請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83255完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富 | zh_TW |
| dc.contributor.advisor | Jean-Fu Kiang | en |
| dc.contributor.author | 蘇莅洋 | zh_TW |
| dc.contributor.author | Li-Yang Su | en |
| dc.date.accessioned | 2023-02-01T17:06:25Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-02-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-16 | - |
| dc.identifier.citation | X. S. Li, M. D. Xing, X. G. Xia, G. C. Sun, Y. Liang and Z. Bao, “Simultaneous stationary scene imaging and ground moving target indication for high-resolution wide swath SAR system,” IEEE Trans. Geosci. Remote Sensing, vol.54, issue 7, pp.4224-4269, 2016.
Y. Zhang, W. Xiong, X. C. Dong and C. Hu, “A novel azimuth spectrum reconstruction and imaging method for moving targets in geosynchronous spaceborne airborne bistatic multichannel SAR,” IEEE Trans. Geosci. Remote Sensing, vol.58, issue 8, pp.5976-5991, 2020. J. Mittermayer, G. Krieger, A. Bojarski, M. Zonno, M. Villano, M. Pinheiro, M. Bach mann, S. Buckreuss, and A. Moreira, “MirrorSAR: An HRWS add-on for single-pass multi-baseline SAR interferometry,” IEEE Trans. Geosci. Remote Sensing, vol.60, 2021. S. X. Zhang, M. D. Xing and Y. L. Zong, “A Novel weighted Doppler centroid estimation approach based on electromagnetic scattering model for multichannel in azimuth HRWS SAR system,” IEEE Trans. Geosci. Remote Sensing, vol.56, issue 9, pp.5015-5034, 2018. N. Liu, G. Ge, S. Y. Tang, and L. R. Zhang, “Signal modeling and analysis for elevation frequency scanning HRWS SAR,” IEEE Trans. Geosci. Remote Sensing, vol.58, issue 9, pp.6434-6450, 2020. N. Liu and L. R. Zhang, “Intrapulse azimuth frequency scanning-based 2-D scan ning SAR for HRWS imaging,” IEEE Trans. Geosci. Remote Sensing, vol.59, issue 11, pp.9382-9396, 2021. G. H. Jin, Z. Dong, F. He and A. X. Yu, “SAR ground moving target imaging based on a new range model using a modified Keystone transform,” IEEE Trans. Geosci. Remote Sensing, vol.57, issue 6, pp.3283-3295, 2019. Y. F. Guo, G. S. Liao, J. Li and X. X. Chen, “A novel moving target detection method based on RPCA for SAR systems,” IEEE Trans. Geosci. Remote Sensing, vol.58, no.9, pp.6677-6690, 2020. S. G. Zhu, G. S. Liao, Y. Qu, Z. G. Zhou and X. G. Liu, “Ground moving targets imaging algorithm for synthetic aperture radar,” IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 1, pp. 462-477, Jan. 2011. L. Yang, L. Zhao, G. Bi and L. Zhang, “SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning,” IEEE Trans. Geosci. Re mote Sensing, vol. 54, no. 4, pp. 2254-2267, Jan. 2016. D. Cerutti-Maori, J. Klare, A. R. Brenner, and J. H. G. Ender, “Wide-area traffic monitoring with the SAR/GMTI system PAMIR,” Inv. Problem, vol.29, issue 5, vol.46, no.10, pp.3019-3030, 2008. J. K. Jao and A. Yegulalp, “Multichannel synthetic aperture radar signatures and imag ing of a moving target,” IEEE Trans. Geosci. Remote Sensing, vol.46, issue 10, pp.3019-3030, 2008. L. Yang, G. A. Bi, M. D. Xing and L. R. Zhang, “Airborne SAR moving target signatures and imagery based on LVD,” IEEE Trans. Geosci. Remote Sensing, vol.53, issue 11, pp.5958-5971, 2015. P. H. Huang, X. G. Xia, L. Y. Wang, H. J. Xu, X. Z. Liu, G. S. Liao and X. Jiang, “Imaging and relocation for extended ground moving targets in multichannel SAR GMTI systems,” IEEE Trans. Geosci. Remote Sensing, vol.60, 2021. Z. Y. Li, X. D. Zhang, Q. Yang, Y. P Xiao, H. Y. An, H. G. Yang, J. J. Wu and J. Y. Yang, “Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging,” IEEE Trans. Geosci. Remote Sensing, vol.60, 2021. Y. K. Li, Y. L. Wang, B. C. Liu, S. X. Zhang, L. S. Nie and G. A. Bi, “A new motion parameter estimation and relocation scheme for airborne three-channel CSSAR-GMTI systems,” IEEE Trans. Geosci. Remote Sensing, vol.57, issue 6, pp.4107-4120 , 2019. X. B. Xu, F. L. Su, J. J. Gao and X. F. Jin, “High-squint SAR imaging of maritime ship targets,” IEEE Trans. Geosci. Remote Sensing, vol.60, vol.60, 2020. Y. J. Long, F. J. Zhao, M. J. Zheng, L. B. Zhao and W. J. He, “An unambiguous imaging method of moving target for maritime scenes with spaceborne high-resolution and wide-swath SAR,” IEEE Trans. Geosci. Remote Sensing, vol.60, 2022. P. G. Huang, X. G. Xia, G. s. Liao and Z. W. Yang, “Ground moving target imag ing based on Keystone transform and coherently integrated CPF with a single-channel SAR,” IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing, vol.10, issue 12, pp. 5686-5694, 2017 Z. Y. Li, J. J. Wu, Y. L. Huang, Z. C. Sun and J. Y. Yang, “Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward looking SAR,” IEEE Trans. Geosci. Remote Sensing, vol.54, issue 6, pp.3277-3291, 2016. P. H. Huang, G. S. Liao, Z. W. Yang, X. G. Xia, J. T. Ma and X. P. Zhang, “An approach for refocusing of ground moving target without target motion parameter estimation,” IEEE Trans. Geosci. Remote Sensing, vol.55, issue 1, pp.336-350, 2017. Y. Zhang, J. P. Sun, P. Lei, G. Li and W. Hong, “High-resolution SAR-based ground moving target imaging with defocused ROI data,” IEEE Trans. Geosci. Remote Sensing, vol.54, issue 2, pp.1062-1073, 2016. P. A. Mallas and H. C. Graber, “Imaging ships from satellites,” Oceanography, vol.26, issue 2, pp. 150-155, June 2013. http://cvxr.com/cvx/, cite date: 2020/11/30 https://en.wikipedia.org/wiki/Arleigh Burke-class destroyer https://en.wikipedia.org/wiki/Wind wave https://www.iceye.com/downloads/datasets https://en.wikipedia.org/wiki/Structural similarity X. Q. Chen, Q. Y. Zhang, M. H. Lin, G. Y. Yang and C. He, “No-reference color image quality assessment: from entropy to perceptual quality,” EURASIP J. Image Video Processing, 2019. S. M. Zhang, R. Wu, K. Y. Xu, J. M. Wang and W. W. Sun, “R-CNN-based ship detection from high resolution remote sensing imagery,” Remote Sensing, 11(6), pp. 631, 2019. M. Rostami, S. Kolouri, E. Eaton, and K. Kim, “Deep transfer learning for few-shot SAR image classification,” Remote Sensing, 11(11), pp. 1374, 2019. L. Q. Chen, W. X. Shi, and D. X. Deng, “Improved YOLOv3 based on attention mech anism for fast and accurate ship detection in optical remote sensing images,” Remote Sensing, 13(4), pp. 660, 2021. T. W. Zhang, X. L. Zhang, J. W. Li, X. W. Xu, B. Y. Wang, X. Zhan, Y. Q. Xu, X. Ke, T. J. Zeng, H. Su, I. Ahmad, D. C. Pan, C. Liu, Y. Zhou, J. Shi, and S. J. Wei, “SAR ship detection dataset (SSDD): Official release and comprehensive data analysis,” Remote Sensing, 13(18), pp. 3690, 2021. X. Yang, H. Sun, K. Fu, J. R. Yang, X. Sun, M. L. Yan, and Z. Guo, “Automatic ship detection in remote sensing images from Google Earth of complex scenes based on multiscale rotation dense feature pyramid networks,” Remote Sensing, 10(1), pp. 132, 2018. https://terrasar-x-archive.terrasar.com/. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83255 | - |
| dc.description.abstract | 本研究提出一個次軌道飛行器多通道合成孔徑雷達,對航行中的船艦成像。為滿足高解析度、寬掃描區域的要求,雷達脈衝發射頻率須相對降低,由此衍生了頻譜混疊以及都普勒頻率不確定的問題。在本研究中,我們提出了相位匹配的方法以解決部分的頻譜混疊,再以多級壓縮感知技術解決頻譜混疊以及都普勒頻率不確定的問題。模擬結果包含以本篇論文提出的方法所產生的五艘類似船艦的雷達影像,同時試驗了各種不同的輸入訊號訊雜比的成像結果。最後我們以包括幾何匹配、強度匹配以及結構相似性來辨識產生雷達影像中的船艦類型。 | zh_TW |
| dc.description.abstract | A multi-channel synthetic aperture radar (SAR) on board a spaceplane orbiting near the top of the atmosphere is proposed to acquire images of cruising ships. Low pulse repetition frequency (PRF) is required for high-resolution wide-swath (HRWS) imaging, leading to inevitable problems of azimuth spectrum aliasing (ASA) and azimuth Doppler ambiguity (ADA). In this work, we propose a phase matching technique to solve the ASA problem in restoring the azimuth spectrum. A multi-stage compressive-sensing (CS) technique is also proposed to solve both ADA and ASA problems. Five similar types of cruising ship are simulated to verify the efficacy of the proposed approach, at different levels of signal-to-noise ratio. Indices of geometry match, intensity match, and structural similarity are used to identify different ships from the acquired SAR images. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:06:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-02-01T17:06:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgment i
中文摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables x 1 Introduction 1 2 Range Model and Signal Model 11 2.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Preliminary Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 ADA and ASA Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Estimation of Motion Parameters and Ambiguities 21 3.1 Range Cell Migration Correction . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Estimation of Doppler Shift in Major Band . . . . . . . . . . . . . . . . . . . 25 3.3 Estimation of y-Speed and Retrieval of Spectral Segments . . . . . . . . . . 26 3.4 Estimation of Doppler Ambiguity Number . . . . . . . . . . . . . . . . . . . 29 3.5 Estimation of x-Speed and Image Focusing . . . . . . . . . . . . . . . . . . . 33 4 Simulations and Discussions 36 4.1 Imaging on Various Destroyers . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1 Recognition of Various Destroyers . . . . . . . . . . . . . . . . . . . . 46 4.2 Effects of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Similarity Index and Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4 Experiment on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.5 Comparison with Other Methods . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6 Computational Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Conclusions 67 Bibliography 68 | - |
| dc.language.iso | en | - |
| dc.subject | 航行船艦 | zh_TW |
| dc.subject | 壓縮感知技術 | zh_TW |
| dc.subject | 頻譜混疊 | zh_TW |
| dc.subject | 相位匹配技術 | zh_TW |
| dc.subject | 都普勒頻率不確定 | zh_TW |
| dc.subject | 合成孔徑雷達 | zh_TW |
| dc.subject | phase matching | en |
| dc.subject | synthetic aperture radar (SAR) | en |
| dc.subject | cruising ship | en |
| dc.subject | azimuth Doppler ambiguity (ADA) | en |
| dc.subject | azimuth spectrum aliasing (ASA) | en |
| dc.subject | compressive sensing (CS) | en |
| dc.title | 次軌道飛行器多通道合成孔徑雷達的航行船艦成像 | zh_TW |
| dc.title | Multi-Channel SAR Imaging on Cruising Ships with Sub-Orbital Spaceplane | en |
| dc.title.alternative | Multi-Channel SAR Imaging on Cruising Ships with Sub-Orbital Spaceplane | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 丁建均;李翔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jiun Ding;Hsiang-Chieh Lee | en |
| dc.subject.keyword | 合成孔徑雷達,航行船艦,都普勒頻率不確定,頻譜混疊,壓縮感知技術,相位匹配技術, | zh_TW |
| dc.subject.keyword | synthetic aperture radar (SAR),cruising ship,azimuth Doppler ambiguity (ADA),azimuth spectrum aliasing (ASA),compressive sensing (CS),phase matching, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202300118 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-01-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1116230115152013.pdf 未授權公開取用 | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
