請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83257完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 譚諤 | zh_TW |
| dc.contributor.advisor | Eh Tan | en |
| dc.contributor.author | 陳季晴 | zh_TW |
| dc.contributor.author | Ji-Ching Chen | en |
| dc.date.accessioned | 2023-02-01T17:07:07Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-02-01 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2023-01-17 | - |
| dc.identifier.citation | Abbott, D., Drury, R., and Smith, W. H. (1994). Flat to steep transition in subduction style. Geology, 22(10):937–940.
Anderson, M., Alvarado, P., Zandt, G., and Beck, S. (2007). Geometry and brittle deformation of the subducting nazca plate, central chile and argentina. Geophysical Journal International, 171(1):419–434. Axen, G. J., van Wijk, J. W., and Currie, C. A. (2018). Basal continental mantle lithosphere displaced by flat-slab subduction. Nature Geoscience, 11(12):961–964. Barazangi, M. and Isacks, B. L. (1976). Spatial distribution of earthquakes and subduction of the nazca plate beneath south america. Geology, 4(11):686–692. Billen, M. I. (2008). Modeling the dynamics of subducting slabs. Annual Review of Earth and Planetary Sciences, 36(1):325–356. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). Castillo, P. R. (2012). Adakite petrogenesis. Lithos, 134:304–316. Chen, Y. and Morgan, W. J. (1990). A nonlinear rheology model for mid-ocean ridge axis topography. Journal of Geophysical Research, 95. Chen, Y.-W., Wu, J., and Suppe, J. (2019). Southward propagation of nazca subduction along the andes. Nature, 565(7740):441–447. Comte, D., Farías, M., Calle-Gardella, D., Navarro-Aranguiz, A., Roecker, S., and Rietbrock, A. (2023). Anomalous intraslab structure revealed by the analysis of aftershocks of the mw 6.7 coquimbo-la serena earthquake of 20 january 2019. Tectonophysics, 846:229660. Culling, W. E. H. (1960). Analytical theory of erosion. The Journal of Geology, 68(3):336–344. Cundall, P. (1989). Numerical experiments on localization in frictional materials. Ingenieur-archiv, 59(2):148–159. Davis, E. and Lister, C. (1974). Fundamentals of ridge crest topography. Earth and Planetary Science Letters, 21(4):405–413. Defant, M. J. and Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. nature, 347(6294):662–665. DeMets, C., Gordon, R. G., Argus, D., and Stein, S. (1990). Current plate motions. Geophysical journal international, 101(2):425–478. Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M. (2012). The dynamic history of the trans-mexican volcanic belt and the mexico subduction zone. Tectonophysics, 522:122–149. Flórez-Rodríguez, A. G., Schellart, W., and Strak, V. (2019). Impact of aseismic ridges on subduction systems: insights from analog modeling. Journal of Geophysical Research: Solid Earth, 124(6):5951–5969. Förster, M. W. and Selway, K. (2021). Melting of subducted sediments reconciles geophysical images of subduction zones. Nature Communications, 12. Ganchin, Y., Smithson, S., Morozov, I., Smythe, D., Garipov, V., Karaev, N., and Kristofferson, Y. (1998). Seismic studies around the kola superdeep borehole, russia. Tectonophysics, 288(1-4):1–16. Gerya, T. V., Fossati, D., Cantieni, C., and Seward, D. (2009). Dynamic effects of aseismic ridge subduction: numerical modelling. European Journal of Mineralogy, 21:649–661. Gerya, T. V. and Meilick, F. I. (2011). Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology, 29:7–31. Gerya, T. V., Stöckhert, B., and Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6):6–1. Gómez-Tuena, A., LaGatta, A. B., Langmuir, C. H., Goldstein, S. L., Ortega-Gutiérrez, F., and Carrasco-Núñez, G. (2003). Temporal control of subduction magmatism in the eastern trans-mexican volcanic belt: Mantle sources, slab contributions, and crustal contamination. Geochemistry, Geophysics, Geosystems, 4(8). Gómez-Tuena, A., Mori, L., Rincón-Herrera, N. E., Ortega-Gutiérrez, F., Solé, J., and Iriondo, A. (2008). The origin of a primitive trondhjemite from the trans-mexican volcanic belt and its implications for the construction of a modern continental arc. Geology, 36(6):471–474. Goss, A. and Kay, S. (2009). Extreme high field strength element (hfse) depletion and near-chondritic nb/ta ratios in central andean adakite-like lavas (~ 28° s,~ 68° w). Earth and Planetary Science Letters, 279(1-2):97–109. Goss, A. R., Kay, S. M., and Mpodozis, C. (2013). Andean adakite-like high-mg andesites on the northern margin of the chilean–pampean flat-slab (27–28ꞏ 5° s) associated with frontal arc migration and fore-arc subduction erosion. Journal of Petrology, 54(11):2193–2234. Grove, T. L., Till, C. B., Lev, E., Chatterjee, N., and Médard, E. (2009). Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459:694–697. Gutscher, M.-A. (2002). Andean subduction styles and their effect on thermal structure and interplate coupling. Journal of South American Earth Sciences, 15(1):3–10. Gutscher, M.-A., Maury, R., Eissen, J.-P., and Bourdon, E. (2000a). Can slab melting be caused by flat subduction? Geology, 28(6):535–538. Gutscher, M.-A., Spakman, W., Bijwaard, H., and Engdahl, E. R. (2000b). Geodynamics of flat subduction: Seismicity and tomographic constraints from the andean margin. Tectonics, 19(5):814–833. Hacker, B. R., Abers, G. A., and Peacock, S. M. (2003). Subduction factory 1. theoretical mineralogy, densities, seismic wave speeds, and h 2 o contents. Journal of Geophysical Research: Solid Earth, 108. Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410):58–61. Henderson, L. J., Gordon, R. G., and Engebretson, D. C. (1984). Mesozoic aseismic ridges on the farallon plate and southward migration of shallow subduction during the laramide orogeny. Tectonics, 3(2):121–132. Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N., and Petitgirard, S. (2007). High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318(5858):1910–1913. Hu, J. and Gurnis, M. (2020). Subduction duration and slab dip. Geochemistry, Geophysics, Geosystems, 21(4):e2019GC008862. Hu, J., Liu, L., and Gurnis, M. (2021). Southward expanding plate coupling due to variation in sediment subduction as a cause of andean growth. Nature communications, 12(1):1–9. Hu, J., Liu, L., Hermosillo, A., and Zhou, Q. (2016). Simulation of late cenozoic south american flat-slab subduction using geodynamic models with data assimilation. Earth and Planetary Science Letters, 438:1–13. Hyndman, R. D. and Peacock, S. M. (2003). Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212(3-4):417–432. Jaime Morán-Zenteno, D., Cerca, M., and Duncan Keppie, J. (2007). The Cenozoic tectonic and magmatic evolution of southwestern México: Advances and problems of interpretation. Geological Society of America. Jamieson, R. A., Unsworth, M. J., Harris, N. B., Rosenberg, C. L., and Schulmann, K. (2011). Crustal melting and the flow of mountains. Elements, 7(4):253–260. Jordán, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A., and Ando, C. J. (1983). Andean tectonics related to geometry of subducted nazca plate. Geological Society of America Bulletin, 94(3):341–361. Jordan, T. H. (1978). Composition and development of the continental tectosphere. Nature, 274(5671):544–548. Jödicke, H., Jording, A., Ferrari, L., Arzate, J., Mezger, K., and Rüpke, L. (2006). Fluid release from the subducted cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern mexico: Implications for the generation of volcanism and subduction dynamics. Journal of Geophysical Research: Solid Earth, 111. Katz, R. F., Spiegelman, M., and Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9). Kay, R. (1978). Aleutian magnesian andesites: melts from subducted pacific ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2):117–132. Kay, S. M. and Abbruzzi, J. (1996). Magmatic evidence for neogene lithospheric evolution of the central andean“flat-slab"between 30 s and 32 s. Tectonophysics, 259(1-3):15–28. Kay, S. M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., and Gordillo, C. (1988). Tertiary andean magmatism in chile and argentina between 28 s and 33 s: Correlation of magmatic chemistry with a changing benioff zone. Journal of South American Earth Sciences, 1(1):21–38. Kay, S. M. and Mpodozis, C. (2002). Magmatism as a probe to the neogene shallowing of the nazca plate beneath the modern chilean flat-slab. Journal of South American Earth Sciences, 15(1):39–57. Kim, Y., Miller, M. S., Pearce, F., and Clayton, R. W. (2012). Seismic imaging of the cocos plate subduction zone system in central mexico. Geochemistry, Geophysics, Geosystems, 13. Kostoglodov, V., Singh, S. K., Santiago, J. A., Franco, S. I., Larson, K. M., Lowry, A. R., and Bilham, R. (2003). A large silent earthquake in the guerrero seismic gap, mexico. Geophysical Research Letters, 30(15). Lallemand, S., Heuret, A., and Boutelier, D. (2005). On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9). Lamb, S. and Davis, P. (2003). Cenozoic climate change as a possible cause for the rise of the andes. Nature, 425(6960):792–797. Lavier, L. L., Buck, W. R., and Poliakov, A. N. (2000). Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research: Solid Earth, 105:23431–23442. Liu, L. and Lowell, R. P. (2011). Modeling heat transfer from a convecting, crystallizing, replenished silicic magma chamber at an oceanic spreading center. Geochemistry, Geophysics, Geosystems, 12(9). Liu, S. and Currie, C. A. (2016). Farallon plate dynamics prior to the laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666:33–47. Liu, X. and Currie, C. A. (2019). Influence of upper plate structure on flat-slab depth: Numerical modeling of subduction dynamics. Journal of Geophysical Research: Solid Earth, 124(12):13150–13167. Lyell, C. (1837). Principles of geology: Being an inquiry how far the former changes of the Earth’s surface are referable to causes now in operation, volume 1. J. Kay, jun. & brother. Ma, Y. and Clayton, R. W. (2014). The crust and uppermost mantle structure of southern peru from ambient noise and earthquake surface wave analysis. Earth and Planetary Science Letters, 395:61–70. Ma, Y. and Clayton, R. W. (2015). Flat slab deformation caused by interplate suction force. Geophysical Research Letters, 42:7064–7072. Manea, M. and Manea, V. C. (2011a). Curie point depth estimates and correlation with subduction in mexico. Pure and Applied Geophysics, 168:1489–1499. Manea, M., Manea, V. C., and Kostoglodov, V. (2003). Sediment fill in the middle america trench inferred from gravity anomalies. Geofísica Internacional, 42(4):603–612. Manea, V. and Gurnis, M. (2007). Subduction zone evolution and low viscosity wedges and channels. Earth and Planetary Science Letters, 264:22–45. Manea, V. C. and Manea, M. (2011b). Flat-slab thermal structure and evolution beneath central mexico. Pure and Applied Geophysics, 168:1475–1487. Manea, V. C., Manea, M., and Ferrari, L. (2013). A geodynamical perspective on the subduction of cocos and rivera plates beneath mexico and central america. Tectonophysics, 609:56–81. Manea, V. C., Manea, M., Ferrari, L., Orozco, T., Valenzuela, R. W., Husker, A., and Kostoglodov, V. (2017). A review of the geodynamic evolution of flat slab subduction in mexico, peru, and chile. Tectonophysics, 695:27–52. Manea, V. C., Manea, M., Kostoglodov, V., and Sewell, G. (2005). Thermo-mechanical model of the mantle wedge in central mexican subduction zone and a blob tracing approach for the magma transport. Physics of the Earth and Planetary Interiors, 149:165– 186. Manea, V. C., Pérez-Gussinyé, M., and Manea, M. (2012). Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology, 40(1):35–38. Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., and Pardo, M. (2014). Flat versus normal subduction zones: A comparison based on 3-d regional traveltime tomography and petrological modelling of central chile and western argentina (29°-35°s). Geophysical Journal International, 199:1633–1654. Martin, H., Smithies, R., Rapp, R., Moyen, J.-F., and Champion, D. (2005). An overview of adakite, tonalite–trondhjemite–granodiorite (ttg), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2):1–24. McKenzie, D. P. (1969). Speculations on the consequences and causes of plate motions. Geophysical Journal International, 18(1):1–32. Minear, J. W. and Toksöz, M. N. (1970). Thermal regime of a downgoing slab and new global tectonics. Journal of Geophysical Research, 75(8):1397–1419. Montési, L. G. and Behn, M. D. (2007). Mantle flow and melting underneath oblique and ultraslow mid-ocean ridges. Geophysical Research Letters, 34(24). Mori, L., Gómez-Tuena, A., Cai, Y., and Goldstein, S. L. (2007). Effects of prolonged flat subduction on the miocene magmatic record of the central trans-mexican volcanic belt. Chemical geology, 244(3-4):452–473. Moyen, J.-F. (2009). High sr/y and la/yb ratios: the meaning of the “adakitic signature". Lithos, 112(3-4):556–574. Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., et al. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the triassic. Tectonics, 38(6):1884–1907. Nieto-Samaniego, A., Alaniz-Álvarez, S., Silva-Romo, G., Eguiza-Castro, M., and Mendoza-Rosales, C. (2006). Latest cretaceous to miocene deformation events in the eastern sierra madre del sur, mexico, inferred from the geometry and age of major structures. Geological Society of America Bulletin, 118(1-2):238–252. O’Driscoll, L. J., Humphreys, E. D., and Saucier, F. (2009). Subduction adjacent to deep continental roots: Enhanced negative pressure in the mantle wedge, mountain building and continental motion. Earth and Planetary Science Letters, 280(1-4):61–70. O’Neill, C., Müller, D., and Steinberger, B. (2005). On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochemistry, Geophysics, Geosystems, 6(4). Pardo, M. and Suárez, G. (1995). Shape of the subducted rivera and cocos plates in southern mexico: Seismic and tectonic implications. Journal of Geophysical Research: Solid Earth, 100(B7):12357–12373. Peacock, S. A. (1990). Fluid processes in subduction zones. Science, 248(4953):329–337. Peacock, S. M., Rushmer, T., and Thompson, A. B. (1994). Partial melting of subducting oceanic crust. Earth and planetary science letters, 121(1-2):227–244. Penniston-Dorland, S. C., Kohn, M. J., and Manning, C. E. (2015). The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth and Planetary Science Letters, 428:243–254. Pérez-Gussinyé, M., Lowry, A., Phipps Morgan, J., and Tassara, A. (2008). Effective elastic thickness variations along the andean margin and their relationship to subduction geometry. Geochemistry, Geophysics, Geosystems, 9(2). Pilger Jr, R. H. (1981). Plate reconstructions, aseismic ridges, and low-angle subduction beneath the andes. Geological Society of America Bulletin, 92(7):448–456. Pérez-Campos, X., Kim, Y. H., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., Pacheco, J. F., Singh, S. K., Manea, V. C., and Gurnis, M. (2008). Horizontal subduction and truncation of the cocos plate beneath central mexico. Geophysical Research Letters, 35. Ranalli, G. (1995). Rheology of the Earth. Springer Netherlands. Richards, J. P. and Kerrich, R. (2007). Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic geology, 102(4):537–576. Rodríguez-González, J., Negredo, A. M., and Billen, M. I. (2012). The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction. Geochemistry, Geophysics, Geosystems, 13. Ruff, L. and Kanamori, H. (1980). Seismicity and the subduction process. Physics of the Earth and Planetary interiors, 23(3):240–252. Samuel, H. and Bercovici, D. (2006). Oscillating and stagnating plumes in the earth’s lower mantle. Earth and Planetary Science Letters, 248(1-2):90–105. Schellart, W. (2004). Quantifying the net slab pull force as a driving mechanism for plate tectonics. Geophysical research letters, 31(7). Schellart, W. P. (2020). Control of subduction zone age and size on flat slab subduction. Frontiers in Earth Science, 8:26. Schellart, W. P., Stegman, D. R., and Freeman, J. (2008). Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an earth reference frame based on minimizing viscous dissipation. Earth-Science Reviews, 88(1-2):118–144. Schellart, W. P. and Strak, V. (2021). Geodynamic models of short-lived, long-lived and periodic flat slab subduction. Geophysical Journal International, 226:1517–1541. Simo, J. C. and Hughes, T. J. (2006). Computational inelasticity, volume 7. Springer Science & Business Media. Skinner, S. M. and Clayton, R. W. (2013). The lack of correlation between flat slabs and bathymetric impactors in south america. Earth and Planetary Science Letters, 371-372:1–5. Smalley Jr, R., Pujol, J., Regnier, M., Chiu, J.-M., Chatelain, J.-L., Isacks, B. L., Araujo, M., and Puebla, N. (1993). Basement seismicity beneath the andean precordillera thinskinned thrust belt and implications for crustal and lithospheric behavior. Tectonics, 12(1):63–76. Song, T. R. A., Helmberger, D. V., Brudzinski, M. R., Clayton, R. W., Davis, P., Pérez-Campos, X., and Singh, S. K. (2009). Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern mexico. Science, 324:502–506. Song, T. R. A. and Kim, Y. H. (2012). Localized seismic anisotropy associated with longterm slow-slip events beneath southern mexico. Geophysical Research Letters, 39. Stern, C. R. (2011). Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research, 20(2-3):284–308. Stern, C. R. and Kilian, R. (1996). Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the andean austral volcanic zone. Contributions to mineralogy and petrology, 123(3):263–281. Stevenson, D. and Turner, J. (1977). Angle of subduction. Nature, 270(5635):334–336. Syracuse, E. M., van Keken, P. E., and Abers, G. A. (2010). The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1-2):73–90. Tan, E., Lavier, L. L., Avendonk, H. J. V., and Heuret, A. (2012). The role of frictional strength on plate coupling at the subduction interface. Geochemistry, Geophysics, Geosystems, 13. Tovish, A., Schubert, G., and Luyendyk, B. P. (1978). Mantle flow pressure and the angle of subduction: Non-newtonian corner flows. Journal of Geophysical Research: Solid Earth, 83(B12):5892–5898. Turcotte, D. L. and Schubert, G. (2002). Geodynamics. Cambridge university press. Ulmer, P. and Trommsdorff, V. (1995). Serpentine stability to mantle depths and subduction-related magmatism. Science, 268:858–861. Uyeda, S. and Kanamori, H. (1979). Back-arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, 84(B3):1049–1061. van Hunen, J., Van Den Berg, A. P., and Vlaar, N. J. (2002). On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophysics, 352(3-4):317–333. van Keken, P. E., Hacker, B. R., Syracuse, E. M., and Abers, G. A. (2011). Subduction factory: 4. depth-dependent flux of h2o from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth, 116(B1). Van Zelst, I., Crameri, F., Pusok, A. E., Glerum, A., Dannberg, J., and Thieulot, C. (2022). 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid earth. Solid Earth, 13(3):583–637. Venzke, E. e. (2013). Global volcanism program. Volcanoes of the World. Volcanoes of the World, v. 4.9. 1 (17 Sep 2020). Vlaar, N. (1983). Thermal anomalies and magmatism due to lithospheric doubling and shifting. Earth and Planetary Science Letters, 65(2):322–330. Yan, Z., Chen, L., Xiong, X., Wang, K., Xie, R., and Hsu, H. T. (2020). Observations and modeling of flat subduction and its geological effects. Science China Earth Sciences, 63:1069–1091. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83257 | - |
| dc.description.abstract | 平坦隱沒(flat slab subduction)是一種特殊的隱沒系統,其隱沒板塊在一固定深度內維持近乎水平狀態持續上百公里,與一般隱沒帶有所區別。現今自然界中的平坦隱沒發生在科克斯隱沒帶的墨西哥區域以及納茲卡隱沒帶的秘魯與智利區域,其確切形成原因尚未釐清。儘管兩個隱沒系統板塊幾何相似,然而兩處的平坦深度有顯著的不同,在科克斯隱沒帶,平坦深度與莫荷面相當,僅45公里,而納茲卡隱沒帶的平坦深度可達100公里。墨西哥平坦隱沒上方有多個活火山存在,且隱沒系統脫水作用活躍,為弱耦合隱沒帶; 然而秘魯與智利平坦隱沒區域自全新世以來便沒有火山活動,該區域多次的大規模地震事件表明其為強耦合隱沒帶。隱沒板塊的物理特性直接影響隱沒系統的重力力矩,在正常的隱沒帶中,隱沒板塊的密度在玄武岩相變成榴輝岩後急遽增加,地殼與地函顯著的密度差產生重力,形成隱沒系統穩定的驅動力。過去的平坦隱沒數值模型研究多半使用降低隱沒系統驅動力的方式達成平坦隱沒,因此鮮少將榴輝岩相變加入數值模型中。隱沒板塊上方地函楔(mantle wedge)的動水壓力(hydrodynamic pressure)降低會大幅增加隱沒系統的吸力力矩(suction torque)量值,倘若吸力力矩能超越重力力矩對隱沒系統施加的影響,可能是形成平坦隱沒的重要原因之一,然而由於影響動水壓力的因素難以掌控,平坦隱沒的發生原因與時機還是一個開放性問題。
本研究利用地球動力學二維數值模型FLAC (Fast Lagrangian Analysis of Continua)分別模擬科克斯隱沒帶與納茲卡隱沒帶的平坦隱沒。利用參數化模擬部分熔融與岩漿庫的效應以實現隱沒系統中的岩漿作用,並用以討論墨西哥與智利兩種截然不同的岩漿作用特徵。研究結果顯示智利平坦隱沒模型需要一個蛇紋岩化橄欖岩較少的地函楔環境。狹窄的地函楔蛇紋岩化橄欖岩在聚合板塊交界處形成細窄的低黏滯度通道,導致隱沒板塊上下地函的壓力差增加,進而增加隱沒系統中的吸力力矩,形成平坦隱沒。 智利模型的平坦隱沒長度略少於實際長度,然而隱沒板塊平坦段深度與觀測結果相符合。該模型在運行的時間段內皆有持續的部分熔融事件發生,然而由於模型的上覆板塊溫度較低,因此岩漿庫存在時間不長,導致該模型並沒有火山島弧的出現。岩漿來源多為橄欖岩部分熔融,少數的隱沒沉積物有熔融跡象。智利區域的岩漿組成份分析認為平坦隱沒上方火成岩具有埃達克岩(adakites)特徵,然而其形成機制確切原因還有待商榷。墨西哥平坦隱沒模型則需要大量沉積物與蛇紋岩化橄欖岩的存在,且具備溫暖的上覆板塊與較快速的聚合速率。該模型的平坦深度同樣吻合目前地震學觀測結果,平坦隱沒長度略少於實際長度。模型中的部分熔融源在平坦隱沒生成之前為普通的橄欖岩,然而在平坦隱沒生成之後,決大部分熔融源皆為隱沒板塊上的沉積物與玄武岩物質,該結果與墨西哥平坦隱沒上方的埃達克岩紀錄相吻合。 | zh_TW |
| dc.description.abstract | Flat slab subduction, where the subducting slab moves sub-horizontally for hundreds of kilometres before diving into deeper mantle, is one of the most famous unusual subduction processes. Flat slab subduction is recognised only in the Cocos and Nazca Plates in the present-day. The reasons that the Cocos (Mexico) and Nazca (Chile and Peru) subduction zones develop from steep to flat subduction are not well understood. While the geometry of the subducting plates is similar in these two regions, the flat slab depth is 45 km near the Moho in Cocos subduction zone and 100 km under lithosphere in Nazca subduction zone, respectively. By the observation, Mexico flat slab subduction has a weak interface between the subducting plate and the upper plate, which leads to weak coupling. Chile flat slab subduction generates a compression state on the upper plate, showing a strong coupling along the subducting plate. The magmatism process is also different in Mexico and Chile. While the volcano is still active above Cocos subdiction zone, the last active volcano above Nazca subduction occurred in the Miocene. Adakites rocks are found in the far trench inland in both of these subduction zone. There were many disputes over the formation mechanism between these two regions.
The purpose of this study is to explore flat slab subduction processes by using 2D thermo-mechanical models with Fast Lagrangian Analysis of Continua (FLAC) technology. We considered rock rheology of both elasto-plastic and visco-elastic deformations. To achieve the dehydration process during subduction, we parameterized the serpentinized peridotite by transforming the peridotite into a fixed thickness and realised the magma formation by tracking the P-T (pressure-temperature) path of markers. Our results indicate the Chile flat subduction model requires a relatively small amount of serpentinized peridotites, which generates a thin low viscosity channel and a large pressure contrast between sub-slab mantle and mantle wedge, resulting in high suction force in the subduction system. The strong compression stress occurs in the top of the upper plate and subduction interface shows a strong coupling in the subduction system. Through the partial melting occurs continuously, the cold continental lithosphere leads to the fast decay of magma chamber. Therefore, the Chile flat slab model does not show any volcanic arc on the surface. By contrast, the Mexico flat slab subduction requires a warm overriding plate with high convergence rate and a large amount of serpentinite on the top of the slab. The upper plate does not undergo any compression or extension process in the model. The melting rocks in Mexico flat slab model change with time. The peridotite material is the predominant source of the magma chamber before the flat slab subduction develops. Sediment and basalt start to melt once the flat slab occurs, implying the existence of adakites rocks. Our study suggests that the formation mechanism of flat slab subduction is different between Cocos and Nazca subduction zones. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:07:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-02-01T17:07:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書i
致謝iii 摘要v Abstract vii 目錄ix 圖目錄xiii 表目錄xvii 第一章緒論1 1.1 背景 2 1.2 平坦隱沒定義 3 1.3 平坦隱沒的數值模型 10 1.3.1 隱沒的洋脊或海洋高原存在爭議 10 1.3.2 實現數值模型中增加的地函動水壓力力矩 14 1.4 研究動機 16 1.5 秘魯與智利隱沒帶的地球物理觀測 17 1.6 墨西哥隱沒帶地球物理觀測 21 1.7 隱沒系統中的岩漿作用 23 第二章數值模型29 2.1 FLAC 30 2.2 主控方程式 30 2.2.1 質量守恆 30 2.2.2 動量守恆 31 2.2.3 能量守恆 31 2.3 岩石流變學 32 2.4 相變 35 2.4.1 蛇紋岩化的橄欖岩 35 2.4.2 玄武岩— 榴輝岩 37 2.4.3 沉積岩— 片岩 39 2.4.4 含綠泥石之橄欖岩— 橄欖岩 40 2.5 熱邊界條件 40 2.6 地表侵蝕 41 2.7 岩漿作用 43 2.7.1 部分熔融 43 2.7.2 岩漿庫與岩脈 44 2.7.3 岩漿作用造成的溫度影響 45 2.8 計算數值模型中的轉動力矩 46 第三章數值模型結果 51 3.1 智利參考模型 51 3.1.1 智利參考模型初始設定 51 3.1.2 智利參考模型結果 52 3.1.3 智利參考模型脫水位置與岩漿作用 61 3.1.4 智利參考模型隱沒板塊狀態 63 3.2 墨西哥參考模型 66 3.2.1 墨西哥參考模型初始設定 66 3.2.2 墨西哥參考模型結果 67 3.2.3 墨西哥參考模型脫水位置與岩漿作用 76 3.2.4 墨西哥參考模型隱沒板塊狀態 78 第四章討論 83 4.1 隱沒系統的耦合狀態 83 4.1.1 智利平坦隱沒的耦合狀態 84 4.1.2 墨西哥平坦隱沒的耦合狀態 86 4.2 平坦隱沒中的埃達克岩 88 4.2.1 墨西哥平坦隱沒的岩漿作用 89 4.2.2 智利平坦隱沒的岩漿作用 93 4.3 為什麼會形成平坦隱沒 94 4.3.1 均質的隱沒板塊 94 4.3.2 上覆板塊的溫度構造 96 4.3.2.1 智利平坦隱沒的上覆板塊 96 4.3.2.2 墨西哥平坦隱沒的上覆板塊 98 4.3.3 地函楔中的動水壓力力矩 100 4.3.3.1 隱沒帶的脫水作用 101 4.3.3.2 隱沒帶的岩漿作用 104 4.4 本研究的不足之處 106 第五章結論 109 參考文獻 111 附錄A — 數學公式 123 A.1 動量守恆證明 123 A.2 隱沒系統中的力矩 124 附錄B — 測試智利上覆板塊厚度模型 127 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 數值模型 | zh_TW |
| dc.subject | 平坦隱沒 | zh_TW |
| dc.subject | numerical modelling | en |
| dc.subject | flat slab subduction | en |
| dc.title | 利用數值動力模型探討平坦隱沒的演化過程 | zh_TW |
| dc.title | Origin and Evolution of Flat Slab Subduction: Insights From Numerical Geodynamics Modelling | en |
| dc.title.alternative | Origin and Evolution of Flat Slab Subduction: Insights From Numerical Geodynamics Modelling | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 洪淑蕙 | zh_TW |
| dc.contributor.coadvisor | Shu-Huei Hung | en |
| dc.contributor.oralexamcommittee | 謝文斌;郭本垣;林佩瑩 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Pin Hsieh ;Ban-Yuan Kuo ;PeiYing Patty Lin | en |
| dc.subject.keyword | 數值模型,平坦隱沒, | zh_TW |
| dc.subject.keyword | numerical modelling,flat slab subduction, | en |
| dc.relation.page | 151 | - |
| dc.identifier.doi | 10.6342/NTU202300033 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-01-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0323230106544122.pdf 未授權公開取用 | 66.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
