Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83191
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李國譚zh_TW
dc.contributor.advisorKou-Tan Lien
dc.contributor.author曾暐哲zh_TW
dc.contributor.authorWei-Che Tsengen
dc.date.accessioned2023-01-10T17:14:23Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAbe, M., Y. Kobayashi, S. Yamamoto, Y. Daimon, A. Yamaguchi, Y. Ikeda, H.
Ichinoki, M. Notaguchi, K. Goto, and T. Araki. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056.
An, H., C. Roussot, P. Suárez-López, L. Corbesier, C. Vincent, M. Piñeiro, S. Hepworth, A. Mouradov, S. Justin, C. Turnbull, and G. Coupland. 2004. CONSTANS
acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626.
Andrés, F. and G. Coupland. 2012. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13:627–639.
Bañados, M.P. and B. Strik. 2006. Manipulation of the annual growth cycle of blueberry using photoperiod. Acta. Hort. 715:65–72.
Cheng, C.C. 2020. Study on the morphogenesis and phenology of apical flowering in blueberries. MS thesis. Natl. Taiwan Univ. Taipei, Taiwan.
Coen, E. S. and E. M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37.
Darnell, R.L. 1991. Photoperiod, carbon partitioning and reproductive development in rabbiteye blueberry. J. Amer. Soc. Hort. Sci. 116:856–860.
Darnell, R.L., G.W. Stutte, G.C. Martin, G.A. Lang, and J.D. Early. 1992. Developmental physiology of rabbiteye blueberry. Hort. Rev. 13:339–405. Fowler, S., K. Lee, H. Onouchi, A. Samach, K. Richardson, B. Morris, G. Coupland,
and J. Putterill. 1999. GIGANTEA: a circadian clock- controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18:4679–4688.
Hall, I. V. and R. A. Ludwig. 1961. The effects of photoperiod, temperature, and light intensity on the growth of the lowbush blueberry (Vaccinium angustifolium Ait.). Can. J. Bot. 39:1733–1739.
Hassidim, M., Y. Harir, E. Yakir, I. Kron, and R. M. Green.2009. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230:481–491.
Hayama, R., S. Yokoi, S. Tamaki, M. Yano, and K. Shimamoto. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722.
Liu, J., J. Yu, L. McIntosh, H. Kende, and J. A. D. Zeevaart. 2001. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol. 125:1821–1830.
Luby, J.J., J.R. Ballington, A.D. Draper, K. Pliszka, and M. E. Austin. 1991. Blueberries and cranberries (Vaccinium). Acta. Hort. 290:393–458.
Navarro, C., J. A. Abelenda, E. Cruz-Oró, C. A. Cuéllar, S. Tamaki, J. Silva, K. Shimamoto, and S. Prat. 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119–122.
Omori, M. 2020. Flowering and pollination in off-season rabbiteye blueberry (Vaccinium virgatum Aiton) production. MS thesis. Natl. Taiwan Univ. Taipei, Taiwan.
Omori, M., H. Yamane, K.-T. Li, R. Matsuzaki, S. Ebihara, T.-S. Li, and R. Tao. 2020. Expressional analysis of FT and CEN genes in a continuously flowering highbush blueberry ‘Blue Muffin’. Acta. Hort. 1280:197–202.
Pescie, M., M. Lovisolo, A. De Magistris, B. Strik, and C. López. 2011. Flower bud initiation in southern highbush blueberry cv. O’Neal occurs twice per year in temperate to warm-temperate conditions. J. Appl. Hort. 13:8–12.
Phatak, S. C. and M. E. Austin. 1990. The effect of photoperiod on the growth and flowering of two rabbiteye blueberry cultivars. Appl. Agr. Res. 5:350-352.
Retamales, J.B. and J.F. Hancock. 2012. Blueberries. CABI, Oxon., U.K.
Samach, A., H. Onouchi, S. E. Gold, G. S. Ditta, Z. Schwarz-Sommer, M. F. Yanofsky, and G. Coupland. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616.
Simpson, G. G. and C. Dean. 2002. Arabidopsis, the rosetta stone of flowering time. Science. 296:285–289.
Song, G., A. Walworth, D. Zhao, B. Hildebrandt, and M. Leasia. 2013a. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco. Plant Cell Rep. 32:1819–1826.
Song, G., A. Walworth, D. Zhao, N. Jiang, and J. F. Hancock. 2013b.The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Rep. 32:1759–1769.
Song, G., A.Walworth, T. Lin, Q. Chen, X. Han, L. Zaharia, and G. Zhong. 2019. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries. Horticulture Research 6:1–15.
Spann, T.M., J. G. Williamson, and R. L. Darnell. 2004. Photoperiod and temperature effects on growth and carbohydrate storage in southern highbush blueberry interspecific hybrid. J. Amer. Soc. Hort. Sci. 129:294–298.
Taoka, K., I. Ohki, H. Tsuji, K. Furuita, K. Hayashi, T. Yanase, M. Yamaguchi, C. Nakashima, Y. A. Purwestri, S. Tamaki, Y. Ogaki, C. Shimada, A. Nakagawa, C. Kojima, and K. Shimamoto. 2011. 14-3-3 Proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335.
Tsai, M.H. 2016. Physiological effects of leaf color and artificial shading on leaf gas exchange and growth in rabbiteye blueberry (Vaccinium ashei). MS thesis. Natl. Taiwan Univ. Taipei, Taiwan.
Turck, F., F. Fornara, and G. Coupland. 2008. Regulation and identity of florigen: flowering locus t moves center stage. Annu. Rev. Plant Biol. 59:573–594.
Valverde, F., A. Mouradov, W. Soppe, D. RavenscroFT, A. Samach, and G. Coupland. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006.
Walworth, A.E., B. Chai, and G.Q. Song. 2016. Transcript profile of flowering regulatory genes in VcFT-overexpressing blueberry plants. PLoS ONE 11: e0156993.
Wright, G. 1993. Performance of southern highbush and rabbiteye blueberries on the Corindi Plateau N.S.W. Australia. Acta. Hort. 346:141–148.
Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura, T. Sasaki. 2000. Hd1, a majorphotoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483.
Almada, R., N. Cabrera, J. A. Casaretto, S. Ruiz-Lara and E. G. Villanueva. 2009. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Rep. 28:1193–1203.
Bañados, M.P. and B. Strik. 2006. Manipulation of the annual growth cycle of blueberry using photoperiod. Acta. Hort. 715:65–72.
Esumi, T., R. Tao and K. Yonemori. 2007. Relationship between Floral Development and Transcription Levels of LEAFY and TERMINAL FLOWER 1 Homologs in Japanese Pear (Pyrus pyrifolia Nakai) and Quince (Cydonia oblonga Mill.) J. Japan. Soc. Hort. Sci. 76:294–304.
Fernandez, V., Y. Takahashi, J. L. Gourrierec and G. Coupland. 2016. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. The Plant Journal 86:426– 440.
Gough, R. E., and V. G. Shutak. 1978. Anatomy and morphology of cultivated highbush blueberry. Bulletin-University of Rhode Island, Agricultural Experiment Station, USA.
Haberman, A., O. Bakhshian, S. Cerezo-Medina, J. Paltiel, C. Adler, G. Ben-Ari, J. A. Mercado, F. Pliego-Alfaro, S. Lavee and A. Samach. 2017. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant Cell Environ. 40:1263–1280.
Hättasch, C., H. Flachowsky, D. Kapturska and M. V. Hanke. 2008.Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree physiol. 28:1459–1466.
Huang, Y. H., C. E. Johnson, and M. D. Sundberg. 1997. Floral morphology and development of ‘sharpblue’ southern highbush blueberry in Louisiana. J. Am. Soc. Hortic. Sci. 122:630–633.
Kotoda, N., H. Hayashi, M. Suzuki, M. Igarashi, Y. Hatsuyama, S. I. Kidou, T. Igasaki, M. Nishiguchi, K. Yano, T. Shimizu, S. Takahashi, H. Iwanami, S. Moriya, K. Abe. 2010. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus× domestica Borkh.). Plant Cell Physiol. 51:561–575.
Lin, T., A. Walworth, X. Zong, G. H. Danial, E. M. Tomaszewski, P. Callow, X. Han, L. I. Zaharia, P. P. Edger, G. Zhong and G. Song. 2019. VcRR2 regulateschilling-mediated flowering through expression of hormone genes in a transgenic blueberry mutant. Hort. Res. 6:96.
Lin, T., Q. Chen, R. Z. Wichenheiser, and G. Q. Song. 2019. Constitutive expression of a blueberry FLOWERING LOCUS T gene hastens petunia plant flowering. Sci. Hort. 253:376–381.
Lozano, R., T. Angosto, P. Go ́mez, C. Paya ́n, J. Capel, P. Huijser, J. Salinas and J. M. Mart ́ınez-Zapater. 1998. Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-box genes. Plant Physiol. 117:91–100.
Nishikawa, F., T. Endo, T. Shimada, H. Fujii, T. Shimizu, M. Omura and Y.Ikoma. 2007. Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J. Exp. Bot. 58:3915–3927.
Omori, M., H. Yamane, K.-T. Li, R. Matsuzaki, S. Ebihara, T.-S. Li, R. Tao. 2020. Expressional analysis of FT and CEN genes in a continuously flowering highbush blueberry ‘Blue Muffin’. Acta. Hort. 1280:197–202.
Patel, N. 2005. Patterns of flower-bud differentiation, development, and growth habits of several blueberry (Vaccinium spp.) cultivar types grown in Japan and New Zealand. 園芸学会雑誌 74:1–10.
Phatak, S. C. and M. E. Austin. 1990. The effect of photoperiod on the growth and flowering of two rabbiteye blueberry cultivars. Appl. Agr. Res. 5:350–352. Retamales, J. B. and J. F. Hancock. 2012. Growth and development, p.51-70. In: J.B.
Retamales and J.F. Hancock(eds.). Blueberries. CABI, Oxfordshire, U.K.
Song, G. and A. Walworth. 2018. An invaluable transgenic blueberry for studying chilling-induced flowering in woody plants. BMC Plant Biol. 18:265.
Spann, T.M., J. G. Williamson, and R. L. Darnell. 2004. Photoperiod and temperature effects on growth and carbohydrate storage in southern highbush blueberry interspecific hybrid. J. Amer. Soc. Hort. Sci. 129:294–298.
Tanaka, N., A. Ureshino, N. Shigeta, N. Mimida, S. Komori, S. Takahashi, Y. Tanaka-Moriya, M. Wada. 2014. Overexpression of Arabidopsis FT gene in apple leads to perpetual flowering. Plant Biotechnol. J. 31.1:11–20.
Tränkner, C., S. Lehmann, H. Hoenicka, M. Hanke, M. Fladung, D. Lenhardt, F. Dunemann, A. Gau, K. Schlangen, M. Malnoy and H. Flachowsky. 2010.Over-expression of an FT-homologous gene of apple induces early Xowering in annual and perennial plants. Planta 232:1309–1324
Tsai, M.H. 2016. Physiological effects of leaf color and artificial shading on leaf gas exchange and growth in rabbiteye blueberry (Vaccinium ashei). MS thesis. Natl. Taiwan Univ. Taipei, Taiwan.
Varkonyi‐Gasic, E., S. M. A. Moss, C. Voogd, T. Wang, J. Putterill, R. P. Hellens 2013. Homologs of FT, CEN and FD respond to developmental and
environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist 198:732–746.
Walworth, A. E., B. Chai, and G. Q. Song. 2016. Transcript profile of flowering regulatory genes in VcFT-overexpressing blueberry plants. PLOS one 11:e0156993.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83191-
dc.description.abstract藍莓(Vaccinium sp.)多於夏季長日暖溫環境下行營養生長,於秋季短日涼溫下 花芽分化,後於翌年春季開花。FLOWERING LOCUS T (FT)基因在包含藍莓等多 種植物中,皆被認為具有調控植物生長階段轉變、花芽分化及開花等功能,而 CONSTANS-LIKE (COL)則為光週期感應、FT 上游調控的重要開花路徑基因。少數 南高叢品種,如 ’Blue Muffin’,在溫帶及亞熱帶地區,可終年連續開花,其開花 行為似對日長較不敏感,然而溫度,尤其是高溫,是否具有調控日長對藍莓開花 基因表現之影響力,仍有待釐清。本試驗於 2020 年 4 月至 12 月,將南高叢藍莓 品種‘Blue Muffin’(BM)、‘Sunshine Blue’(SB)及‘Georgia Gem’(GG),栽培於日夜溫 35/30°C、25/20°C 或 20/15°C,自然光照條件之人工氣候室。每週紀錄花芽分化數 量與營養生長;每三週進行葉片採樣,檢測 VcFT 及 VcCOL5 之基因表現量,以 釐清溫度與日長對藍莓生長調控之交互作用。
實驗結果顯示,在高溫下(35/30°C),SB 與 GG 的營養生長受到促進,營養芽 萌發期延長至 10 月(日長<12 小時),營養生長高峰期 6~8 月間之停心率低於其他 兩處理(多低於 60%),且試驗期間皆無花芽形成。BM 營養芽萌芽時間亦延長,然 而停心率和其他溫度處理相近,6 至 8 月間之停心率維持在 60~80%,試驗期間植 株持續形成花芽並開花,但其花芽型態明顯和其他溫度處理者有明顯差異,單一 花芽之花朵數明顯少於另二溫度處理者,且花芽形成集中於枝條頂芽,其形成花 芽之枝條比例及腋芽轉為花芽之比例也低於其他二溫度處理。在整個試驗期間, 三品種之 VcFT 均受到抑制,雖然在 10 月日長減短後略有上升,但仍遠低於其他 二處理組。
在適溫(25/20°C) 下,SB 和 GG 之營養生長指標在三處理組中居次,營養芽 在九月底後即停止萌發(日長<12 小時),6 至 8 月間停心率>60%,並於 10 月初, 日長小於 12 小時之環境,可見腋芽轉化為花芽。SB 和 GG 在此溫度下,5 到 9 月 VcFT 基因表現量低,和高溫處理組同時間之表現量相似,在 10 月後(日長<12 小時)表現量開始明顯上升,達表現高峰。BM 之營養生長指標和涼溫處理組相似,7、 8 月停心率約在 80%,9 月後幾無營養芽萌發,萌芽期短於高溫處理者,並於 5 月 開始即有花芽形成並開花,花芽形成位置多在腋芽,每一花芽皆分化出 4 至 10 個 花朵。BM 於此處理下,VcFT 基因於整個試驗期間仍維持低表現量,和高溫處理 之 BM 表現模式相近,沒有明顯高峰。
在涼溫(20/15°C)環境下, SB 和 GG 之營養芽萌發停止早於其他二處理者, 於 8 月底即不再萌芽(日長>12 小時),且停心率上升最快,於 6 至 8 月近 80%枝 條停心,於在 7 月底、8 月初(日長接近 13 小時)即可見花芽形成,在此涼溫下, SB 形成花芽枝條數量及 GG 腋芽分化花芽之比例皆上升,而 VcFT 表現量於 8 月 底、9 月初(日長>12 小時)即開始顯著上升。BM 之營養生長在萌芽時間、停心率 上皆相似於適溫處理組,但於 4 月即有花芽形成,花芽數量、型態上和適溫處理 相近,但腋芽轉變為花芽比例更高,而 VcFT 基因仍全程維持低表現量。
VcCOL 5 基因在各處理各品種間有相似的表現模式,皆隨不同日長而改變表 現量,在 5 至 8 月日長增加表現量逐步減少,9 月後日長減短表現量逐漸上升,溫 度對其影響不若對 VcFT 基因之影響顯著,僅高溫處理略低於其他處理者。
試驗結果說明,即便於短日環境,高溫可促進一般藍莓品種的營養生長,並 抑制短日對腋芽分化為花芽的作用,而低溫則可於長日下抑制營養生長,並促進 花芽形成。一般藍莓品種 SB 和 GG 之 VcFT 的表現和其對光週期的敏感性均受溫 度調節,且 VcFT 和藍莓花芽形成具有高度相關性,低溫環境其提早表現導致早花。 而 VcCOL 5 在不同溫度處理下,差異並不顯著,表現主要受到日長調控。相較之 下,BM 品種之 VcFT 基因在三個處理皆為三品種中最低,VcCOL 5 表現模式則近 於其他品種,其連續開花之成因應肇因於其他調控途徑。
zh_TW
dc.description.abstractFlower buds of blueberry are generally induced by cool temperature with short-day conditions in autumn. Previous studies have shown that FLOWERING LOCUS T (FT) was involved in the transition of vegetative growth to reproductive growth while CONSTANS-LIKE (COL) genes responsive to photoperiod regulate expression of FT in many plant species. Some new blueberry cultivars such as ‘Blue Muffin’ show a perpetual blooming behavior and varied flowering seasons between plants cultivated in temperate and subtropical climates, indicating that their flowering genes might by less sensitive to photoperiod. To document the effects of two essential environmental factors, i.e., temperature, especially high temperature, and photoperiod on flower bud differentiation and expression of flowering genes, ‘Blue Muffin’ (BM), ‘Sunshine Blue’ (SB), and ‘Georgia Gem’ (GG) southern highbush blueberries were cultivated in phytotrons with day/night temperatures of 35/30°C, 25/20°C, or 20/15°C and natural photoperiods. Vegetative growth and flowering status were recorded weekly. Leaves were sampled and the expression of the flowering related genes FLOWERING LOCUS
T (VcFT) and CONSTANS-LIKE 5-like (VcCOL5) were analyzed weekly and once every three weeks from April to December 2020.
At high temperature (35/30°C), Tthe vegetative growth was extended in three cultivars. Vegetative budbreak continued in October (day length<12 hr). Flower bud formation was observed only in BM through the experimental period regardless of the day length. However, the number of flower bud was lower and the development was poorer than those in the other two temperature treatments. The expression level of VcFT was suppressed in all three cultivars through the experiment period.
At mild temperature (25/20°C), the vegetative growth of SB and GG ceased earlier than that under high temperature treatment. Flower buds were observed in these twocultivars in early October when day length < 12 hours. The expression level of VcFT was low in SB and GG from May to September but was promoted after October. In this treatment, little vegetative bud break in BM after September. Flower buds of BM continuously differentiated from May to November. Flower buds were well developed from axillary buds with 4 to 6 flowers per bud. VcFT gene expression level remained low through all the period in BM.
At cool temperature (20/15°C), the vegetative growth of all cultivars was retarded. Vegetative budbreak rate was low and ceased early in late August when daylength was still >12 hr). Flower buds in SB and GG were observed from July and August when daylength close to 13 hours. The expression level of VcFT were promoted from August and September. On the other hand, flower buds of BM were observed from April and the expression of VcFT gene remained low . The expression level of VcCOL 5 showed no difference under different temperatures between all cultivars but was regulated by day length.
The results suggested that high temperature (35/30°C) treatment encourages vegetative growth of the three cultivars in short daylength (<12 hr) while suppressed flower bud formation in SB and GG but not in BM. On the contrary, cool temperature (20/15°C) treatment advanced flower bud formation in long daylength (> 13 hr). The expression of VcFT and VcFT sensitivity to photoperiod were both regulated by temperatures in SB and GG. The early flowering in cool temperature results from the early expression peak of VcFT. The lowest VcFT and VcCOL 5 expression level in BM subjected to 35/30°C might indicate that blooming of BM in high temperature and long day conditions might be enforced by other flowering pathways and genes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:14:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-10T17:14:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 III
摘要 IV
ABSTRACT VI
目錄 I
LIST OF TABLE III
LIST OF FIGURE IV
第一章 前言 1
第二章 前人研究 2
2.1. 藍莓的生長週期 2
2.2. 環境影響因子 2
2.2.1. 光週期 2
2.2.2. 溫度對藍莓光週期感應之影響 3
2.3. 不時花現象 3
2.4. 開花基因調控 4
2.4.1. 重要開花調控基因FLOWERING LOCUS T及CONSTANS like基因之功能性 4
2.4.2. 藍莓開花基因調控 5
2.5.試驗假說及目的 6
2.6. 參考文獻 8
第三章 材料與方法 14
3.1. 植物材料與試驗地點 14
3.2. 試驗處理 14
3.3. 生長調查 14
3.4. 開花相關基因分析 14
3.4.1. 葉片RNA萃取 14
3.4.2. 引子序列 15
3.4.3. cDNA合成方法 15
3.4.4. qPCR方法 15
3.5. 環境資料 16
3.6. 統計及製圖方法 16
第四章 試驗結果 17
4.1. 試驗期間日照長度變化 17
4.2. 植株生長 17
4.2.1. 營養芽萌發時間 17
4.2.2. 枝條停心時間 18
4.3. 花芽分化與開花 19
4.3.1. 花芽分化時間 19
4.3.2. 產生花芽之枝條數量 20
4.3.3. 花芽分化比例 21
4.3.4. 花芽特徵 21
4.4. 開花相關基因表現 21
4.4.1. VcFT基因表現 21
4.4.2. VcCOL 5基因表現 22
第五章 討論 51
參考文獻 57
第六章 結論 62
附錄 63
-
dc.language.isozh_TW-
dc.subjectVcCOlzh_TW
dc.subject藍莓zh_TW
dc.subject花芽分化zh_TW
dc.subject溫度zh_TW
dc.subject光週期zh_TW
dc.subject開花基因zh_TW
dc.subjectVcFTzh_TW
dc.subjectblueberryen
dc.subjectflower geneen
dc.subjectflower differentiationen
dc.subjectphotoperioden
dc.subjecttemperatureen
dc.subjectVcFTen
dc.subjectVcCOlen
dc.title南高叢藍莓(Vaccinium hybrid)開花及開花基因表現之環境調控zh_TW
dc.titleEnvironmental regulations on flowering and expression of flowering genes in southern highbush blueberry (Vaccinium hybrid)en
dc.title.alternativeEnvironmental regulations on flowering and expression of flowering genes in southern highbush blueberry (Vaccinium hybrid)-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李金龍;許富鈞;張哲嘉zh_TW
dc.contributor.oralexamcommitteeChing-Lung Lee;Fu-Chiun Hsu;Jer-Chia Changen
dc.subject.keyword藍莓,花芽分化,溫度,光週期,開花基因,VcFT,VcCOl,zh_TW
dc.subject.keywordblueberry,temperature,photoperiod,flower differentiation,flower gene,VcFT,VcCOl,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202204286-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-10-24-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-2110202216241000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved