請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83260完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富 | zh_TW |
| dc.contributor.advisor | Jean-Fu Kiang | en |
| dc.contributor.author | 郟致翔 | zh_TW |
| dc.contributor.author | Zhi-Xiang Jia | en |
| dc.date.accessioned | 2023-02-01T17:08:11Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-02-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-17 | - |
| dc.identifier.citation | [1] G. Zhang, Y. Li, X. Xu and H. Dai, “Efficient training techniques for multi-agent reinforcement learning in combat tasks,” IEEE Access, vol.7, pp.109301-109310, 2019.
[2] B. Baspinar and E. Koyuncu, “Assessment of aerial combat game via optimization-based receding horizon control,” IEEE Access, vol.8 pp.35853-35863, 2020. [3] H. Zhang and C. Huang, “Maneuver decision-making of deep learning for UCAV through azimuth angles,” IEEE Access, vol.8 pp.12976-12987, 2020. [4] L. Liang, F. Deng, M. Lu and J. Chen, “Analysis of role switch for cooperative target defense differential game,” IEEE Trans. Automatic Control, vol.66, no.2, pp.902-909, 2021. [5] E. Garcia, D. W. Casbeer, Z. E. Fuchs and M. Pachter, “Cooperative missile guidance for active defense of air vehicles,” IEEE Trans. Aerospace Electron. Syst., vol.54, no.2, pp.706-721, 2018. [6] S. K. Singh, P. V. Reddy and B. Vundurthy, “Study of multiple target defense differential games using receding horizon-based switching strategies,” IEEE Trans. Control Syst. Technol., pp.1-17, Aug. 2021. [7] Q. Li, R. Yang, C. Feng and Z. Liu, “Approach for air-to-air confrontment based on uncertain interval information conditions,” J. Syst. Engineering Electron., vol.30, no.1, pp.100-109, 2019. [8] Y. Ma, G. Wang, X. Hu, H. Luo and X. Lei, “Cooperative occupancy decision making of multi-UAV in beyond-visual-range air combat: A game theory approach,” IEEE Access, vol.8 pp.11624-11634, 2020. [9] K. Gao and X. Yan, “Study on the optimal strategy of missile interception,” IEEE Access, vol.9, pp.22239-22252, 2021. [10] C. Gao, Y. Kou, Y. Li, Z. Li and A. Xu, “Multi-objective weapon target assignment based on D-NSGA-III-A,” IEEE Access, vol.7, pp.50240-50254, 2019. [11] R. Fonod and T. Shima, “Blinding guidance against missiles sharing bearings-only measurements,” IEEE Trans. Aerospace Electron. Syst., vol.54, no.1, pp.205-216, Feb. 2018. [12] H. Fu and H. H.-T. Liu, “Guarding a territory against an intelligent intruder: Strategy design and experimental verification,” IEEE/ASME Trans. Mechatronics, vol.25, no.4, pp.1765-1772, 2020. [13] D. Shishika, J. Paulos and V. Kumar, “Cooperative team strategies for multi-player perimeter-defense games,” IEEE Robotics Automation Lett., vol.5, no.2, pp.2738-2745, 2020. [14] J. L. Salmon, L. C. Willey, D. Casbeer, E. Garcia and A. V. Moll, “Single pursuer and two cooperative evaders in the border defense differential game,” J. Aerospace Info. Syst., vol.17, no.5, pp.229-239, Mar. 2020. [15] D. D. Fan, E. Theodorou and J. Reeder, “Model-based stochastic search for large scale optimization of multi-agent UAV swarms,” ArXiv: 1803.01106, Aug. 2018. [16] G. T. Lee and C. O. Kim, “Autonomous control of combat unmanned aerial vehicles to evade surface-to-air missiles using deep reinforcement learning,” IEEE Access, vol.8, pp.226724-226736, 2020. [17] X. Wei, L. Yang, G. Cao, T. Lu and B. Wang, “Recurrent MADDPG for object detection and assignment in combat tasks,” IEEE Access, vol.8, pp.163334-163343, 2020. [18] Q. Hu, T. Han and M. Xin, “New impact time and angle guidance strategy via virtual target approach,” J. Guidance, Control, Dynamics, vol.43, no.11, pp.1755-1765, Apr. 2018. [19] X. Wei and J. Yang, “Optimal strategies for multiple unmanned aerial vehicles in a pursuit/evasion differential game,” J. Guidance, Control, Dynamics, vol.41, no.8, pp.1799-1806, June 2018. [20] M. Pachter, A. V. Moll, E. Garcia, D. Casbeer and D. Milutinovic, “Cooperative pursuit by multiple pursuers of a single evader,” J. Aerospace Info. Syst., vol.17, no.8, pp.371-389, Feb. 2020. [21] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE Int. Conf. Neural Networks, pp.1942-1948, 1995. [22] Z. Cheng, F. Li and Y. Zhang, “Multi-agent decision support system for missile defense based on improved PSO algorithm,” J. Syst. Eng. Electron. , vol.28, no.3, pp.514-525, 2017. [23] S. Liu, F. Huang, B. Yan, T. Zhang, R. Liu and W. Liu, “Optimal design of multimissile formation based on an adaptive SA-PSO algorithm,” Aerospace, vol.9, no.1, 2022. [24] W. J. Zhong, X. B. Li, H. T. Chang and F. Liang, “Design of air defense deployment optimization model based on adaptive nested PSO algorithm,” In Proceedings of the 2021 2nd International Conference on Intelligent Design (ICID 2021), pp.172-177, Oct. 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83260 | - |
| dc.description.abstract | 本論文建立一個攻守空戰遊戲,目標為最大化防守方保護目標區域的能力。攻擊方由多個攻擊站組成,攻擊站呈斜直線或鉗型隊形,每一個攻擊站可以發射多個攻擊機襲擊防守方。防守方由一個主要指揮所、兩個次要指揮所和多個防空站所組成,每一個防空站配備多個攔截機以對抗接近的攻擊機。本論文設定四種防守策略供選擇以指導防空站的部署,據以使用粒子群演算法獲得所有防空站的最佳部署,再將此最佳部署用於執行多次遊戲模擬,最後得到的結果以統計法進行分析。此外並檢視一些有趣的特別案例,以增加對此遊戲特性的了解。 | zh_TW |
| dc.description.abstract | An attack–defense aerial war game is developed to maximize the capability of defense forces in protecting a target area from an attack force. The attack force is composed of multiple attack stations in slant or pincer formation, and each attack station can launch multiple attackers against the defense force. The defense force is composed of one major post, two minor posts, and multiple defense stations, and each defense station is equipped with multiple interceptors against the approaching attackers. Four optional defense goals are proposed to guide the deployment of defense stations. A particle swarm optimization (PSO) algorithm is applied to acquire an optimal deployment plan of all the defense stations, under a specific defense goal. Multiple games are played with the optimal deployment plan, and the results are analyzed statistically. Interesting outlier cases are also inspected to gain more insights on the nature of the games. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:08:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-02-01T17:08:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
Acknowledgment ii 中文摘要 iii Abstract iv Table of Contents v List of Figures viii List of Tables xiii 1 Introduction 1 2 Game Design 10 2.1 Formation of Attack Stations . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Route Planning of Attackers . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Engagement of Attacker and Interceptor . . . . . . . . . . . . . . . . . . . . 13 2.4 Attacker Maneuverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Deployment of Defense Stations . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Defense Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Default Parameters in Simulations . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Simulation Results and Statistical Analysis 26 4 Inspection of Some Interesting Outlier Cases 47 4.1 Case 1: On ζ 4 against Slant Formation, Low Score on South Post, and More Defense Stations Lost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Case 2: On ζ 1 against Slant Formation, Low Score on North Post . . . . . . 52 4.3 Case 3: On ζ 2 against Slant Formation, High Score on Major Post . . . . . . 53 4.4 Case 4: On ζ 1 against Pincer Formation, Low Score on North Post . . . . . . 57 5 Scenarios with Perfect Kill Probability 60 6 Comparisons and Discussion 70 7 Empirical Deployment Plans 75 8 Conclusions 82 Bibliography 83 | - |
| dc.language.iso | en | - |
| dc.subject | 防守 | zh_TW |
| dc.subject | 攻擊 | zh_TW |
| dc.subject | 空戰遊戲 | zh_TW |
| dc.subject | 粒子群演算法(PSO) | zh_TW |
| dc.subject | 部署 | zh_TW |
| dc.subject | 路徑規劃 | zh_TW |
| dc.subject | particle swarm optimization (PSO) | en |
| dc.subject | aerial war game | en |
| dc.subject | attack | en |
| dc.subject | defense | en |
| dc.subject | route planning | en |
| dc.subject | deployment | en |
| dc.title | 攻守空戰遊戲中防空站的部署優化模擬 | zh_TW |
| dc.title | Deployment Optimization of Defense Stations in an Attack-Defense Aerial War Game | en |
| dc.title.alternative | Deployment Optimization of Defense Stations in an Attack-Defense Aerial War Game | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 丁建均;李翔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jiun Ding;Hsiang-Chieh Lee | en |
| dc.subject.keyword | 空戰遊戲,攻擊,防守,路徑規劃,部署,粒子群演算法(PSO), | zh_TW |
| dc.subject.keyword | aerial war game,attack,defense,route planning,deployment,particle swarm optimization (PSO), | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202300112 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-01-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0404230115022023.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
