Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生物資訊學國際研究生博士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83235
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃宣誠zh_TW
dc.contributor.advisorHsuan-Cheng Huangen
dc.contributor.author杜岳華zh_TW
dc.contributor.authorYueh-Hua Tuen
dc.date.accessioned2023-01-11T17:01:15Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-07-
dc.date.issued2022-
dc.date.submitted2022-12-27-
dc.identifier.citationWolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome Biology 19, 15 (2018).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature Biotechnology 33, 495–502 (2015). Seurat v1.
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology 36, 411–420 (2018). Seurat v2.
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019). Seurat v3.
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). Seurat v4.
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
Setty, M. et al. Characterization of cell fate probabilities in single-cell data with palantir. Nature Biotechnology 37, 451–460 (2019).
Street, K. et al. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19 (2018).
Chen, H. et al. Single-cell trajectories reconstruction, exploration and mapping of omics data with stream. Nature Communications 10 (2019).
Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biology 20, 1–9 (2019).
Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nature Biotechnology 37, 547–554 (2019).
Manno, G. L. et al. Rna velocity of single cells. Nature 560, 494–498 (2018).
Bergen, V., Soldatov, R. A., Kharchenko, P. V. & Theis, F. J. Rna velocity-current challenges and future perspectives. Molecular Systems Biology 17 (2021).
Matsumoto, H. & Kiryu, H. Scoup: Probabilistic model based on the ornstein-uhlenbeck process to analyze single-cell expression data during differentiation. BMC Bioinformatics 17 (2016).
Matsumoto, H. et al. Scode: An efficient regulatory network inference algorithm from single-cell rna-seq during differentiation. Bioinformatics 33, 2314–2321 (2017).
Frankowski, P. C. A. & Vert, J. P. Gene regulation inference from single-cell rna-seq data with linear differential equations and velocity inference. Bioinformatics 36, 4774–4780 (2020).
Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5 (2010).
Moerman, T. et al. Grnboost2 and arboreto: Efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).
Aibar, S. et al. Scenic: Single-cell regulatory network inference and clustering. Nature Methods 14, 1083–1086 (2017).
de Sande, B. V. et al. A scalable scenic workflow for single-cell gene regulatory network analysis. Nature Protocols 15, 2247–2276 (2020).
Luo, Q., Yu, Y. & Lan, X. Signet: single-cell rna-seq-based gene regulatory network prediction using multiple-layer perceptron bagging. Briefings in Bioinformatics 23 (2022).
Gan, Y., Hu, X., Zou, G., Yan, C. & Xu, G. Inferring gene regulatory networks from single-cell transcriptomic data using bidirectional rnn. Frontiers in Oncology 12 (2022).
Chan, T. E., Stumpf, M. P. & Babtie, A. C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Systems 5, 251–267.e3 (2017).
Qiu, X. et al. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Systems 10, 265–274.e11 (2020).
Deshpande, A., Chu, L. F., Stewart, R. & Gitter, A. Network inference with granger causality ensembles on single-cell transcriptomics. Cell Reports 38 (2022).
Kim, S. ppcor: An r package for a fast calculation to semi-partial correlation coefficients. Communications for Statistical Applications and Methods 22, 665–674 (2015).
Sanchez-Castillo, M., Blanco, D., Tienda-Luna, I. M., Carrion, M. C. & Huang, Y. A bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34, 964–970 (2018).
Specht, A. T. & Li, J. Leap: Constructing gene co-expression networks for single-cell rna-sequencing data using pseudotime ordering. Bioinformatics 33, 764–766 (2017).
Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nature Methods 17, 147–154 (2020).
Teschendorff, A. E. & Feinberg, A. P. Statistical mechanics meets single-cell biology. Nature Reviews Genetics 22, 459–476 (2021).
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing rna velocity to transient cell states through dynamical modeling. Nature Biotechnology 38, 1408–1414 (2020).
Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444 (2010).
Herwig, R., Hardt, C., Lienhard, M. & Kamburov, A. Analyzing and interpreting genome data at the network level with consensuspathdb. Nature Protocols 11, 1889–1907 (2016).
Bastidas-Ponce, A. et al. Comprehensive single cell mrna profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development (Cambridge) 146 (2019).
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). Http://www.deeplearningbook.org.
Zhu, Y., Liu, Q., Zhou, Z. & Ikeda, Y. Pdx1, neurogenin-3, and mafa: Critical transcription regulators for beta cell development and regeneration. Stem Cell Research and Therapy 8 (2017).
Vinogradova, T. V. & Sverdlov, E. D. Pdx1: A unique pancreatic master regulator constantly changes its functions during embryonic development and progression of pancreatic cancer. Biochemistry (Moscow) 82, 887–893 (2017).
Hart, A. W., Mella, S., Mendrychowski, J., van Heyningen, V. & Kleinjan, D. A. The developmental regulator pax6 is essential for maintenance of islet cell function in the adult mouse pancreas. PLoS ONE 8 (2013).
Swisa, A. et al. Pax6 maintains β cell identity by repressing genes of alternative islet cell types. Journal of Clinical Investigation 127, 230–243 (2017).
Gosmain, Y. et al. Pax6 is crucial for β-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Molecular Endocrinology 26, 696–709 (2012).
Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: A landscape takes shape. Cell 128, 635–638 (2007).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83235-
dc.description.abstract在多樣的生物現象中,基因調控網路掌控複雜的基因表現,包含細胞發育、決策細胞命運,以及癌化。單細胞定序技術,比起以往大批RNA定序,提供基因表現較高的解析度,但是同時測量到更多的雜訊,以及更稀疏的表現量,這讓基因調控網路的推論更加有挑戰性。跨不同細胞型態要推論完整的基因調控網路也是相當困難。這邊我們提出情境依賴基因調控網路(CDGRN),它可以從單細胞RNA定序資料來解決這個問題。基因調控網路可以被拆解成子圖,它對應到不同的轉錄情境。每個子圖是由共同活躍的調控配對組成,其中包含由一群細胞共享的轉錄因子,以及他們的目標基因。在不同細胞群體,每個調控配對的活性是由高斯混合模型推得,當中使用了剪切及未剪切轉錄的表現量。我們發現在所有情境下基因表現的聯集提供了足夠的資訊以建構細胞分化軌跡。CDGRN建立了分子層級基因調控與巨觀層級細胞分化之間的連結。在整個發育過程的各個情境中,細胞週期、細胞分化,或是組織特有功能有過度表現這些功能。更令人驚訝的是,我們發現CDGRN的網路亂度會隨著分化過程下降,這暗示了分化的方向。總結而言,我們利用了單細胞RNA定序技術的優勢,並建立了分子調控與分化軌跡之間的連結。情境依賴的網路亂度或許暗示了在特定情境下的細胞成熟度。CDGRN模型被釋出在https://github.com/yuehhua/CDGRNs.jl。zh_TW
dc.description.abstractGene regulatory networks govern the complex gene expression programs in various biological phenomena, including cell development, cell fate decision, and oncogenesis. Single-cell techniques provide higher resolution in gene expression than traditional bulk RNA sequencing, but also incur more noise and sparser expression measurements, making it challenging to infer gene regulatory networks from such profiles. Inference of a complete gene regulatory network across different cell types is also difficult. Here, we propose to address the problem by constructing context-dependent gene regulatory networks (CDGRN) from single-cell RNA sequencing data. A gene regulatory network is decomposed into subgraphs that correspond to distinct transcriptomic contexts. Each subgraph is composed of the consensus active regulation pairs of transcription factors and their target genes shared by a group of cells. The activities of each regulation pair in different cell groups are inferred by a Gaussian mixture model using both the spliced and unspliced transcript expression levels. We find that the union of gene regulation pairs in all contexts provides sufficient information for the reconstruction of differentiation trajectories. CDGRN allows establishing the connection between gene regulation at the molecular level and cell differentiation at the macroscopic level. Functions specific to the cell cycle, cell differentiation, or tissue-specific functions are enriched throughout the developmental progression in each context. Surprisingly, we observe that the network entropy of CDGRN decreases with differentiation progression, implying directionality in differentiation. In conclusion, we leverage the advantage of single-cell RNA sequencing and establish a connection between molecular regulation and differentiation trajectory. Context-dependent network entropy may indicate the maturity of cells in certain contexts. The CDGRN model is available at https://github.com/yuehhua/CDGRNs.jlen
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-11T17:01:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-11T17:01:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents1 Introduction 1
2 Materials and Methods 4
2.1 Preprocessing datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 RNA velocity and latent time inference . . . . . . . . . . . . . . . . . 4
2.3 Selection of regulation pairs . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Context-dependent gene regulatory network . . . . . . . . . . . . . . 5
2.5 Data visualization for trajectory . . . . . . . . . . . . . . . . . . . . . 8
2.6 Network visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Functional enrichment analysis . . . . . . . . . . . . . . . . . . . . . 9
3 Results 10
3.1 Unspliced mRNA reveals regulatory patterns in TF-target gene pairs 10
3.2 Context-dependent gene regulatory network . . . . . . . . . . . . . . 11
3.3 Extracting contextual regulation pattern as a single component from global mixture regulations . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Explaining differentiation trajectory from regulatory pairs . . . . . . 14
3.5 Revealing regulation network dynamics by progression of contexts . . 16
3.6 Shrinkage of regulation network size shrinks during cell differentiation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Discussion 37
5 Conclusions 41
-
dc.language.isoen-
dc.subject單細胞轉錄定序資料分析zh_TW
dc.subject細胞軌跡zh_TW
dc.subject基因調控網路zh_TW
dc.subject未剪切轉錄zh_TW
dc.subject高斯混合模型zh_TW
dc.subjectUnspliced RNAen
dc.subjectGene Regulatory Networksen
dc.subjectCell Trajectoryen
dc.subjectGaussian Mixture Modelen
dc.subjectSingle-cell RNA Se- quencing Data Analysisen
dc.title利用未剪切轉錄建構情境依賴的基因調控網路可解釋調控動態及細胞軌跡zh_TW
dc.titleContext-Dependent Gene Regulatory Network Explains Regulation Dynamics and Cell Trajectories Using Unspliced Transcriptsen
dc.title.alternativeContext-Dependent Gene Regulatory Network Explains Regulation Dynamics and Cell Trajectories Using Unspliced Transcripts-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.coadvisor阮雪芬zh_TW
dc.contributor.coadvisorHsueh-Fen Juanen
dc.contributor.oralexamcommittee蔡懷寬;陳倩瑜;許家郎;林振慶zh_TW
dc.contributor.oralexamcommitteeHuai-Kuang Tsai;Chien-Yu Chen;Chia-Lang Hsu;Chen-Ching Linen
dc.subject.keyword基因調控網路,未剪切轉錄,單細胞轉錄定序資料分析,高斯混合模型,細胞軌跡,zh_TW
dc.subject.keywordGene Regulatory Networks,Unspliced RNA,Single-cell RNA Se- quencing Data Analysis,Gaussian Mixture Model,Cell Trajectory,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202210156-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-12-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生物資訊學國際研究生博士學位學程-
顯示於系所單位:生物資訊學國際研究生博士學位學程

文件中的檔案:
檔案 大小格式 
U0001-1250221220147002.pdf8.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved