination coefficient in InGaN/GaN multiple-quantum-well light-emitting diodes. Optics Express 28, 27459-27472 (2020).
D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, and C. Sone, On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes. Applied Physics Letters 99, 041112 (2011).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83265-
dc.description.abstract由於對先進顯示技術的高度需求,有機發光二極體(OLED)顯示器與微發光二極體(micro-LED)顯示器日益蓬勃發展。在本論文研究中,我們致力於研究OLED與micro-LED顯示器之光電物理機制,藉由嚴謹的有限元素分析之數值模擬與蒙地卡羅光追跡方法進行模擬研究。
在論文的第一部分,我們將全電磁波波動光學模擬應用在跨尺度之三維反射式OLED像素結構,此像素結構在上電極之上有額外的高折射率填料(Filler),此高折射率填料可導引那些在填料中初始入射角大於填料/空氣介面全反射臨界角之光線,經由四周的反射表面改變光線的入射方向而出光,進而提升光學萃取效率;為了解決在先前的跨尺度模擬方法(波動光學+光追跡)中無法預測頻譜量測中所觀察到的干涉調變效應,我們改採全電磁波波動光學的數值分析方法,值得一提的是由於三維OLED像素的尺寸相當的大,很難直接做運算,因此論文中會提出簡化數值運算量的方法;我們也將全波動光學的模擬結果:場型、變角度的頻譜與光萃取效率之增益與原來的光學模擬方法(波動+光追跡)還有實驗數據做比較,證實模擬之準確性及有效性。
在論文的第二部分,我們針對覆晶式氮化銦鎵micro-LED進行電性與光學特性上之模擬研究。首先,我們採用Comsol多重物理耦合模擬軟體之半導體模組利用有限體積法來進行覆晶式micro-LED的電性研究,元件內部的物理機制透過柏松方程式(Poisson’s equation)、電流不連續方程式、載子傳輸方程式與光子產生率方程式來進行求解;探討電流分布(Current spreading)效應、電流聚集(Current crowding)效應與Shockley-Read-Hall非輻射再結合效應,分析在不同操作電流密度下的多重量子井(MQW)內不均勻自發放光率的分布;接著,我們將此不均勻的自發放光率當作光源放入光跡模型,用以研究兩種光學結構,包含無保護層(OC)及具粗糙化表面之micro-LED、有保護層(OC)及具粗糙化表面之micro-LED,分析這兩種micro-LED結構的發光特性,包含發光場型,光萃取效率,並分析加上保護層(OC)之後所造成的光學損失,以及操作在不同電流密度下之正向表面發光強度分布,並將各種光學模擬結果與實驗資料做比對,獲取合理一致的結果,證實了所研究方法之有效性。
zh_TW
dc.description.abstractWith the great demand for advanced display technologies, organic light emitting diode (OLED) and micro-light emitting diode (micro-LED) displays are becoming important display technologies. This thesis is devoted to simulation studies of the physical and optical properties of OLED and micro-LED displays, employing the rigorous numerical simulation based on the finite element analysis (FEM) and the Monte Carlo ray tracing method.
In the first part of the dissertation, fully electromagnetic wave optic simulation and analyses of the cross-scale reflective 3D OLED pixel configuration were conducted. The pixel configuration with additional patterned high-index filler and concave reflector is capable of re-directing the light entering the filler with the initial internal angle larger than the TIR (total internal reflection) critical angle of the filler-air interface through surrounding reflective surfaces and enhancing the optical out-coupling efficiency. However, the interference modulation observed in EL spectra could not be well predicted by the previous multi-scale (wave+ray tracing) optical simulation. As such, the numerical analysis based on the fully EM optics was conducted in the study. As the size of the 3D OLED pixels is too huge to be calculated straightforwardly by the FEM based numerical simulation, so several methods to reduce the calculation loading have been devised. The wave optic simulation results, including emission patterns, angle-dependent EL spectra, and enhancement of out-coupling efficiencies were compared with the previous multi-scale (wave+ray tracing) optical simulation results and experimental results as well.
In the second part of the dissertation, the comprehensive investigation on electrical and optical characteristics of InGaN-based flip-chip micro-light emitting diodes was conducted. We employed the finite volume method from the semiconductor module of the Comsol Multiphysics simulation tool to study the electrical properties of flip-chip micro-LEDs, considering Poisson’s equation, current discontinuity equation, carrier transport equation, and recombination rate equations, etc. The inhomogeneous spatial distribution of spontaneous emission rates in the MQW active regions resulting from the current spreading, current crowding, and Shockley-Read-Hall non-radiative recombination, etc. at different operating current densities were analyzed. We then used the non-uniform distributions of spontaneous emission rates to set up the light sources in the ray-tracing modeling. Two different micro-LED devices: (i) bare surface textured micro-LED without overcoat (OC), and (ii) surface textured micro-LED with OC, were studied. Optical characteristics such as the far-field emission patterns, optical out-coupling efficiencies of the micro-LEDs, and the optical loss with the additional OC were analyzed. The normal-direction surface emission intensity distribution profiles under different current densities were also analyzed. The optical simulation results were compared with the experimental data. Good agreement indicates the effectiveness of the simulation method here.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:09:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-02-01T17:10:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract vi
Contents viii
List of Tables x
List of Figures xi
Chapter 1 Introduction 1
1.1 Overview of Organic Light-Emitting Diodes and Displays 1
1.2 Overview of Micro-LEDs and Displays 5
1.3 Dissertation Motivation and Organization 8
References 9
Figures 14
Chapter 2 Fully electromagnetic wave optic simulation and analyses of the cross-scale reflective 3D OLED pixel configuration 17
2.1 Introduction 17
2.2 Methods 21
2.3 Results and discussion 24
2.4 Conclusion 30
References 31
Figures 35
Chapter 3 Comprehensive investigation on electrical and optical characteristics of InGaN-based flip-chip micro-light emitting diodes 44
3.1 Introduction 44
3.2 Research Methods 46
3.3 Results and Discussions 52
3.4 Conclusion 59
References 60
Tables 66
Figures 68
Chapter 4 Summary 79
4.1 Dissertation Summary 79
-
dc.language.isoen-
dc.subject有機發光二極體zh_TW
dc.subject表面發光強度分布zh_TW
dc.subject有限元素分析zh_TW
dc.subject電流分布效應zh_TW
dc.subject電流聚集效應zh_TW
dc.subject蒙地卡羅光追跡方法zh_TW
dc.subject光萃取效率zh_TW
dc.subject微發光二極體zh_TW
dc.subjectsurface emission intensity distributionen
dc.subjectOrganic light-emitting diodesen
dc.subjectMicro light-emitting diodesen
dc.subjectoptical out-coupling efficiencyen
dc.subjectfinite element analysisen
dc.subjectMonte Carlo ray tracing methoden
dc.subjectcurrent spreadingen
dc.subjectcurrent crowdingen
dc.title發光二極體顯示元件之光學模擬與分析之研究zh_TW
dc.titleSimulation and Analyses of Light-Emitting Diode Display Pixelsen
dc.title.alternativeSimulation and Analyses of Light-Emitting Diode Display Pixels-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee蔡志宏;張志豪;黃奕翔;陳俐吟;林昶宇zh_TW
dc.contributor.oralexamcommitteeChih-Hung Tsai;Chih-Hao Chang;Yi-Hsiang Huang;Li-Yin Chen;Chang-Yu Linen
dc.subject.keyword有機發光二極體,微發光二極體,光萃取效率,有限元素分析,蒙地卡羅光追跡方法,電流分布效應,電流聚集效應,表面發光強度分布,zh_TW
dc.subject.keywordOrganic light-emitting diodes,Micro light-emitting diodes,optical out-coupling efficiency,finite element analysis,Monte Carlo ray tracing method,current spreading,current crowding,surface emission intensity distribution,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202300127-
dc.rights.note未授權-
dc.date.accepted2023-01-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0225230116403018.pdf
  未授權公開取用
3.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved