Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉啓德zh_TW
dc.contributor.advisorChi-Te Liuen
dc.contributor.author李淑君zh_TW
dc.contributor.authorSoon-Kuan Leeen
dc.date.accessioned2023-01-10T17:14:01Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-07-
dc.date.issued2022-
dc.date.submitted2022-10-27-
dc.identifier.citation1. Abbas, S. Z. & Rafatullah, M. (2021). Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere, 272, 129691.
2. Abbas, S. Z., Rafatullah, M., Khan, M. A. & Siddiqui, M. R. (2019). Bioremediation and electricity generation by using open and closed sediment microbial fuel cells. Frontiers in microbiology, 9, 3348-3348.
3. Adesemoye, A. O., Yuen, G. & Watts, D. B. (2017). Microbial inoculants for optimized plant nutrient use in integrated pest and input management systems. In: Kumar, V., Kumar, M., Sharma, S. & Prasad, R. (eds.) Probiotics and Plant Health. Singapore: Springer Singapore, 21-40.
4. Ahemad, M. & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26, 1-20.
5. Alemneh, A. A., Zhou, Y., Ryder, M. H. & Denton, M. D. (2022). Soil environment influences plant growth-promotion traits of isolated rhizobacteria. Pedobiologia, 90, 150785.
6. Ali, J., Sohail, A., Wang, L., Rizwan Haider, M., Mulk, S. & Pan, G. (2018). Electro-microbiology as a promising approach towards renewable energy and environmental sustainability. Energies, 11, 1822.
7. Alloul, A., Wille, M., Lucenti, P., Bossier, P., Van Stappen, G. & Vlaeminck, S. E. (2021). Purple bacteria as added-value protein ingredient in shrimp feed: Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress. Aquaculture, 530, 735788.
8. Anandham, R., Gandhi, P. I., Madhaiyan, M. & Sa, T. (2008). Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. Journal of Basic Microbiology, 48, 439-47.
9. Angelaalincy, M. J., Navanietha Krishnaraj, R., Shakambari, G., Ashokkumar, B., Kathiresan, S. & Varalakshmi, P. (2018). Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Frontiers in Energy Research, 6.
10. Aoun, A. B., Lechiheb, B., Benyahya, L. & Ferchichi, A. (2013). Evaluation of fruit quality traits of traditional varieties of tomato (Solanum lycopersicum) grown in Tunisia. African Journal of Food Science, 7, 350-354.
11. Ashraf, M. & Wan Mohd Noor, W. S. A. (2017). Environmental Conservation, Clean Water, Air & Soil (CleanWAS): International Conference Proceedings 26–28 August, 2016, China. Water Intelligence Online, 16, 9781780408163.
12. Baber, M., Fatima, M., Mansoor, M., Naz, S., Hanif, M. & Naqqash, T. (2018). Weed rhizosphere: a source of novel plant growth promoting rhizobacteria (PGPR). International Journal of Biosciences (IJB), 13.
13. Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S. & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9.
14. Badea, S.-L., Enache, S., Tamaian, R., Niculescu, V.-C., Varlam, M. & Pirvu, C.-V. (2019). Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch experiments using Saccharomyces cerevisiae as biocatalyst. Journal of Applied Electrochemistry, 49, 17-26.
15. Bai, W., Ranaivoarisoa, T., Singh, R., Rengasamy, K. & Bose, A. (2020a). Sustainable Production of the Biofuel n-Butanol by Rhodopseudomonas palustris TIE-1. bioRxiv.
16. Bai, Y.-C., Chang, Y.-Y., Hussain, M., Lu, B., Zhang, J.-P., Song, X.-B., Lei, X.-S. & Pei, D. (2020b). Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms, 8, 694.
17. Baligar, V., Fageria, N. & He, Z. (2001). Nutrient use efficiency in plants. Communications in soil science and plant analysis, 32, 921-950.
18. Baumann, K., Dignac, M.-F., Rumpel, C., Bardoux, G., Sarr, A., Steffens, M. & Maron, P.-A. (2013). Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry, 114, 201-212.
19. Belimov, A. A., Dodd, I. C., Safronova, V. I., Dumova, V. A., Shaposhnikov, A. I., Ladatko, A. G. & Davies, W. J. (2014). Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiology and Biochemistry, 74, 84-91.
20. Bending, G. D., Rodríguez-Cruz, M. S. & Lincoln, S. D. (2007). Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere, 69, 82-88.
21. Beneduzi, A., Ambrosini, A. & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and molecular biology, 35, 1044-1051.
22. Berry, P. M., Sylvester-Bradley, R., Philipps, L., Hatch, D. J., Cuttle, S. P., Rayns, F. W. & Gosling, P. (2002). Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use and Management, 18, 248-255.
23. Bhattacharyya, D., Duta, S., Yu, S.-M., Jeong, S. C. & Lee, Y. H. (2018). Taxonomic and functional changes of bacterial communities in the rhizosphere of kimchi cabbage after seed bacterization with Proteus vulgaris JBLS202. The plant pathology journal, 34, 286-296.
24. Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
25. Boas, J. V., Oliveira, V. B., Simões, M. & Pinto, A. M. F. R. (2022). Review on microbial fuel cells applications, developments and costs. Journal of Environmental Management, 307, 114525.
26. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., Mcdonald, D., Mciver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S., 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., Van Der Hooft, J. J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., Von Hippel, M., Walters, W., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852-857.
27. Borole, A. P., O’neill, H., Tsouris, C. & Cesar, S. (2008). A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology letters, 30, 1367-1372.
28. Botton, A., Eccher, G., Forcato, C., Ferrarini, A., Begheldo, M., Zermiani, M., Moscatello, S., Battistelli, A., Velasco, R., Ruperti, B. & Ramina, A. (2011). Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiology, 155, 185-208.
29. Bozzola, J. J. & Russell, L. D. (1999). Electron microscopy: principles and techniques for biologists, Jones & Bartlett Learning.
30. Bremner, J. M. & Douglas, L. A. (1971). Inhibition of urease activity in soils. Soil Biology and Biochemistry, 3, 297-307.
31. Bremner, J. M. & Mulvaney, C. S. (1983). Nitrogen-total. In: Page, AL, Miller, RH, Keeney, DR, (eds.), Methods of soil analysis, part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, United States, 595-624.
32. Brown, B., Wilkins, M. & Saha, R. (2022). Rhodopseudomonas palustris: A biotechnology chassis. Biotechnology Advances, 60, 108001.
33. Bunraksa, T., Kantachote, D. & Chaiprapat, S. (2020). The potential use of purple nonsulfur bacteria to simultaneously treat chicken slaughterhouse wastewater and obtain valuable plant growth promoting effluent and their biomass for agricultural application. Biocatalysis and Agricultural Biotechnology, 28, 101721.
34. Cai, F., Pang, G., Miao, Y., Li, R., Li, R., Shen, Q. & Chen, W. (2017). The nutrient preference of plants influences their rhizosphere microbiome. Applied Soil Ecology, 110, 146-150.
35. Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M. & Liu, H. (2019). Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories, 18, 39.
36. Cardoso, E., Vasconcellos, R., Bini, D., Miyauchi, M., Alcantara, C., Alves, P., De Paula, A., Nakatani, A., Pereira, J. & Nogueira, M. (2013). Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola, 70, 219-303.
37. Carreon-Bautista, S., Erbay, C., Han, A. & Sanchez-Sinencio, E. (2015). An inductorless DC–DC converter for an energy aware power management unit aimed at microbial fuel cell arrays. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3, 1109-1121.
38. Casida, L. E. J., Klein, D. A. & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371-376
39. Castiglione, A. M., Mannino, G., Contartese, V., Bertea, C. M. & Ertani, A. (2021). Microbial biostimulants as response to modern agriculture needs: composition, role and application of these innovative products. Plants (Basel), 10.
40. Catal, T., Xu, S., Li, K., Bermek, H. & Liu, H. (2008). Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosensors & Bioelectronics, 24, 855-860.
41. Chandran, H., Meena, M. & Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13, 10986.
42. Chang, Y.-C. & Lin, T.-C. (2020). Temperature effects on fruit development and quality performance of nagami kumquat (Fortunella margarita [Lour.] Swingle). The Horticulture Journal, 89, 351-358.
43. Chaturvedi, V. & Verma, P. (2016). Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3, 38.
44. Chaudhuri, S. K. & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229-1232.
45. Cheng, S., Liu, H. & Logan, B. E. (2006). Increased power generation in a continuous flow mfc with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40, 2426-2432.
46. Choudhary, D. K., Prakash, A. & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47, 289-97.
47. Cordero, I., Balaguer, L., Rincón, A. & Pueyo, J. J. (2018). Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. Journal of Plant Nutrition and Soil Science, 181, 694-703.
48. Crovadore, J., Xu, S., Chablais, R., Cochard, B., Lukito, D., Calmin, G. & Lefort, F. (2017). Metagenome-assembled genome sequence of Rhodopseudomonas palustris strain ELI 1980, commercialized as a biostimulant. Genome Announcements, 5, e00221-17.
49. Dænmez, G. ., öztìrk, A. & akmak i, L. (1999). Properties of the Rhodopseudomonas palustris strains isolated from an alkaline lake in Turkey. Turkish Journal of Biology, 23, 457-464.
50. Della Lucia, M. C., Baghdadi, A., Mangione, F., Borella, M., Zegada-Lizarazu, W., Ravi, S., Deb, S., Broccanello, C., Concheri, G., Monti, A., Stevanato, P. & Nardi, S. (2022). Transcriptional and physiological analyses to assess the effects of a novel biostimulant in tomato. Frontiers in Plant Science, 12.
51. Di Salvo, L. P., Cellucci, G. C., Carlino, M. E. & García De Salamone, I. E. (2018). Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Applied Soil Ecology, 126, 113-120.
52. Diacono, M., & Montemurro, F. (2011). Long-Term Effects of Organic Amendments on Soil Fertility. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., (eds.), Sustainable Agriculture volume 2. Springer, Dordrecht, 761-786.
53. Domenech, J., Ramos-Solano, B., Probanza, A., Lucas-Garcı́A, J. A., Colón, J. J. & Gutiérrez-Mañero, F. J. (2004). Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota: a study on tree growth, rhizosphere community structure and mycorrhizal infection. Forest Ecology and Management, 194, 293-303.
54. Eigenberg, R. A., Doran, J. W., Nienaber, J., Ferguson, R. & Woodbury, B. (2002). Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agriculture, Ecosystems & Environment, 88.
55. El Sherif, H. (2018). Effect of potassium fertilizer source on tree fruiting, fruit quality and storability of golden Japanese plum. Journal of Plant Production, 33.
56. El-Badawy, E.-S., El-Ba, T. & Eldengawy, E. (2003). Effect of calcium and zinc sprays on fruit dropping nature of hayany date cultivar. i. yield and fruit quality. Zagazig Journal of Agricultural Research, 30.
57. Elbadry, M. & Elbanna, K. (1999). Response of four rice varieties to Rhodobacter capsulatus at seedling stage. World Journal of Microbiology and Biotechnology, 15, 363-367.
58. El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H. & Gorby, Y. A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences, 107, 18127.
59. Elvis Fosso-Kankeu, Sanette Marx, Frans Waanders & Jacobs, V. (2015). Impact of soil type on electricity generation from a microbial fuel cell. 7th International Conference on latest Trends in Engineering and Technology (ICLTET’2015). Irene Pretoria South Africa.
60. Erickson, R. W. (2007). DC–DC Power Converters. Wiley Encyclopedia of Electrical and Electronics Engineering.
61. Etesami, H., Emami, S. & Alikhani, H. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects-A review. Journal of Soil Science and Plant Nutrition, 17.
62. Ezeokoli, O. T., Bezuidenhout, C. C., Maboeta, M. S., Khasa, D. P. & Adeleke, R. A. (2020). Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restoration. Scientific Reports, 10, 1759.
63. Farjah, E., Ayaz, M. & Ghanbari, T. (2015) ‘ A novel self-starting ultra low-power and low-voltage DC-DC converter for microbial energy harvesting’. 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin). 7-10 September. 266-267.
64. Fraiwan, A., Hassett, D. J. & Choi, S. (2014). Effects of light on the performance of electricity-producing bacteria in a miniaturized microbial fuel cell array. Journal of Renewable and Sustainable Energy, 6, 063110.
65. Franche, C., Lindström, K. & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, 35-59.
66. Franks, A. E., Malvankar, N. & Nevin, K. P. (2010). Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels, 1, 589-604.
67. Frindte, K., Pape, R., Werner, K., Löffler, J. & Knief, C. (2019). Temperature and soil moisture control microbial community composition in an arctic-alpine ecosystem along elevational and micro-topographic gradients. The ISME journal, 13, 2031-2043.
68. Fróna, D., Szenderák, J. & Harangi-Rakos, M. (2019). The challenge of feeding the world. Sustainability, 11, 5816.
69. Gadhave, K. R., Devlin, P. F., Ebertz, A., Ross, A. & Gange, A. C. (2018). Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microbial Ecology, 76, 741-750.
70. Gao, R., Wang, Y., Zhang, Y., Tong, J. & Dai, W. (2017). Cobalt (II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnology & Biotechnological Equipment, 31, 527-534.
71. García-Fraile, P., Menéndez, E. & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2, 183-205.
72. Ge, H. & Zhang, F. (2019). Growth-promoting ability of Rhodopseudomonas palustris G5 and its effect on induced resistance in cucumber against salt stress. Journal of Plant Growth Regulation, 38, 180-188.
73. Ge, H., Liu, Z. & Zhang, F. (2017). Effect of Rhodopseudomonas palustris G5 on seedling growth and some physiological and biochemical characteristics of cucumber under cadmium stress. Emirates Journal of Food and Agriculture, 29, 816.
74. Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., Iezzi, A., Mignolli, F., Picciarelli, P., Pinto, B., Reali, D., Sbrana, C. & Scarpato, R. (2012). Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutrition, 107, 242-51.
75. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169, 30-39.
76. Gomez, M. V., Mai, G., Greenwood, T. & Mullins, J. (2014). The development and maximization of a novel photosynthetic microbial fuel cell using Rhodospirillum rubrum. Journal of Emerging Investigators, 3, 1-7.
77. González-Fontes, A., Navarro-Gochicoa, M. T., Ceacero, C. J., Herrera-Rodríguez, M. B., Camacho-Cristóbal, J. J. & Rexach, J. (2017). Chapter 9 - Understanding calcium transport and signaling, and its use efficiency in vascular plants. In: Hossain, M. A., Kamiya, T., Burritt, D. J., Tran, L.-S. P. & Fujiwara, T. (eds.) Plant Macronutrient Use Efficiency. Academic Press, 165-180.
78. Gorby, Y. A., Yanina, S., Mclean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H. & Kim, K. S. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 103, 11358-11363.
79. Goswami, D., Thakker, J. N. & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2, 1127500.
80. Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H.-S. & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140.
81. Govindasamy, V., Senthilkumar, M. & Annapurna, K. (2015). Effect of mustard rhizobacteria on wheat growth promotion under cadmium stress: characterization of acdS gene coding ACC deaminase. Annals of Microbiology, 65, 1679-1687.
82. Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J. & Nain, L. (2021). PGPR mediated alterations in root traits: way toward sustainable crop production. Frontiers in Sustainable Food Systems, 4.
83. Gu, Y., Wang, P. & Kong, C. H. (2009). Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. European Journal of Soil Biology, 45, 436-441.
84. Guzman, M. S., Rengasamy, K., Binkley, M. M., Jones, C., Ranaivoarisoa, T. O., Singh, R., Fike, D. A., Meacham, J. M. & Bose, A. (2019). Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nature Communications, 10, 1355.
85. Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S. & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5.
86. Hall, M. & Beiko, R. G. (2018). 16S rRNA Gene Analysis with QIIME2. Methods in Molecular Biology, 1849, 113-129.
87. Hamid, B., Zaman, M., Farooq, S., Fatima, S., Sayyed, R. Z., Baba, Z. A., Sheikh, T. A., Reddy, M. S., El Enshasy, H. & Gafur, A. (2021). Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability, 13, 2856.
88. Hamouda, R. A. & El-Naggar, N. E.-A. (2021). Chapter 14 - Cyanobacteria-based microbial cell factories for production of industrial products. In: Singh, V. (eds.) Microbial Cell Factories Engineering for Production of Biomolecules. Academic Press, pp. 277-302.
89. Haslett, N. D., Rawson, F. J., Barriëre, F., Kunze, G., Pasco, N., Gooneratne, R. & Baronian, K. H. (2011). Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors and Bioelectronics, 26, 3742-3747.
90. He, Z., Huang, Y., Manohar, A. K. & Mansfeld, F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry, 74, 78-82.
91. Heimpel, G. E. & Mills, N. J. (2017). Biological control: Ecology and applications. Cambridge: Cambridge University Press.
92. Heiniger, R., Mcbride, R. & Clay, D. (2003). Using soil electrical conductivity to improve nutrient management. Agronomy Journal, 95, 508-519.
93. Hiraishi, A. & Kitamura, H. (1984). Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Nippon Suisan Gakkaishi, 50, 1929-1937.
94. Hiraishi, A., Shi, J.-L. & Kitamura, H. (1989). Effects of organic nutrient strength on the purple nonsulfur bacterial content and metabolic activity of photosynthetic sludge for wastewater treatment. Journal of fermentation and bioengineering, 68, 269-276.
95. Holmes, D. E., Nicoll, J. S., Bond, D. R. & Lovley, D. R. (2004). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied and Environmental Microbiology, 70, 6023-6030.
96. Hsu, S. H., Shen, M. W., Chen, J. C., Lur, H. S. & Liu, C. T. (2021). The photosynthetic bacterium Rhodopseudomonas palustris strain PS3 exerts plant growth-promoting effects by stimulating nitrogen uptake and elevating auxin levels in expanding leaves. Frontiers in Plant Science, 12, 573634.
97. Hsu, S., Lo, K., Fang, W., Lur, H. & Liu, C. (2015). Application of phototrophic bacterial inoculant to reduce nitrate content in hydroponic leafy vegetables. Crop, Environment & Bioinformatics, 12, 30-41.
98. Hubenova, Y. & Mitov, M. (2010). Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry, 78, 57-61.
99. Hussain, S., Khan, M., Sheikh, T. M. M., Mumtaz, M. Z., Chohan, T. A., Shamim, S. & Liu, Y. (2022). Zinc essentiality, toxicity, and its bacterial bioremediation: a comprehensive insight. Frontiers in Microbiology, 13.
100. Iasur-Kruh, L., Zahavi, T., Barkai, R., Freilich, S., Zchori-Fein, E. & Naor, V. (2018). Dyella-like bacterium isolated from an insect as a potential biocontrol agent against grapevine yellows. Phytopathology®, 108, 336-341.
101. Imologie, S., Gbabo, A. & Shekwaga, O. (2016). Performance of a single chamber soil microbial fuel cell at varied external resistances for electric power generation. Journal of Renewable Energy and Environment, 3, 53-58.
102. Islam, S., Akanda, A. M., Prova, A., Islam, M. T. & Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6.
103. Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Frontiers in Plant Science, 8, 1617-1617.
104. Jiang, G., Zhang, Y., Gan, G., Li, W., Wan, W., Jiang, Y., Yang, T., Zhang, Y., Xu, Y., Wang, Y., Shen, Q., Wei, Z. & Dini-Andreote, F. (2022). Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME Communications, 2, 10.
105. Jiang, K. & Asami, T. (2018). Chemical regulators of plant hormones and their applications in basic research and agriculture*. Bioscience, Biotechnology, and Biochemistry, 82, 1265-1300.
106. Jiang, Y., Yang, X., Liang, P., Liu, P. & Huang, X. (2018). Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges. Renewable and Sustainable Energy Reviews, 81, 292-305.
107. Jiao, X., Takishita, Y., Zhou, G. & Smith, D. L. (2021). Plant associated rhizobacteria for biocontrol and plant growth enhancement. Frontiers in Plant Science, 12, 634796.
108. Kang, S. M., Adhikari, A., Lee, K. E., Khan, M. A., Khan, A. L., Shahzad, R., Dhungana, S. K. & Lee, I. J. (2020). Inoculation with indole-3-acetic acid-producing rhizospheric Rhodobacter sphaeroides KE149 augments growth of adzuki bean plants under water stress. Journal of Microbiology and Biotechnology, 30, 717-725.
109. Kang, S.-M., Adhikari, A., Khan, M. A., Kwon, E.-H., Park, Y.-S. & Lee, I.-J. (2021). Influence of the rhizobacterium Rhodobacter sphaeroides KE149 and biochar on waterlogging stress tolerance in Glycine max L. Environments, 8, 94.
110. Kantachote, D., Nunkaew, T., Kantha, T. & Chaiprapat, S. (2016). Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology, 100, 154-161.
111. Kantha, T., Chaiyasut, C., Kantachote, D., Sukrong, S. & Muangprom, A. (2010). Selection of photosynthetic bacteria producing 5-aminolevulinic acid from soil of organic saline paddy fields from the Northeast region of Thailand. African Journal of Microbiology Research, 4, 1848-1855.
112. Kantha, T., Kantachote, D. & Klongdee, N. (2015). Potential of biofertilizers from selected Rhodopseudomonas palustris strains to assist rice (Oryza sativa L. subsp. indica) growth under salt stress and to reduce greenhouse gas emissions. Annals of microbiology, 65, 2109-2118.
113. Katoh, K. & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.
114. Kaymak, H. C. (2011). Potential of PGPR in Agricultural Innovations. In: Maheshwari, D. K. (eds.) Plant Growth and Health Promoting Bacteria. Berlin, Heidelberg: Springer, 45-79
115. Keeney, D. R. & Nelson, D. W. (1983). Nitrogen-inorganic forms. In Page, A.L., Miller, R.H., Keeney, DR, (Eds.), Methods of soil analysis, part 2. chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, United States, 643-698.
116. Kernan, C., Chow, P. P., Christianson, R. J. & Huang, J. (2015). Experimental and computational investigation of biofilm formation by Rhodopseudomonas palustris growth under two metabolic modes. PLOS ONE, 10, e0129354.
117. Khush, G. S. (2001). Green revolution: the way forward. Nature Reviews Genetics, 2, 815-822.
118. Kloepper, J. W., Leong, J., Teintze, M. & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885-886.
119. Koh, R. H. & Song, H. G. (2007). Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. Journal of Microbiology and Biotechnology, 17, 1805-10.
120. Kohout, C. E. (2019). The plant growth-promoting potential of root-associated bacteria from plants growing in stressed environments. Master thesis, University of Saskatchewan.
121. Kondo, K., Nakata, N. & Nishihara, E. (2004). Effect of purple nonsulfur bacteria (Rhodobacter sphaeroides) on the growth and quality of komatsuna under different light qualities. Environment Control in Biology, 42, 247-253.
122. Kondo, K., Nakata, N. & Nishihara, E. (2008). Effect of purple non-sulfur bacterium (Rhodobacter sphaeroides) application on the growth and quality of spinach and komatsuna. Journal of the Japanese Society of Agricultural Technology Management, 14, 198-203.
123. Kondo, K., Nakata, N. & Nishihara, E. (2010). Effect of the purple non-sulfur bacterium (Rhodobacter sphaeroides) on the brix, titratable acidity, ascorbic acid, organic acid, lycopene and beta-carotene in tomato fruit. Journal of Food Agriculture & Environment, 8, 743-746.
124. Krey, T., Vassilev, N., Baum, C. & Eichler-Löbermann, B. (2013). Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. European Journal of Soil Biology, 55, 124-130.
125. Kumar, G., Bakonyi, P., Kobayashi, T., Xu, K.-Q., Sivagurunathan, P., Kim, S.-H., Buitrón, G., Nemestóthy, N. & Bélafi-Bakó, K. (2016). Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen. Renewable and Sustainable Energy Reviews, 57, 879-891.
126. Kumar, R., Singh, L., Wahid, Z. A. & Din, M. F. M. (2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. International Journal of Energy Research, 39, 1048-1067.
127. Kumar, R., Singh, L., Zularisam, A. W. & Hai, F. I. (2018). Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. International Journal of Energy Research, 42, 369-394.
128. Kurokura, T., Hiraide, S., Shimamura, Y. & Yamane, K. (2017). PGPR improves yield of strawberry species under less-fertilized conditions. Environmental Control in Biology, 55, 121-128.
129. Lam, H. M., Coschigano, K. T., Oliveira, I. C., Melo-Oliveira, R. & Coruzzi, G. M. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 569-593.
130. Lapinsonnière, L., Picot, M., Poriel, C. & Barrière, F. (2013). Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances. Electroanalysis, 25, 601-605.
131. Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T. & Lang, A. S. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature biotechnology, 22, 55.
132. Lee, K.-H., Koh, R.-H. & Song, H.-G. (2009). Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions. Journal of microbiology (Seoul, Korea), 46, 641-6.
133. Lee, S. G., Ko, K. D. & Lee, C. W. (2008). Influence of post-fruit set plant exposure to low light intensity on growth and yield of oriental melon. Acta Horticulturae, 771, 249-255.
134. Lee, S.-K., Lur, H.-S. & Liu, C.-T. (2021). From lab to farm: elucidating the beneficial roles of photosynthetic bacteria in sustainable agriculture. Microorganisms, 9, 2453.
135. Lee, S.-K., Lur, H.-S., Lo, K.-J., Cheng, K.-C., Chuang, C.-C., Tang, S.-J., Yang, Z.-W. & Liu, C.-T. (2016). Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Applied Microbiology and Biotechnology, 100, 7977-7987.
136. Lee, Y., Do, V. G., Kim, S., Kweon, H. & Mcghie, T. K. (2021b). Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLOS ONE, 16, e0249975.
137. Li, X., Wang, X., Zhao, Q., Wan, L., Li, Y. & Zhou, Q. (2016). Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosensors and Bioelectronics, 85, 135-141.
138. Li, X., Zhao, W., Zhou, X., Feng, J., Gao, Y., Yao, X., Liu, Y., Liu, J., Yang, R., Zhao, F. & Wang, S. (2017). The use of toluidine blue staining combined with paraffin sectioning and the optimization of freeze-thaw counting methods for analysing root-knot nematodes in tomato. Horticulture, Environment, and Biotechnology, 58, 620-626.
139. Li, Y. & Dai, H. (2014). Recent advances in zinc–air batteries. Chemical Society Reviews, 43, 5257-5275.
140. Lin, F., Kuo, Y., Hsieh, J., Tsai, H., Liao, Y. & Lee, H. (2015). A self-powering wireless environment monitoring system using soil energy. IEEE Sensors Journal, 15, 3751-3758.
141. Lin, P., Yan, Z.-F. & Li, C.-T. (2020). Luteimonas cellulosilyticus sp. nov., Cellulose-degrading bacterium isolated from soil in Changguangxi national wetland park, China. Current Microbiology, 77, 1341-1347.
142. Ling, N., Chen, D., Guo, H., Wei, J., Bai, Y., Shen, Q. & Hu, S. (2017). Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe. Geoderma, 292, 25-33.
143. Liu, C. H., Lee, S. K., Ou, I. C., Tsai, K. J., Lee, Y., Chu, Y. H., Liao, Y. T. & Liu, C. T. (2021). Essential factors that affect bioelectricity generation by Rhodopseudomonas palustris strain PS3 in paddy soil microbial fuel cells. International Journal of Energy Research, 45, 2231-2244.
144. Liu, H., Ramnarayanan, R. & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281-2285.
145. Liu, J., Guo, T., Wang, D. & Ying, H. (2015). Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell. Biotechnology Letters, 37, 95-100.
146. Liu, L., Zhang, T., Gilliam, F. S., Gundersen, P., Zhang, W., Chen, H. & Mo, J. (2013). Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLOS ONE, 8, e61188.
147. Liu, N., Zhou, B.-L., Zhao, X., Lu, B., Li, Y. & Hao, J. (2009). Grafting eggplant onto tomato rootstock to suppress verticillium dahliae infection: the effect of root exudates. HortScience, 44, 2058-2062.
148. Liu, S., Zhang, G., Li, X. & Zhang, J. (2014). Microbial production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 98, 7349-57.
149. Liu, T., Yu, Y.-Y., Deng, X.-P., Ng, C. K., Cao, B., Wang, J.-Y., Rice, S. A., Kjelleberg, S. & Song, H. (2015). Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnology and Bioengineering, 112, 2051-2059.
150. Liu, X. X., Wang, L., Wang, Y. J. & Cai, L. L. (2010). D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Applied Biochemistry and Biotechnology, 160, 822-30.
151. Liu, X., Huang, L., Ravichandran, K. & Sánchez-Sinencio, E. (2016). A highly efficient reconfigurable charge pump energy harvester with wide harvesting range and two-dimensional mppt for internet of things. IEEE Journal of Solid-State Circuits, 51, 1302-1312.
152. Lo, K. J., Lee, S. K. & Liu, C. T. (2020). Development of a low-cost culture medium for the rapid production of plant growth-promoting Rhodopseudomonas palustris strain PS3. PLOS ONE, 15.
153. Lo, K. J., Lin, S. S., Lu, C. W., Kuo, C. H. & Liu, C. T. (2018). Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3). Scientific Reports, 8, 12769.
154. Logan, B. (2004). Biologically extracting energy from wastewater: Biohydrogen production and microbial fuel cells. Environmental Science & Technology, 38.
155. Logan, B. E. & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14, 512-518.
156. Logan, B. E. & Regan, J. M. (2006). Microbial fuel cells—challenges and applications. Environmental Science & Technology, 40, 5172-5180.
157. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. & Rabaey, K. (2006). Microbial Fuel Cells:  methodology and technology. Environmental Science & Technology, 40, 5181-5192.
158. Logan, B., Cheng, S., Watson, V. & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41, 3341-3346.
159. Love, M. I., Huber, W. & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.
160. Lovley, D. R. (2012). Electromicrobiology. Annu Rev Microbiol, 66, 391-409.
161. Lu, Z., Chang, D., Ma, J., Huang, G., Cai, L. & Zhang, L. (2015). Behavior of metal ions in bioelectrochemical systems: A review. Journal of Power Sources, 275, 243-260.
162. Lu, Z., Chang, D., Ma, J., Huang, G., Cai, L. & Zhang, L. (2015). Behavior of metal ions in bioelectrochemical systems: A review. Journal of Power Sources, 275, 243-260.
163. Luo, L., Wang, P., Zhai, Z., Su, P., Tan, X., Zhang, D., Zhang, Z. & Liu, Y. (2019). The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities. AMB Express, 9, 173.
164. Madigan, M. & Jung, D. (2009). An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, Springer, Dordrecht, 1-15.
165. Magotra, V. K., Kumar, S., Kang, T. W., Inamdar, A. I., Aqueel, A. T., Im, H., Ghodake, G., Shinde, S., Waghmode, D. P. & Jeon, H. C. (2020). Compost soil microbial fuel cell to generate power using urea as fuel. Scientific Reports, 10, 4154.
166. Maheshwari, D. K., Dheeman, S. & Agarwal, M. (2015). Phytohormone-Producing PGPR for Sustainable Agriculture. In: Maheshwari, D. K. (eds.) Bacterial Metabolites in Sustainable Agroecosystem. Cham: Springer International Publishing, 159-182.
167. Malik, N., Kumar, D., Mungali, M., & Tripathi, P. (2022). Organic farming: a key to sustainable development. In: R. Sengar, R. Chaudhary, & H. Bhadauriya (eds.), Handbook of Research on Green Technologies for Sustainable Management of Agricultural Resources, 370-384, IGI Global.
168. Mariana, U. B., Hernández-Mendoza, J., Armando, G. C., Veronica, A. & Larios-Serrato, V. (2020). Independent tryptophan pathway in Trichoderma asperellum and T. koningiopsis: New insights with bioinformatic and molecular analysis. bioRxiv, 2020.07.31.230920.
169. Martin, M. (2011). CUTADAPT removes adapter sequences from high-throughput sequencing reads. European Molecular Biology network Journal, 17.
170. Martínez-Viveros, O., Jorquera, M., Crowley, D., Gajardo, G. & Mora, M. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293-319.
171. Mathimani, T., Baldinelli, A., Rajendran, K., Prabakar, D., Matheswaran, M., Pieter Van Leeuwen, R. & Pugazhendhi, A. (2019). Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps. Journal of Cleaner Production, 208, 1053-1064.
172. Mathimani, T., Uma, L. & Prabaharan, D. (2015). Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization. Renewable Energy, 81, 523-533.
173. Mckinlay, J. B. & Harwood, C. S. (2010). Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the National Academy of Sciences, 107, 11669.
174. Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416.
175. Mehmood, A., Hussain, A., Irshad, M., Hamayun, M., Iqbal, A. & Khan, N. (2019). In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis, 77, 225-235.
176. Mickan, B. S., Alsharmani, A. R., Solaiman, Z. M., Leopold, M. & Abbott, L. K. (2021). Plant-dependent soil bacterial responses following amendment with a multispecies microbial biostimulant compared to rock mineral and chemical fertilizers. Frontiers in Plant Science, 11.
177. Mohanty, P., Singh, P. K., Chakraborty, D., Mishra, S. & Pattnaik, R. (2021). Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in Sustainable Food Systems, 5.
178. Mohd Zaini Makhtar, M. & Tajarudin, H. A. (2020). Electricity generation using membrane-less microbial fuel cell powered by sludge supplemented with lignocellulosic waste. International Journal of Energy Research, 44, 3260-3265.
179. Moqsud, M. A., Omine, K., Yasufuku, N., Hyodo, M. & Nakata, Y. (2013). Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Management, 33, 2465-2469.
180. Mrozik, W., Rajaeifar, M. A., Heidrich, O. & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14, 6099-6121.
181. Mujahid, M., Sasikala, C. & Ramana, C. V. (2011). Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2. Applied microbiology and biotechnology, 89, 1001-1008.
182. Naeem, M., Jin, Z., Wan, G., Liu, D., Liu, H., Yoneyama, K. & Zhou, W. (2010). 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant and Soil, 332, 405-415.
183. Navarrete, A. A., Soares, T., Rossetto, R., Van Veen, J. A., Tsai, S. M. & Kuramae, E. E. (2015). Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie Van Leeuwenhoek, 108, 741-52.
184. Nelson, D. W. & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In: Sparks DL et al (eds.), Methods of Soil Analysis. Part 3. Chemical Methods. American Society of Agronomy, Soil Science Society of America, Madison, United States, 961-1010.
185. Nguyen, H.-U.-D., Nguyen, D.-T. & Taguchi, K. (2021a). A novel design portable plugged-type soil microbial fuel cell for bioelectricity generation. Energies, 14, 553.
186. Nguyen, H.-U.-D., Nguyen, D.-T. & Taguchi, K. (2021b). A portable soil microbial fuel cell for sensing soil water content. Measurement: Sensors, 18, 100231.
187. Nguyen, T. T., Luong, T. T., Tran, P. H., Bui, H. T., Nguyen, H. Q., Dinh, H. T., Kim, B. H. & Pham, H. T. (2015). A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode. Microbial Biotechnology, 8, 579-89.
188. Niessen, J., Schröder, U. & Scholz, F. (2004). Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch. Electrochemistry Communications, 6, 955-958.
189. Niitsu, K. & Nakazato, K. (2017). Biosensor integrated circuits using cmos technology. IEEJ Transactions on Sensors and Micromachines, 137, 291-295.
190. Nimje, V. R., Chen, C.-Y., Chen, C.-C., Jean, J.-S., Reddy, A. S., Fan, C.-W., Pan, K.-Y., Liu, H.-T. & Chen, J.-L. (2009). Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. Journal of Power Sources, 190, 258-263.
191. Nookongbut, P., Jingjit, N., Kantachote, D., Sukhoom, A. & Tantirungkij, M. (2020). Selection of acid tolerant purple nonsulfur bacteria for application in agriculture. Chiang Mai University Journal of Natural Sciences, 19, 775.
192. Norman, J. S. & Friesen, M. L. (2017). Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs. The ISME Journal, 11, 315-326.
193. Nunkaew, T., Kantachote, D., Kanzaki, H., Nitoda, T. & Ritchie, R. J. (2014). Effects of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electronic Journal of Biotechnology, 17, 4-4.
194. O’brien, F. J. M. (2016). The role of the rhizosphere microbial community in plant chemistry and aphid herbivory in Brassica oleracea. Doctoral, University of Southampton.
195. Oancea, F., Raut, I. & Zamfiropol Cristea, V. (2017). Influence of soil treatment with microbial plant biostimulant on tomato yield and quality. Agriculture&Food Journal of International Scientific Publications 1314-8591, 5, 156-165.
196. Oda, Y., Star, B., Huisman, L. A., Gottschal, J. C. & Forney, L. J. (2003). Biogeography of the purple nonsulfur bacterium Rhodopseudomonas palustris. Applied and Environmental Microbiology, 69, 5186-5191.
197. Oda, Y., Wanders, W., Huisman, L. A., Meijer, W. G., Gottschal, J. C. & Forney, L. J. (2002). Genotypic and phenotypic diversity within species of purple nonsulfur bacteria isolated from aquatic sediments. Applied and Environmental Microbiology, 68, 3467-3477.
198. Ofek, M., Voronov-Goldman, M., Hadar, Y. & Minz, D. (2014). Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 16, 2157-2167.
199. Olivares, J., Bedmar, E. J. & Sanjuán, J. (2013). Biological nitrogen fixation in the context of global change. Molecular Plant-Microbe Interactions, 26, 486-494.
200. Olsen, S. R. & Sommers, L. E. (1983). Phosphorus. In: Page AL, Miller RH, Keeney, DR, (Eds.), Methods of Soil Analysis, Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, United States, 403-430.
201. Omine, K., Chicas, S. D. & Sivasankar, V. (2018). Current Advances in Paddy Plant Microbial Fuel Cells. In: Sivasankar, V., Mylsamy, P. & Omine, K. (eds.) Microbial Fuel Cell Technology for Bioelectricity. Cham: Springer International Publishing.
202. Ou, I. C., Yang, J. P., Liu, C. H., Huang, K. J., Tsai, K. J., Lee, Y., Chu, Y. H. & Liao, Y. T. (Year) Published. A wide-range capacitive DC-DC converter with 2D-MPPT for soil/solar energy extraction. 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), 5-7 Nov. 2018 2018. 37-38.
203. Ou, I., Tsai, K., Chu, Y. & Liao, Y. (2019). Self-sustaining soil electrical conductance measurement using a DC–DC Power Converter. IEEE Sensors Journal, 19, 10560-10567.
204. Pandit, S. & Das, D. (2018). Principles of microbial fuel cell for the power generation. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham.
205. Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101, 1533-1543.
206. Pimentel, D. & Wilson, A. (2004). World population, agriculture and malnutrition. World Watch, 17, 22-25.
207. Poddar, S. & Khurana, S. (2011). Geobacter: the electric microbe! Efficient microbial fuel cells to generate clean, cheap electricity. Indian journal of microbiology, 51, 240-241.
208. Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London. Series b, containing papers of a biological character, 84, 260-276.
209. Price, M. N., Dehal, P. S. & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLOS ONE, 5, e9490.
210. Qiao, Y., Wu, X.-S. & Li, C. M. (2014). Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflake nickel oxide array in microbial fuel cells. Journal of Power Sources, 266, 226-231.
211. Qin, J., Chao, K. & Kim, M. S. (2012). Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biology and Technology, 71, 21-31.
212. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
213. Quilchano, C. & Marañón, T. (2002). Dehydrogenase activity in Mediterranean forest soils. Biology and Fertility of Soils, 35, 102-107.
214. Quy, V. K., Hau, N. V., Anh, D. V., Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G. & Muzirafuti, A. (2022). IoT-enabled smart agriculture: architecture, applications, and challenges. Applied Sciences, 12.
215. Rabaey, K. & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23, 291-298.
216. Raghavulu, S. V., Goud, R. K., Sarma, P. & Mohan, S. V. (2011). Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresource Technology, 102, 2751-2757.
217. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. & Oh, S.-E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54, 745-756.
218. Rangjaroen, C., Sungthong, R., Rerkasem, B., Teaumroong, N., Noisangiam, R. & Lumyong, S. (2017). Untapped endophytic colonization and plant growth-promoting potential of the genus Novosphingobium to optimize rice cultivation. Microbes and Environments, 32, 84-87.
219. Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J. & Wu, S. M. (1984). Photodynamic herbicides: 1. Concept and phenomenology. Enzyme and Microbial Technology, 6, 390-396.
220. Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L. & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72, 7345-7348.
221. Reich, M., Aghajanzadeh, T., & De Kok, L.J. (2014). Physiological basis of plant nutrient use efficiency – concepts, opportunities and challenges for its improvement. In: Hawkesford, M., Kopriva, S., & De Kok, L., (eds.), Nutrient Use Efficiency in Plants. Plant Ecophysiology, Volume 10, Springer, Cham.
222. Ren, Z., Steinberg, L. M. & Regan, J. M. (2008). Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Science & Technology, 58, 617-22.
223. Riaz, U., Mehdi, S. M., Iqbal, S., Khalid, H. I., Qadir, A. A., Anum, W., Ahmad, M. & Murtaza, G. (2020). Bio-fertilizers: eco-friendly approach for plant and soil environment. Bioremediation and Biotechnology. Springer.
224. Riemer, J., Hoepken, H. H., Czerwinska, H., Robinson, S. R. & Dringen, R. (2004). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Analytical Biochemistry, 331, 370-375.
225. Robert Tabita, F. (2004). Research on carbon dioxide fixation in photosynthetic microorganisms (1971–present). Photosynthesis Research, 80, 315-332.
 

226. Rodrigo Omar, M.-T., Porfirio, J.-L., Ronald-Ernesto, O.-C., Manuel, S.-V., Iran, A.-T. & Gelacio, A.-S. (2019). Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and at LEAF readings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47.
227. Rodrigo, J., Boltes, K. & Esteve-Nuñez, A. (2014). Microbial-electrochemical bioremediation and detoxification of dibenzothiophene-polluted soil. Chemosphere, 101, 61-65.
228. Roper, M. M. & Ladha, J. (1995). Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw. Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems. Springer, 211-224.
229. Rosenbaum, M., He, Z. & Angenent, L. T. (2010). Light energy to bioelectricity: photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21, 259-264.
230. Rosenstock, B. & Simon, M. (2003). Consumption of dissolved amino acids and carbohydrates by limnetic bacterioplankton according to molecular weight fractions and proportions bound to humic matter. Microbial Ecology, 45, 433-43.
231. Ruzzi, M. & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124-134.
232. Sahu, P. K., Singh, D. P., Prabha, R., Meena, K. K. & Abhilash, P. C. (2019). Connecting microbial capabilities with the soil and plant health: Options for agricultural sustainability. Ecological Indicators, 105, 601-612.
233. Saikeur, A., Choorit, W., Prasertsan, P., Kantachote, D. & Sasaki, K. (2009). Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Bioscience, Biotechnology, and Biochemistry, 73, 987-992.
234. Sakarika, M., Spanoghe, J., Sui, Y., Wambacq, E., Grunert, O., Haesaert, G., Spiller, M. & Vlaeminck, S. E. (2020). Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microbial Biotechnology, 13, 1336-1365.
235. Sakpirom, J., Kantachote, D., Nunkaew, T. & Khan, E. (2017). Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in microbiology, 168, 266-275.
236. Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., Peix, A. & Santa-Regina, I. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37, 1123-1131.
237. Santi, C., Bogusz, D. & Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111, 743-767.
238. Santoro, C., Arbizzani, C., Erable, B. & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225-244.
239. Santoro, M., Cappellari, L., Giordano, W. & Banchio, E. (2015). Production of volatile organic compounds in PGPR. In: Cassñn, F. D., Okon, Y. & Creus, C. M. (eds.) Handbook for Azospirillum: Technical Issues and Protocols. Cham: Springer International Publishing, pp. 307–317.
240. Santos, M. S., Nogueira, M. A. & Hungria, M. (2019). Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9, 205.
241. Saravanan, A. P., Mathimani, T., Deviram, G., Rajendran, K. & Pugazhendhi, A. (2018). Biofuel policy in India: A review of policy barriers in sustainable marketing of biofuel. Journal of Cleaner Production, 193, 734-747.
242. Sasaki, K., Watanabe, M., Tanaka, T. & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58, 23-29.
243. Savary, S., Nelson, A., Sparks, A. H., Willocquet, L., Duveiller, E., Mahuku, G., Forbes, G., Garrett, K. A., Hodson, D. & Padgham, J. (2011). International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Disease, 95, 1204-1216.
244. Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical chemistry chemical physics, 9, 2619-29.
245. Shang, J. & Liu, B. (2021). Application of a microbial consortium improves the growth of Camellia sinensis and influences the indigenous rhizosphere bacterial communities. Journal of Applied Microbiology, 130, 2029-2040.
246. Sheirdil, R. A., Hayat, R., Zhang, X.-X., Abbasi, N. A., Ali, S., Ahmed, M., Khattak, J. Z. & Ahmad, S. (2019). Exploring potential soil bacteria for sustainable wheat (Triticum aestivum L.) Production. Sustainability, 11, 3361.
247. Shen, F.-T. & Lin, S.-H. (2021). Shifts in bacterial community associated with green manure soybean intercropping and edaphic properties in a tea plantation. Sustainability, 13, 11478.
248. Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J. & Firestone, M. K. (2016). The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 19, 926-936.
249. Shreeram, D. D., Panmanee, W., Mcdaniel, C. T., Daniel, S., Schaefer, D. W. & Hassett, D. J. (2018). Effect of impaired twitching motility and biofilm dispersion on performance of Pseudomonas aeruginosa-powered microbial fuel cells. Journal of Industrial Microbiology and Biotechnology, 45, 103-109.
250. Simeon, I. M., Herkendell, K., Pant, D. & Freitag, R. (2022). Electrochemical evaluation of different polymer binders for the production of carbon-modified stainless-steel electrodes for sustainable power generation using a soil microbial fuel cell. Chemical Engineering Journal Advances, 10, 100246.
251. Singh, S., Dwivedi, C. & Pandey, A. 2016. Electricity generation in membrane-less single chambered microbial fuel cell, International conference on control, computing, communication and materials (ICCCCM), 2016,.Allahbad, India, 21-22 October, 1-4.
252. Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. Academic Press, pp.152-178.
253. Slate, A. J., Whitehead, K. A., Brownson, D. A. & Banks, C. E. (2019). Microbial fuel cells: An overview of current technology. Renewable and sustainable energy reviews, 101, 60-81.
254. Smit, A. M., Strabala, T. J., Peng, L., Rawson, P., Lloyd-Jones, G. & Jordan, T. W. (2012). Proteomic phenotyping of Novosphingobium nitrogenifigens reveals a robust capacity for simultaneous nitrogen fixation, polyhydroxyalkanoate production, and resistance to reactive oxygen species. Applied and Environmental Microbiology, 78, 4802-15.
255. Smit, E., Leeflang, P., Gommans, S., Broek, J. V. D., Mil, S. V. & Wernars, K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 67, 2284-2291.
256. Spaepen, S. & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor perspectives in biology, 3, a001438.
257. Spaepen, S., Vanderleyden, J. & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31, 425-448.
258. Spain, A. M., Krumholz, L. R. & Elshahed, M. S. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME journal, 3, 992-1000.
259. Stefan, M., Munteanu, N., Stoleru, V. & Marius, M. (2013). Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Romanian Biotechnological Letters, 18, 12.
260. Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & De Jonge, R. (2018). Microbial small molecules – weapons of plant subversion. Natural Product Reports, 35, 410-433.
261. Strycharz-Glaven, S. M., Snider, R. M., Guiseppi-Elie, A. & Tender, L. M. (2011). On the electrical conductivity of microbial nanowires and biofilms. Energy & Environmental Science, 4, 4366-4379.
262. Su, P., Tan, X., Li, C., Zhang, D., Cheng, J., Zhang, S., Zhou, X., Yan, Q., Peng, J., Zhang, Z., Liu, Y. & Lu, X. (2017a). Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses. Microbial Biotechnology, 10, 612-624..
263. Su, P., Zhang, D., Zhang, Z., Chen, A., Hamid, M. R., Li, C., Du, J., Cheng, J. E., Tan, X., Zhen, L., Zhai, Z., Tang, W., Chen, J., Zhou, X. & Liu, Y. (2019). Characterization of Rhodopseudomonas palustris population dynamics on tobacco phyllosphere and induction of plant resistance to Tobacco mosaic virus. Microbial Biotechnology, 12, 1453-1463.
264. Sun, Y., Feng, Z., Tomura, T., Suzuki, A., Miyano, S., Tsuge, T., Mori, H., Suh, J.-W., Iizuka, T., Fudou, R. & Ojika, M. (2016). Heterologous production of the marine myxobacterial antibiotic haliangicin and its unnatural analogues generated by engineering of the biochemical pathway. Scientific Reports, 6, 22091.
265. Tabatabai, M. A. & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301-307.
266. Tanaka, N., Kogo, T., Hirai, N., Ogawa, A., Kanematsu, H., Takahara, J., Awazu, A., Fujita, N., Haruzono, Y., Ichida, S. & Tanaka, Y. (2019). In-situ detection based on the biofilm hydrophilicity for environmental biofilm formation. Scientific Reports, 9, 8070.
267. Tharali, A. D., Sain, N. & Osborne, W. J. (2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 9, 252-266.
268. Timmusk, S., Behers, L., Muthoni, J., Muraya, A. & Aronsson, A.-C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8.
269. Tirry, N., Kouchou, A., Laghmari, G., Lemjereb, M., Hnadi, H., Amrani, K., Bahafid, W. & El Ghachtouli, N. (2021). Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatalysis and Agricultural Biotechnology, 31, 101914.
270. Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A. & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 42, 117-126.
271. Venkata Mohan, S., Saravanan, R., Raghavulu, S. V., Mohanakrishna, G. & Sarma, P. N. (2008). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Bioresource Technology, 99, 596-603.
272. Venkidusamy, K., Megharaj, M., Schröder, U., Karouta, F., Mohan, S. V. & Naidu, R. (2015). Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. RSC Advances, 5, 100790-100798.
273. Verberkmoes, N. C., Shah, M. B., Lankford, P. K., Pelletier, D. A., Strader, M. B., Tabb, D. L., Mcdonald, W. H., Barton, J. W., Hurst, G. B., Hauser, L., Davison, B. H., Beatty, J. T., Harwood, C. S., Tabita, F. R., Hettich, R. L. & Larimer, F. W. (2006). Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. Journal of Proteome Research, 5, 287-298.
274. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586.
275. Vishwanathan, A. S. (2021). Microbial fuel cells: a comprehensive review for beginners. 3 Biotech, 11, 248.
276. Wallenstein, M. D. (2017). Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere, 3, 230-232.
277. Wang, D. D., Zhao, W., Reyila, M., Huang, K. C., Liu, S. & Cui, B. K. (2022). Diversity of Microbial Communities of Pinus sylvestris var. mongolica at Spatial Scale. Microorganisms, 10.
278. Wang, J., Li, Q., Xu, S., Zhao, W., Lei, Y., Song, C. & Huang, Z. (2018a). Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial community. Frontiers in Microbiology, 9, 1692.
279. Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X. & Lin, X. (2021). The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Frontiers in Microbiology, 12.
280. Wang, Z., Zhang, J., Wu, F. & Zhou, X. (2018b). Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid. PLOS One, 13, e0200007.
281. Wani, S. H., Kumar, V., Shriram, V. & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4, 162-176.
282. Weil, R., Stine, M., Gruver, J. & Samson-Liebig, S. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18, 3-17.
283. Wolińska, A., Kruczyńska, A., Podlewski, J., Słomczewski, A., Grządziel, J., Gałązka, A. & Kuźniar, A. (2022). Does use of an intercropping mixture really improve the biology of monocultural soils-a search for bacterial indicators of sensitivity and resistance to long-term maize monoculture. Agronomy, 12, 613.
284. Wong, M.-C., Lam, C.-S., Wang, L. & Choi, W.-H. (2019). Chapter 9 - Smarter Solutions Based on Power Electronics. In: Taşcıkaraoğlu, A. & Erdin÷, O. (eds.) Pathways to a Smarter Power System. Academic Press, pp.247-288.
285. Wong, W.-T., Tseng, C.-H., Hsu, S.-H., Lur, H.-S., Mo, C.-W., Huang, C.-N., Hsu, S.-C., Lee, K.-T. & Liu, C.-T. (2014). Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes and Environments, 29, 303-313.
286. Woodward, L. & Tartakovsky, B. (2019). A simple power management circuit for microbial fuel cell operation with intermittent electrical load connection. The Canadian Journal of Chemical Engineering, 97, 93-98.
287. Wu, Y., Jin, X., Liao, W., Hu, L., Dawuda, M. M., Zhao, X., Tang, Z., Gong, T. & Yu, J. (2018). 5-Aminolevulinic Acid (ALA) Alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Frontiers in Plant Science, 9.
288. Xiang, K., Qiao, Y., Ching, C. B. & Li, C. M. (2009). GldA overexpressing-engineered E. coli as superior electrocatalyst for microbial fuel cells. Electrochemistry Communications, 11, 1593-1595.
289. Xiao, N. (2017). Use of a Purple Non-Sulphur Bacterium, Rhodopseudomonas palustris, as a Biocatalyst for Hydrogen Production from Glycerol. Ph. D. Thesis. University of Cambridge.
290. Xing, D., Zuo, Y., Cheng, S., Regan, J. M. & Logan, B. E. (2008). Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology, 42, 4146-4151.
291. Xiong, J.-L., Wang, H.-C., Tan, X.-Y., Zhang, C.-L. & Naeem, M. S. (2018). 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiology and Biochemistry, 124, 88-99.
292. Xu, H., Ding, J. & Dang, J. (2021a). Design and Characteristics of CMOS Inverter based on Multisim and Cadence. Journal of Physics: Conference Series, 2108, 012034.
293. Xu, J., Feng, Y., Wang, Y. & Lin, X. (2018). Effect of rhizobacterium Rhodopseudomonas palustris inoculation on Stevia rebaudiana plant growth and soil microbial community. Pedosphere, 28, 793-803.
294. Xu, J., Feng, Y., Wang, Y., Luo, X., Tang, J. & Lin, X. (2016). The foliar spray of Rhodopseudomonas palustris grown under stevia residue extract promotes plant growth via changing soil microbial community. Journal of Soils and Sediments, 16, 916-923.
295. Xu, S., Shao, R., Cao, B. & Chang, L. (2021). Single-phase grid-connected PV system with golden section search-based MPPT algorithm. Chinese Journal of Electrical Engineering, 7, 25-36.
296. Yang, G., Wei, Q., Huang, H. & Xia, J. (2020). Amino acid transporters in plant cells: a brief review. Plants, 9, 967.
297. Yang, J.-P., Yu-Lee, Liao, Y.-T., Tsai, K.-J. & Cheng, N.-C. (2015). A wireless temperature/humidity monitoring system using soil energy. Computer and Communication Technical Journal, 17-26.
298. Yang, M., Yang, D. & Yu, X. (2018). Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages. PLOS ONE, 13, e0190959.
299. Yang, S.-X., Liao, B., Xiao, R.-B. & Li, J.-T. (2019). Effects of amendments on soil microbial diversity, enzyme activity and nutrient accumulation after assisted phytostabilization of an extremely acidic metalliferous mine soil. Applied Sciences, 9, 1552.
300. Yi, H., Nevin, K. P., Kim, B.-C., Franks, A. E., Klimes, A., Tender, L. M. & Lovley, D. R. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics, 24, 3498-3503.
301. Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W. & Glöckner, F. O. (2014). The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Research, 42, D643-8.
302. Yin, L., Li, X., Liu, Y., Zhang, D., Zhang, S. & Luo, X. (2012). Biodegradation of cypermethrin by Rhodopseudomonas palustris GJ-22 isolated from activated sludge. Fresenius Environmental Bulletin, 21, 397-405.
303. Yousaf, S., Anam, M., Saeed, S. & Ali, N. (2017). Electricigens: source, enrichment and limitations. Environmental Technology Reviews, 6, 117-134.
304. Zhai, Z., Chen, A., Zhou, H., Zhang, D., Du, X., Liu, Q., Wu, X., Cheng, J., Chen, L., Hu, F., Liu, Y. & Su, P. (2021). Structural characterization and functional activity of an exopolysaccharide secreted by Rhodopseudomonas palustris GJ-22. International Journal of Biological Macromolecules, 167, 160-168.
305. Zhang, D., Zhu, Y., Pedrycz, W. & Guo, Y. (2016). A terrestrial microbial fuel cell for powering a single-hop wireless sensor network. International Journal of Molecular Sciences, 17, 762.
306. Zhang, J., Liu, Y.-X., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X. & Guo, X. (2019a). NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 37, 676-684.
307. Zhang, L.-N., Wang, D.-C., Hu, Q., Dai, X.-Q., Xie, Y.-S., Li, Q., Liu, H.-M. & Guo, J.-H. (2019b). Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Frontiers in Microbiology, 1668.
308. Zhang, P., Jin, T., Kumar Sahu, S., Xu, J., Shi, Q., Liu, H. & Wang, Y. (2019). The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules (Basel, Switzerland), 24, 1411.
309. Zhao, J., Li, X.-F., Ren, Y.-P., Wang, X.-H. & Jian, C. (2012). Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells. Journal of Chemical Technology & Biotechnology, 87, 1567-1573.
310. Zhelezova, A., Chernov, T., Nikitin, D., Tkhakakhova, A., Ksenofontova, N., Zverev, A., Kutovaya, O. & Semenov, M. (2022). Seasonal dynamics of soil bacterial community under long-term abandoned cropland in boreal climate. Agronomy, 12, 519.
311. Zhou, X., Zhang, J., Pan, D., Ge, X., Xue, J., Chen, S. & Wu, F. (2018). p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biology and Fertility of Soils, 54, 363-372.
312. Zuo, Y., Xing, D., Regan, J. M. & Logan, B. E. (2008). Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 74, 3130-3137.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83190-
dc.description.abstract沼澤紅假單胞菌PS3菌株屬於光合細菌,已被視為具有潛力的植物促生根際細菌(PGPR)。過去研究發現無論是在施用化學肥料的土壤或是水耕系統中,施用 PS3皆能有效提升葉菜類的生長。此外,在PS3的基因組中因含有許多與電子傳遞相關的基因,推測它也具有發電的潛力。有鑑於此,本博士論文的研究目的為探討PS3菌株在有機農業與綠色能源中所扮演的角色。

在本論文的第一部分(第二章)探討接種PS3 對於栽種在有機田的番茄其生長與土壤健康的影響。研究結果顯示接種PS3的番茄其果實產量與收穫質量皆高於未接種的對照組。此外土壤養分的可利用性以及與養分循環相關的細菌屬豐度皆伴隨著PS3的接種而增加。為了驗證上述田間試驗結果,採用了兩種不同的番茄品種進行盆栽實驗。研究結果除了再現植株與果實的農藝性狀外,也發現Haliangium屬的微生物豐度在接種PS3的土壤中與田間一樣有明顯增加,推測該屬微生物應與PS3具有協同作用功效。綜上所述,我推測PS3的接種改善了土壤理化性質,同時影響了土壤微生物族群組成,因而促進番茄生長與提升果實品質。

在本論文的第二部分(第三章)則是評估將PS3接種到土壤電池後對於發電的影響以及釐清可促進發電的因子。結果顯示PS3可透過在電極周圍形成生物膜、藉由照光進行二氧化碳固定,並與土壤中的亞鐵離子進行厭氧氧化來提升電極周邊的電子傳遞效率以增強土壤電池的電力。此外,CMOS DC-DC轉換器結合最大功率点追踪(2D-MPPT)技術設計成能量收集系統以能夠穩定且有效率地從土壤內擷取能量。因此,該裝置有望在實際應用上成為高轉換效率、低成本、低耗能的綠能收集系統。
本研究所呈現的沼澤紅假單胞菌在不同層面的應用將可為農業環境與能源問題提供一種有效的永續解決方案。
zh_TW
dc.description.abstractRhodopseudomonas palustris strain PS3 is a phototrophic bacterium, which has been considered an elite plant growth-promoting rhizobacterium (PGPR). It could improve the biomass of several leafy crops while it was inoculated in soil treated with chemical fertilizer or in a hydroponic system. This bacterium also contains many putative electron transport-related genes in the genome, suggesting it can act as a potential electricigen to produce electricity. The objective of my Ph.D. study was to elucidate the roles of PS3 in both organic agriculture and green energy.
In chapter 2 of this dissertation, I investigated the influence of PS3 on tomato growth and soil health in an organic field. The findings proved that PS3 inoculation did improve the yield of tomato fruit and the harvesting quality. Soil nutrient availability and the abundance of bacterial genera related to nutrient cycling were both increased by PS3 inoculation. The field result was further verified by pot evaluation with two tomato cultivars, and the genus Haliangium was notably higher in the PS3 treatments, suggesting that this genus may have synergistic interactions with PS3. Accordingly, I assume that the improved soil physicochemical and microbiota caused by PS3 inoculation results in beneficial effects on growth, fruit yield, and quality of tomatoes.
In chapter 3, I evaluated the effects of PS3 inoculation on the performance of a soil-based microbial fuel cell (MFC), and clarify the essential factors that contributed to its power generation. PS3 could enhance power generation of the apparatus by elevating the electron transport surrounding electrodes through biofilm formation and interplay between phototrophic fixation of ambient CO2 and anaerobic oxidation of ferrous iron in the soil. The CMOS DC-DC converter with 2D-MPPT was designed as a power harvesting system for the soil-based MFCs to harvest energy in a more efficient and reliable fashion. This apparatus is expected to provide a potentially low-cost and low-energy system with a high power conversion efficiency for practical applications in the future.
Taken together, this research provides a sustainable solution to the issues of agricultural environment and energy by the application of the elite plant-associated phototrophic bacterium.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:14:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-10T17:14:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract II
Contents IV
List of figures V
List of tables VII
Chapter 1 General introduction 1
1.1 beneficial roles of photosynthetic bacteria in sustainable agriculture 1
1.2 Bioelectricity generation by photosynthetic bacteria using paddy soil microbial fuel cell 16
1.3 Rationale and specific aims 23
Chapter 2: A photosynthetic bacterial inoculant exerts beneficial effects on the yield and quality of tomato and affects bacterial community structure in an organic field 38
2.1 Summary 39
2.2 Introduction 40
2.3 Materials and methods 41
2.4 Results 50
2.5 Discussion 57
2.6 Figures and Tables 63
Chapter 3: Essential factors that affect bioelectricity generation by Rhodopseudomonas palustris strain PS3 in paddy soil microbial fuel cells 88
3.1 Summary 89
3.2 Introduction 90
3.3 Materials and methods 93
3.4 Results 97
3.5 Discussion 104
3.6 Figures and Tables 108
Chapter 4: Concluding remarks and future perspectives 124
4.1 R. palustris PS3 as a promising biofertilizer in sustainable agriculture 124
4.2 Significance and future direction for chapter 2 125
4.3 R. palustris PS3 as potential green energy in agriculture 127
4.4 Significance and future direction for chapter 3 129
4.5 Figures and Tables 131
References 134
Appendix 162
-
dc.language.isoen-
dc.title探討沼澤紅假單胞菌PS3菌株促進有機番茄生長與提高土壤微生物燃料電池電能之效果zh_TW
dc.titleEffects of Rhodopseudomonas palustris strain PS3 on improving tomato growth in an organic field and enhancing electricity generation in a soil-based microbial fuel cellen
dc.title.alternativeEffects of Rhodopseudomonas palustris strain PS3 on improving tomato growth in an organic field and enhancing electricity generation in a soil-based microbial fuel cell-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee郭志鴻;廖育德;許正一;江明樹;陳仁治;盧虎生zh_TW
dc.contributor.oralexamcommitteeChih-Horng Kuo;Yu-Te Liao;Zeng-Yei Hseu;Ming-Shu Chiang;Jen-Chih Chen;Huu-Sheng Luren
dc.subject.keyword光合菌,沼澤紅假單胞菌,植物促生根際細菌,番茄生長,土壤健康,土壤菌相,土壤微生物燃料電池,CMOS,2D-MPPT,zh_TW
dc.subject.keywordPhototrophic bacteria,Rhodopseudomonas plaustris,PGPR,tomato growth,soil health,soil microbiota,soil-based microbial fuel cell,power generation,CMOS,2D-MPPT,en
dc.relation.page163-
dc.identifier.doi10.6342/NTU202210001-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-10-27-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0955221026032002.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved