Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 分子暨比較病理生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張惠雯zh_TW
dc.contributor.advisorHui-Wen Changen
dc.contributor.author賴云強zh_TW
dc.contributor.authorYun-Chiang Laien
dc.date.accessioned2023-01-10T17:19:53Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAberdein D, Munday J, Dyer C, Knight C, French A, and Gibson I. Comparison of the histology and immunohistochemistry of vaccination-site and non-vaccination-site sarcomas from cats in New Zealand. New Zealand veterinary journal 55: 203-207, 2007.
Alasio TM, Sun W, and Yang GC. Giant cell carcinoma of the lung impact of diagnosis and review of cytological features. Diagnostic cytopathology 35: 555-559, 2007.
Balamurugan K. HIF‐1 at the crossroads of hypoxia, inflammation, and cancer. International journal of cancer 138: 1058-1066, 2016.
Bloch J, Rogers K, Walker M, Dawson J, and Wilson-Robles H. Treatment of feline injection-site sarcoma with surgery and iridium-192 brachytherapy: retrospective evaluation of 22 cats. Journal of feline medicine and surgery 22: 313-321, 2020.
Bochaton-Piallat M-L, Gabbiani G, and Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research 5: 2016.
Brachelente C, Lepri E, Mechelli L, Menchetti L, Porcellato I, Reginato A, and Sforna M. Feline Injection-Site Sarcoma: Matrix Remodeling and Prognosis. Veterinary pathology 54: 204-211, 2017.
Breuninger H. Histologic control of excised tissue edges in the operative treatment of basal‐cell carcinomas. Journal of dermatologic surgery and oncology 10: 724-728, 1984.
Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, and Dewhirst MW. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer research 56: 941-943, 1996.
Brown JM. The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award lecture. Cancer research 59: 5863-5870, 1999.
Brown JM. Tumor microenvironment and the response to anticancer therapy. Cancer biology and therapy 1: 453-458, 2002.
Cao D, Hou M, Guan Y-s, Jiang M, Yang Y, and Gou H-f. Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC cancer 9: 1-9, 2009.
Carneiro CS, de Queiroz GF, Pinto AC, Dagli ML, and Matera JM. Feline injection site sarcoma: immunohistochemical characteristics. Journal of feline medicine and surgery 21: 314-321, 2019.
Chen B, Lin SJ-H, Li W-T, Chang H-W, Pang VF, Chu P-Y, Lee C-C, Nakayama H, Wu C-H, and Jeng C-R. Expression of HIF-1α and VEGF in feline mammary gland carcinomas: association with pathological characteristics and clinical outcomes. BMC veterinary research 16: 1-10, 2020.
Chiti L, Martano M, Ferrari R, Boracchi P, Giordano A, Grieco V, Buracco P, Iussich S, Giudice C, and Miniscalco B. Evaluation of leukocyte counts and neutrophil‐to‐lymphocyte ratio as predictors of local recurrence of feline injection site sarcoma after curative intent surgery. Veterinary and comparative oncology 18: 105-116, 2020.
Couto S, Griffey SM, Duarte P, and Madewell B. Feline vaccine-associated fibrosarcoma: morphologic distinctions. Veterinary pathology 39: 33-41, 2002.
Cronin K, Page RL, Spodnick G, Dodge R, Hardie EN, Price GS, Ruslander D, and Thrall DE. Radiation therapy and surgery for fibrosarcoma in 33 cats. Veterinary radiology and ultrasound 39: 51-56, 1998.
Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, and Yeger H. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem cells 26: 1818-1830, 2008.
Davidson C, and Lawrence J. Feline injection site sarcoma: current paradigms and future directions. Companion animal 21: 286-292, 2016.
Davidson EB, Gregory CR, and KASS PH. Surgical excision of soft tissue fibrosarcomas in cats. Veterinary surgery 26: 265-269, 1997.
Dennis M, McSporran K, Bacon N, Schulman F, Foster R, and Powers B. Prognostic factors for cutaneous and subcutaneous soft tissue sarcomas in dogs. Veterinary pathology 48: 73-84, 2011.
Doddy F, Glickman L, Glickman N, and Janovitz E. Feline fibrosarcomas at vaccination sites and non-vaccination sites. Journal of comparative pathology 114: 165-174, 1996.
Durand R. The influence of microenvironmental factors during cancer therapy. In vivo (Athens, Greece) 8: 691-702, 1994.
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, and Ahmadlou M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer cell international 21: 1-26, 2021.
Feng B, Rowe L, Zhang PJ, and Khurana JS. Cutaneous Sarcomatoid Carcinoma With Features of Giant Cell Tumor of Soft Parts-A Case Report. American journal of dermatopathology 30: 395-397, 2008.
Force VAFST. Vaccine-associated feline sarcomas. Journal of american veterinary medical association 218: 697-702, 2001.
Francis P, Namløs HM, Müller C, Edén P, Fernebro J, Berner J-M, Bjerkehagen B, Åkerman M, Bendahl P-O, and Isinger A. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC genomics 8: 1-16, 2007.
Giatromanolaki A, Koukourakis MI, Sivridis E, Pastorek J, Wykoff CC, Gatter KC, and Harris AL. Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer research 61: 7992-7998, 2001.
Giudice C, Stefanello D, Sala M, Cantatore M, Russo F, Romussi S, Travetti O, Di Giancamillo M, and Grieco V. Feline injection-site sarcoma: recurrence, tumour grading and surgical margin status evaluated using the three-dimensional histological technique. Veterinary journal 186: 84-88, 2010.
Gjerdrum L, Lauridsen M, and Sørensen FB. Breast carcinoma with osteoclast-like giant cells: morphological and ultrastructural studies of a case with review of the literature. Breast 10: 231-236, 2001.
Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, and Giaccia AJ. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88-91, 1996.
Graf R, Guscetti F, Welle M, Meier D, and Pospischil A. Feline injection site sarcomas: Data from Switzerland 2009–2014. Journal of comparative pathology 163: 1-5, 2018.
Ha SY, Choi S, Park S, Kim JM, Choi G-S, Joh J-W, and Park C-K. Prognostic effect of preoperative neutrophil-lymphocyte ratio is related with tumor necrosis and tumor-infiltrating lymphocytes in hepatocellular carcinoma. Virchows archiv 477: 807-816, 2020.
Hartmann K, Day MJ, Thiry E, Lloret A, Frymus T, Addie D, Boucraut-Baralon C, Egberink H, Gruffydd-Jones T, and Horzinek MC. Feline injection-site sarcoma: ABCD guidelines on prevention and management. Journal of feline medicine and surgery 17: 606-613, 2015.
Hendrick, M. J., and Brooks, J. J. Postvaccinal sarcomas in the cat: histology and immunohistochemistry. Veterinary pathology, 31(1), 126-129, 1994
Hershey A, Dubielzig R, Padilla M, and Helfand S. Aberrant p53 expression in feline vaccine-associated sarcomas and correlation with prognosis. Veterinary pathology 42: 805-811, 2005.
Hockel M, and Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of national cancer institute 93: 266-276, 2001.
Iglesias OS, Wright C, Duchene A, Risso MA, Risso P, Zanuzzi CN, Nishida F, Lavid A, Confente F, and Díaz M. Association between degree of anaplasia and degree of inflammation with the expression of COX-2 in feline injection site sarcomas. Journal of comparative pathology 165: 45-51, 2018.
Jösten M, and Rudolph R. Methods for the differentiation of giant cells in canine and feline neoplasias in paraffin sections. Journal of veterinary medicine series A 44: 159-166, 1997.
Jubb A, Pham T, Hanby A, Frantz G, Peale F, Wu T, Koeppen H, and Hillan K. Expression of vascular endothelial growth factor, hypoxia inducible factor 1α, and carbonic anhydrase IX in human tumours. Journal of clinical pathology 57: 504-512, 2004.
Kim JI, Choi KU, Lee IS, Choi YJ, Kim WT, Shin DH, Kim K, Lee JH, Kim JY, and Sol MY. Expression of hypoxic markers and their prognostic significance in soft tissue sarcoma. Oncology letters 9: 1699-1706, 2015
Kliczkowska K, Jankowska U, Jagielski D, Czopowicz M, and Sapierzynski R. Epidemiological and morphological analysis of feline injection site sarcomas. Polish journal of veterinary sciences 18: 2015.
Klintrup K, Mäkinen JM, Kauppila S, Väre PO, Melkko J, Tuominen H, Tuppurainen K, Mäkelä J, Karttunen TJ, and Mäkinen MJ. Inflammation and prognosis in colorectal cancer. European journal of cancer 41: 2645-2654, 2005.
Koga K, Nabeshima K, Nishimura N, Shishime M, Nakayama J, and Iwasaki H. Microvessel density and HIF-1α expression correlate with malignant potential in fibrohistiocytic tumors. European journal of dermatology 15: 465-469, 2005.
Li Y, Zhang W, Li S, and Tu C. Prognosis value of Hypoxia-inducible factor-1α expression in patients with bone and soft tissue sarcoma: A meta-analysis. SpringerPlus 5: 1-10, 2016.
Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC, Pastorek J, Ratcliffe PJ, Stratford IJ, and West CM. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer research 61: 6394-6399, 2001.
Martano M, Morello E, and Buracco P. Feline injection-site sarcoma: past, present and future perspectives. Veterinary journal 188: 136-141, 2011.
Martano M, Morello E, Ughetto M, Iussich S, Petterino C, Cascio P, and Buracco P. Surgery alone versus surgery and doxorubicin for the treatment of feline injection-site sarcomas: a report on 69 cases. Veterinary journal 170: 84-90, 2005.
Martins-Green M, Boudreau N, and Bissell MJ. Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer research 54: 4334-4341, 1994.
McEntee M, and Samii V. The utility of contrast enhanced computer tomography in feline vaccine associated sarcomas: 35 cases. Veterinary radiology and ultrasound 41: 575, 2000.
Meuten DJ, Ed. Tumors in Domestic Animals. 5th ed. John Wiley and Sons, 2017. pp. 142-147.
Moore JC, Bentz JS, Hilden K, and Adler DG. Osteoclastic and pleomorphic giant cell tumors of the pancreas: a review of clinical, endoscopic, and pathologic features. World journal of gastrointestinal endoscopy 2: 15, 2010.
Multhoff G, Molls M, and Radons J. Chronic inflammation in cancer development. Frontiers in immunology 2: 98, 2012.
Muz B, de la Puente P, Azab F, and Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3: 83, 2015.
Nagamine E, Hirayama K, Matsuda K, Okamoto M, Ohmachi T, Uchida K, Kadosawa T, and Taniyama H. Invasive front grading and epithelial-mesenchymal transition in canine oral and cutaneous squamous cell carcinomas. Veterinary pathology 54: 783-791, 2017.
Nieto A, Sanchez M, Martinez E, and Rollan E. Immunohistochemical expression of p53, fibroblast growth factor-b, and transforming growth factor-α in feline vaccine-associated sarcomas. Veterinary pathology 40: 651-658, 2003.
Nordsmark M, Alsner J, Keller J, Nielsen O, Jensen O, Horsman M, and Overgaard J. Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. British journal of cancer 84: 1070-1075, 2001.
Nyström H, Jönsson M, Werner-Hartman L, Nilbert M, and Carneiro A. Hypoxia-inducible factor 1α predicts recurrence in high-grade soft tissue sarcoma of extremities and trunk wall. Journal of clinical pathology 70: 879-885, 2017.
Pine J, Morris E, Hutchins G, West N, Jayne D, Quirke P, and Prasad K. Systemic neutrophil-to-lymphocyte ratio in colorectal cancer: the relationship to patient survival, tumour biology and local lymphocytic response to tumour. British journal of cancer 113: 204-211, 2015.
Powis G, and Kirkpatrick L. Hypoxia inducible factor-1α as a cancer drug target. Molecular cancer therapeutics 3: 647-654, 2004.
Ramanujan S, Koenig GC, Padera TP, Stoll BR, and Jain RK. Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer research 60: 1442-1448, 2000.
Romanelli G, Marconato L, Olivero D, Massari F, and Zini E. Analysis of prognostic factors associated with injection-site sarcomas in cats: 57 cases (2001–2007). Journal of american veterinary medical association 232: 1193-1199, 2008.
Rosai J. Liver cell carcinoma with osteoclast‐like giant cells: Nonepitheliogenic giant cells in diverse malignancies. Hepatology 12: 782-783, 1990.
Rossi F, Marconato L, Sabattini S, Cancedda S, Laganga P, Leone VF, and Rohrer Bley C. Comparison of definitive-intent finely fractionated and palliative-intent coarsely fractionated radiotherapy as adjuvant treatment of feline microscopic injection-site sarcoma. Journal of feline medicine and surgery 21: 65-72, 2019.
Sadri N, and Zhang PJ. Hypoxia-inducible factors: mediators of cancer progression; prognostic and therapeutic targets in soft tissue sarcomas. Cancers 5: 320-333, 2013.
Seeber L, Horrée N, van der Groep P, van der Wall E, Verheijen RH, and van Diest PJ. Necrosis related HIF-1α expression predicts prognosis in patients with endometrioid endometrial carcinoma. BMC cancer 10: 1-11, 2010.
Séguin B. Feline injection site sarcomas. Veterinary Clinics: Small animal practice 32: 983-995, 2002.
Semenza GL. Targeting HIF-1 for cancer therapy. Nature reviews cancer 3: 721-732, 2003.
Shimizu S, Eguchi Y, Kamiike W, Itoh Y, Hasegawa J-i, Yamabe K, Otsuki Y, Matsuda H, and Tsujimoto Y. Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer research 56: 2161-2166, 1996.
Shintani K, Matsumine A, Kusuzaki K, Matsubara T, Satonaka H, Wakabayashi T, Hoki Y, and Uchida A. Expression of hypoxia-inducible factor (HIF)-1α as a biomarker of outcome in soft-tissue sarcomas. Virchows Archiv 449: 673-681, 2006.
Shirai Y, Chow CC, Kambe G, Suwa T, Kobayashi M, Takahashi I, Harada H, and Nam J-M. An overview of the recent development of anticancer agents targeting the HIF-1 transcription factor. Cancers 13: 2813, 2021.
Spugnini EP, Vincenzi B, Carocci F, Bonichi C, Menicagli F, and Baldi A. Combination of bleomycin and cisplatin as adjuvant electrochemotherapy protocol for the treatment of incompletely excised feline injection-site sarcomas: A retrospective study. Open veterinary journal 10: 267–271-267–271, 2020.
Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, and Harris AL. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. American journal of pathology 157: 411-421, 2000.
Vaughan-Jones RD, and Spitzer KW. Role of bicarbonate in the regulation of intracellular pH in the mammalian ventricular myocyte. Biochemistry and cell biology 80: 579-596, 2002.
Vleugel M, Greijer A, Shvarts A, Van Der Groep P, Van Berkel M, Aarbodem Y, Van Tinteren H, Harris A, Van Diest P, and Van Der Wall E. Differential prognostic impact of hypoxia induced and diffuse HIF-1α expression in invasive breast cancer. Journal of clinical pathology 58: 172-177, 2005
Watts ER, and Walmsley SR. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends in molecular medicine 25: 33-46, 2019.
Werner J, Strobel K, Lehnick D, and Rajan GP. Overall Neutrophil-to-Lymphocyte Ratio and SUVmax of Nodal Metastases Predict Outcome in Head and Neck Cancer Before Chemoradiation. Frontiers in oncology 4124, 2021.
Wigerup C, Påhlman S, and Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacology and therapeutics 164: 152-169, 2016.
Wilcock B, Wilcock A, and Bottoms K. Feline postvaccinal sarcoma: 20 years later. The Canadian veterinary journal 53: 430, 2012.
Wu Y, Antony S, Meitzler JL, and Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer letters 345: 164-173, 2014.
Zabielska-Koczywąs K, Wojtalewicz A, and Lechowski R. Current knowledge on feline injection-site sarcoma treatment. Acta veterinaria scandinavica 59: 1-7, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83206-
dc.description.abstract缺氧是快速生長的實體瘤常見之微環境,這是由於異常的血管功能和快速的細胞分裂所致。在多種人類癌症中,已證實氧分子調控的轉錄因子缺氧誘導因子-1α (Hypoxia-inducible factor 1 alpha, HIF-1α) 過度表現,可於缺氧環境中調控細胞增殖、細胞凋亡、葡萄糖代謝、酸鹼值和血管新生。貓注射部位肉瘤 (Feline injection site sarcomas, FISSs) 是一群從注射部位之慢性炎症發展而來的軟組織肉瘤,臨床表現為快速生長的實體瘤,且往往由於手術不容易完全切除而導致復發。迄今,關於缺氧誘導因子-1α在貓注射部位肉瘤中的作用知之甚少。本研究的目的是檢測貓注射部位肉瘤中缺氧誘導因子-1α的表現,並評估其與貓注射部位肉瘤病理特徵的相關性。本研究樣本為90個選自西元2014年至2020年間診斷為原發性貓注射部位肉瘤的病例之福馬林固定石蠟包埋組織,以免疫組織化學染色偵測缺氧誘導因子-1α的表現。結果顯示,有61.1%的病例在細胞核內有缺氧誘導因子-1α的過度表現,統計分析結果顯示,過度表現缺氧誘導因子-1α與腫瘤分級和腫瘤壞死有顯著相關性,其中,有35.6%的病例被檢測出在壞死周圍有增強表現的缺氧誘導因子-1α,以上結果支持缺氧誘導因子-1α於促進貓注射部位肉瘤的生長上,可能發揮了重要的作用,並可作為一個潛在的治療靶位。zh_TW
dc.description.abstractHypoxia is a common microenvironment of rapidly-growing solid tumors owing to aberrant vascular function and rapid cell division. Overexpression of hypoxia-inducible factor 1 alpha (HIF-1α), the oxygen-regulated transcription factor, has been demonstrated in several human cancers and could upregulate cell proliferation, apoptosis, glucose metabolism, pH regulation, and angiogenesis, promoting tumor growth in a hypoxic condition. Feline injection-site sarcomas (FISSs), a group of soft-tissue sarcomas developing at the site of injection-induced chronic inflammation, are rapidly-growing solid tumors and clinically tend to recur due to incomplete excision. Little is known about the role of HIF-1α in FISS. The purpose of this study is to detect the expression of HIF-1α in FISSs and evaluate its correlation with the pathological features of FISS. Ninety formalin-fixed and paraffin-embedded specimens from cats diagnosed with primary FISS during 2014 to 2020 were selected. Immunohistochemistry staining for detecting HIF-1α expression was performed. Results showed that intranuclear overexpression of HIF-1α was detected in 61.1% of FISSs. The overexpression of HIF-1α was significantly associated with tumor grade and the presence of intra-tumoral necrosis. The peri-necrotic HIF-1α overexpression was detected in 35.6% of the HIF-1α-expressing FISSs. These results suggest that HIF-1α may play an important role on the promotion of FISSs and may serve as a potential therapeutic target.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:19:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-10T17:19:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
List of tables viii
List of figures ix
Chapter 1 Introduction 1
1.1 Feline injection-site sarcomas (FISSs): History, terminology and etiopathology 1
1.2 Epidemiology 2
1.3 Sarcomagenesis 3
1.3.1 Chronic inflammation 3
1.3.2 Hypoxia-inducible factor 1 (HIF-1): Structure and function 5
1.3.3 Hypoxia and HIF-1α in sarcomagenesis 5
1.4 Clinical presentation of FISS 6
1.5 Histopathology 7
1.6 Sampling, diagnosis and treatment 7
1.7 HIF-1α as a therapeutic target 10
1.8 Aim of the study 11
1.9 Experimental design 12
Chapter 2 Materials and Methods 13
2.1 Case selection 13
2.2 Histopathological assessments 13
2.3 Immunohistochemistry (IHC) 15
2.3.1 Immunohistochemical procedure 15
2.3.2 Immunohistochemical assessments 16
2.4 Statistical analysis 17
Chapter 3 Results 19
3.1 Morphological analysis of the categorical or categorized data of clinical factors and pathological factors in FISS 19
3.1.1 Clinical factors: age, sex, breed, and anatomic location 19
3.1.2 Pathological factors of STS grading criteria: mitotic count (MC), intra-tumoral necrosis, cellular differentiation and tumor grade 19
3.1.3 Pathological factors of non-STS grading criteria: peri-tumoral lymphocytic infiltrate and intra-tumoral multinucleated giant cells 21
3.1.4 Correlation of tumor grade with age, anatomic location, intra-tumoral multinucleated giant cells, and peri-tumoral lymphocytic infiltrate 21
3.1.5 Pathological distinct between the defined type of fibrosarcomas and the undifferentiated type of sarcomas 22
3.1.6 Correlation between cellular differentiation and presence of intra-tumoral multinucleated giant cells 22
3.2 The pattern and prevalence of HIF-1α overexpression demonstrated by IHC in FISS 23
3.3 Correlation of HIF-1α overexpression with clinical factors and pathological factors in FISS 24
3.4 Comparison between the defined type of fibrosarcomas and other defined histotypes of sarcomas in regard to HIF-1α overexpression and pathological factors in FISS 25
Chapter 4 Discussion 26
4.1 Morphological analysis of FISS 26
4.1.1 Clinical factors and tumor grade 26
4.1.2 Pathological factors of non-STS grading criteria and tumor grade 27
4.1.3 Pathological factors of STS grading criteria and tumor grade 29
4.2 Detection of HIF-1α expression and correlation with clinical and pathological factors in FISS 30
4.2.1 HIF-1α expression in FISS cells 30
4.2.2 HIF-1α expression patterns and their significance in FISS 31
4.2.3 Correlation with pathological and clinical factors 34
4.3 Comparison between the fibrosarcomas and other sarcomatous histotypes in the defined types of FISS 34
Chapter 5 Conclusion 38
Chapter 6 Future works 39
6.1 Detection of HIF-1 downstream target genes or proteins 39
6.2 In vitro study: FISS cell culture and antitumor assay 39
6.3 Correlation of HIF-1α expression with prognosis 40
References 66
Table 1 The histological diagnostic criteria for various discernible histotypes of cutaneous and subcutaneous soft-tissue sarcomas 41
Table 2 The clinical factors, pathological factors and immunohistochemistry-demonstrated HIF-1α overexpression in 90 FISS cases 42
Table 3 The correlation of histological grade with clinical factors, intra-tumoral multinucleated giant cells, and peri-tumoral lymphocytic infiltrate in feline injection-site sarcoma cases 47
Table 4 Pathological distinct between the defined type of fibrosarcomas and the undifferentiated type of sarcomas in feline injection-site sarcoma cases 49
Table 5 The correlation between cellular differentiation and presence of intra-tumoral multinucleated giant cells 50
Table 6 The correlation of HIF-1α overexpression with pathological factors and clinical factors in 90 feline injection-site sarcoma cases 51
Table 7 Comparison between the defined type of fibrosarcomas and other defined types of sarcomas in regard to HIF-1α overexpression and pathological factors in feline injection-site sarcoma cases 53
Fig. 1 Morphology of well-differentiated feline injection-site sarcoma 55
Fig. 2 The morphological characteristics of various prominent defined types of feline injection-site sarcomas 57
Fig. 3 Morphology of undifferentiated type of feline injection-site sarcoma 59
Fig. 4 Various severity of peri-tumoral lymphocytic infiltrate in feline injection-site sarcomas 60
Fig. 5 Intra-tumoral multinucleated giant cells in feline injection-site sarcomas 61
Fig. 6 The HIF-1α expression in the positive and negative control tissues. 62
Fig. 7 Various HIF-1α expression patterns in feline injection-site sarcomas. 65
-
dc.language.isoen-
dc.subject免疫組織化學zh_TW
dc.subject病理因子zh_TW
dc.subject缺氧誘導因子-1αzh_TW
dc.subject貓注射部位肉瘤zh_TW
dc.subjectFeline injection-site sarcomaen
dc.subjectHypoxia-inducible factor 1 alpha (HIF-1α)en
dc.subjectPathological factorsen
dc.subjectImmunohistochemistryen
dc.title探討缺氧誘導因子-1α表現與貓注射部位肉瘤之病理相關性zh_TW
dc.titleInvestigating the Correlation of Hypoxia-Inducible Factor 1 Alpha Expression with the Pathological Features of Feline Injection-Site Sarcomasen
dc.title.alternativeInvestigating the Correlation of Hypoxia-Inducible Factor 1 Alpha Expression with the Pathological Features of Feline Injection-Site Sarcomas-
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee龐飛;鄭謙仁;邱慧英;張晏禎zh_TW
dc.contributor.oralexamcommitteeVictor Fei Pang;Chian-Ren Jeng;Hue-Ying Chiou;Yen-Chen Changen
dc.subject.keyword貓注射部位肉瘤,缺氧誘導因子-1α,病理因子,免疫組織化學,zh_TW
dc.subject.keywordFeline injection-site sarcoma,Hypoxia-inducible factor 1 alpha (HIF-1α),Pathological factors,Immunohistochemistry,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202204143-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept分子暨比較病理生物學研究所-
顯示於系所單位:分子暨比較病理生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-2709202209365000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved