請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8318完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘思樺(Szu-Hua Pan) | |
| dc.contributor.author | Hsin-Yi Huang | en |
| dc.contributor.author | 黃馨儀 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:52:00Z | - |
| dc.date.available | 2025-07-07 | |
| dc.date.available | 2021-05-20T00:52:00Z | - |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | References 1. Rebecca L. Siegel, Kimberly D. Miller, and Ahmedin Jemal, Cancer Statistics, 2020. CA Cancer J Clin. 2020 Jan; 70(1):7-30. 2. Julie A. Barta, Charles A. Powell, Juan P. Wisnivesky. Global Epidemiology of Lung Cancer. Annals of Global Health. 2019; 85(1): 8, 1-16. 3. Bo Cheng, Shan Xiong, Caichen Li, Hengrui Liang, Yi Zhao, Jianfu Li, Jiang Shi, Limin Ou, Zisheng Chen, Peng Liang, Wenhua Liang and Jianxing He. An annual review of the remarkable advances in lung cancer clinical research in 2019. J Thorac Dis. 2020 Mar; 12(3): 1056–1069. 4. Kuo Y.-H., Lin Z.-Z., Yang Y.-Y., Shao Y.-Y., Shau W.-Y., Kuo R.N.C., Yang J.C.-H., and Lai M.-S. Survival of Patients with Small Cell Lung Carcinoma in Taiwan. Oncology. 2012; 82:19-24. 5. Chun-Nan Kuo, Yu-Ming Liao, Li-Na Kuo, Hui-Ju Tsai, Wei-Chiao Chang, and Yun Yen. Cancers in Taiwan: Practical Insight From Epidemiology, Treatments, Biomarkers, and Cost. J Formos Med Assoc. 2019 Sep 12; S0929-6646(19)30018-X. 6. Cecilia Zappa and Shaker A. Mousa. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016; 5(3):288-300. 7.. Adi F. Gazdar and John D. Minna. Small cell lung cancers made from scratch. J Exp Med. 2019; 216 (3): 476–478. 8. Victoria Foy, Maximilian W.Schenk, Katie Baker, Fabio Gomes, Alice Lallo, Kristopher K. Frese, Martin Forster, Caroline Dive, and Fiona Blackhall. Targeting DNA damage in SCLC. Lung Cancer. 2017; 114: 12-22. 9. Manuel Arruebo, Nuria Vilaboa, Berta Sáez-Gutierrez, Julio Lambea, Alejandro Tres, Mónica Valladares, and África González-Fernández. Assessment of the Evolution of Cancer Treatment Therapies. Cancers 2011 Sep, 3(3), 3279-3330. 10. Edgar Pérez-Herrero, and Alberto Fernández-Medarde. Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy. Eur J Pharm Biopharm. 2015 Jun; 93: 52-79. 11. Carlotta Pucci, Chiara Martinelli, and Gianni Ciofani. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 2019; 13: 961. 12. Michael O. Palumbo, Petr Kavan, Wilson H. Miller, jr., Lawrence Panasci, Sarit Assouline, Nathalie Johnson, Victor Cohen, Francois Patenaude, Michael Pollak, R. Thomas Jagoe, and Gerald Batist. Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol. 2013; 4: 57. 13. Chih-Yang Huang, Da-Tong Ju, Chih-Fen Chang, P. Muralidhar Reddy, and Bharath Kumar Velmurugan. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine (Taipei). 2017 Dec; 7(4): 23. 14. Tri Le and David E. Gerber. ALK mutation and inhibition in lung cancer. Semin Cancer Biol. 2017 Feb; 42: 81~88. 15. Kaidi Li, Maojun Yang, Naixin Liang and Shanqing Li, Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution(Review), Oncology reports, 2017 (37): 1347-1358. 16. Gillian Bethune, Drew Bethune, Neale Ridgway and Zhaolin Xu. Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis. 2010 Mar; 2(1): 48–51. 17. Mayumi Ono, Michihiko Kuwano. Molecular Mechanisms of Epidermal Growth Factor Receptor (EGFR) Activation and Response to Gefitinib and Other EGFR-targeting Drugs. Clin Cancer Res. 2006 Dec 15; 12(24):7242-51. 18. Sonam Puri, Andreas Saltos, Bradford Perez, Xiuning Le, and Jhanelle E Gray. Locally Advanced, Unresectable Non-Small Cell Lung Cancer. Curr Oncol Rep. 2020 Mar 5; 22(4):31. 19. Kiichiro Ninomiya, Isao Oze, Yuka Kato, Toshio Kubo, Eiki Ichihara, Kammei Rai, Kadoaki Ohashi, Toshiyuki Kozuki, Masahiro Tabata, Yoshinobu Maeda, Katsuyuki Kiura, Katsuyuki Hotta. Influence of Age on the Efficacy of Immune Checkpoint Inhibitors in Advanced Cancers: A Systematic Review and Meta-Analysis. Acta Oncol. 2020 Mar; 59 (3): 249-256. 20. Chao Zhang, Natasha B Leighl, Yi-Long Wu, Wen-Zhao Zhong. Emerging Therapies for Non-Small Cell Lung Cancer. J Hematol Oncol. 2019 Apr 25; 12(1):45. 21. YangBo Hu, Huan Hu, LiYun Miao, Xin Zhao, Wei Gu, Wei Heng, ZiLi Meng, Jian Feng, Yi You, XingXiang Xu, Rong Hu, HaiQuan Li, Jie Zhao, XiaoLi Zhu, MeiQi Shi, Li Shen, XiuWei Zhang, XiaoWei Yin, Hang Ma, MinHua Shi, Yong Yu, Hong Lv, LiMing Cai, GaoHua Feng, YeQing Zhang, Feng Wu, TangFeng Lv and Yong Song, Multicenter study of diagnostic procedures, genetic aberration analysis, and first-line treatment of lung cancer in Jiangsu Province, China. Thorac Cancer. 2018 Mar; 9(3): 376~383. 22. Tony S. Mok, M.D., Yi-Long Wu, M.D., F.A.C.S., Sumitra Thongprasert, M.D., Chih-Hsin Yang, M.D., Ph.D., Da-Tong Chu, M.D., Nagahiro Saijo, M.D., Ph.D., Patrapim Sunpaweravong, M.D., Baohui Han, M.D., Benjamin Margono, M.D., Ph.D., F.C.C.P., Yukito Ichinose, M.D., Yutaka Nishiwaki, M.D., Ph.D., Yuichiro Ohe, M.D., Ph.D., Jin-Ji Yang, M.D., Busyamas Chewaskulyong, M.D., Haiyi Jiang, M.D., Emma L. Duffield, M.Sc., Claire L. Watkins, M.Sc., Alison A. Armour, F.R.C.R., and Masahiro Fukuoka, M.D., Ph.D. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. N Engl J Med. 2009; 361:947-957. 23. Tu Nguyen-Ngoc, Martin Reck, Daniel SW Tan, and Solange Peters. Immunotherapy and targeted therapies in the treatment of non-small cell lung cancer. European Oncology Haematology. 2017; 13(1):35–52. 24. Rabbab Oun, Yvonne E Moussa, and Nial J Wheate. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018 May 15; 47(19):6645-6653. 25. Katrin Sak. Chemotherapy and Dietary Phytochemical Agents. Chemother Res Pract. 2012; 2012: 282570. 26. Murga M, Jaco I, Fan Y, Soria R, Martinez-Pastor B, Cuadrado M, Yang SM, Blasco MA, Skoultchi AI, and Fernandez-Capetillo O. Global chromatin compaction limits the strength of the DNA damage response. J Cell Biol. 2007; 178: 1101-1108. 27. Stephen P. Jackson1, and Jiri Bartek. The DNA-damage response in human biology and disease. Nature. 2009 Oct 22; 461(7267): 1071–1078. 28. G Raschellà, G Melino, and M Malewicz. New Factors in Mammalian DNA Repair-The Chromatin Connection. Oncogene. 2017 Aug 17; 36(33):4673-4681. 29. Nicolas Malaquin, Audrey Carrier-Leclerc, Mireille Dessureault, and Francis Rodier. DDR-mediated Crosstalk Between DNA-damaged Cells and Their Microenvironment. Front Genet. 2015 Mar 12; 6: 94. 30. Md. Akram Hossain, Yunfeng Lin, and Shan Yan, Single-Strand Break End Resection in Genome Integrity: Mechanism and Regulation by APE2. Int J Mol Sci. 2018 Aug; 19(8): 2389. 31. Thomas A Kunkel and Dorothy A Erie. DNA Mismatch Repair. Annu Rev Biochem. 2005; 74:681-710. 32. Orlando D. Schärer. Nucleotide Excision Repair in Eukaryotes. Cold Spring Harb Perspect Biol. 2013 Oct; 5(10): a012609. 33. Susan S. Wallace, Drew L. Murphy, and Joann B. Sweasy. Base Excision Repair and Cancer. Cancer Lett. 2012 Dec 31; 327(1-2): 73–89. 34. Roger D. Johnson and Maria Jasin. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 2000 Jul 3; 19(13): 3398-407. 35. Aguilera A, Gomez-González B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008; 9: 204-217. 36. Jinbao Li, Huize Sun, Yulin Huang, Yali Wang, Yuyan Liu, and Xuefeng Chen. Pathways and Assays for DNA Double-Strand Break Repair by Homologous Recombination. Acta Biochim Biophys Sin (Shanghai). 2019 Sep 6; 51(9):879-889. 37. B Nandi, S Talluri, S Kumar, C Yenumula, J S Gold, R Prabhala, N C Munshi, M A Shammas. The Roles of Homologous Recombination and the Immune System in the Genomic Evolution of Cancer. J Transl Sci. 2019 Apr; 5(2):10. 38. Hirva Mamdani, Jerry Chen, Seongho Kim, Yahya Ibrahim, Mohammad Fahad Bin Asad, Jorge J. Nieva, Rebecca Feldman, Abdul Rafeh Naqash, Stephen V. Liu, Patrick C. Ma, David Craig Portnoy, Hossein Borghaei, Nagla Fawzy Abdel Karim, Yanis Boumber, Ari M. Vanderwalde, Alexander I. Spira, and Shadia Ibrahim Jalal. DNA damage response and repair (DDR) gene mutations and correlation with tumor mutation burden (TMB) in non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2019 May 20; 37(15):9100-9100. 39. Hiroko Makihara, Shiori Nakai, Wataru Ohkubo, Naoya Yamashita, Fumio Nakamura, Hiroshi Kiyonari, Go Shioi, Aoi Jitsuki-Takahashi, Haruko Nakamura, Fumiaki Tanaka, Tomoko Akase, Pappachan Kolattukudy, and Yoshio Goshima. CRMP1 and CRMP2 Have Synergistic but Distinct Roles in Dendritic Development. Genes Cells. 2016 Sep; 21(9):994-1005. 40. G Cai,D Wu, Z Wang, Z Xu, K-B Wong, C-F Ng, F L Chan, S Yu Collapsin Response Mediator protein-1 (CRMP1) Acts as an Invasion and Metastasis Suppressor of Prostate Cancer via Its Suppression of Epithelial-Mesenchymal Transition and Remodeling of Actin Cytoskeleton Organization. Oncogene. 2017 Jan 26; 36(4):546-558. 41. Pan SH, Chao YC, Chen HY, Hung PF, Lin PY, Lin CW, Chang YL, Wu CT, Lee YC, Yang SC, Hong TM, Yang PC. Long form collapsin response mediator protein-1 (LCRMP-1) expression is associated with clinical outcome and lymph node metastasis in non-small cell lung cancer patients. Lung Cancer. 2010 Jan; 67(1):93-100. 42. Pan SH, Chao YC, Hung PF, Chen HY, Yang SC, Chang YL, Wu CT, Chang CC, Wang WL, Chan WK, Wu YY, Che TF, Wang LK, Lin CY, Lee YC, Kuo ML, Lee CH, Chen JJ, Hong TM, Yang PC. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J Clin Invest. 2011 Aug; 121(8):3189-205. 43. Raghu Kalluri and Robert A. Weinberg. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun 1; 119(6): 1420–1428. 44. A Kauffmann, F Rosselli, V Lazar, V Winnepenninckx, A Mansuet-Lupo, P Dessen, J J van den Oord, A Spatz, and A Sarasin High Expression of DNA Repair Pathways Is Associated With Metastasis in Melanoma Patients. Oncogene. 2008 Jan 24; 27(5):565-73. 45. Y W Chu, P C Yang, S C Yang, Y C Shyu, M J Hendrix, R Wu, C W Wu. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 1997 17: 353-360. 46. Yan Zhao, Huw D Thomas, Michael A Batey, Ian G Cowell, Caroline J Richardson, Roger J Griffin, A Hilary Calvert, David R Newell, Graeme C M Smith, and Nicola J Curtin. Preclinical Evaluation of a Potent Novel DNA-dependent Protein Kinase Inhibitor NU7441. Cancer Res. 2006 May 15; 66(10):5354-62. 47. Brian Budke, Hillary L Logan, Jay H Kalin, Anna S Zelivianskaia, William Cameron McGuire, Luke L Miller, Jeremy M Stark, Alan P Kozikowski, Douglas K Bishop, andPhilip P Connell. RI-1: A Chemical Inhibitor of RAD51 That Disrupts Homologous Recombination in Human Cells. Nucleic Acids Res. 2012 Aug; 40(15):7347-57. 48. Christopher M Hine, Hongjie Li, Li Xie, Zhiyong Mao, Andrei Seluanov, and Vera Gorbunova. Regulation of Rad51 Promoter. Cell Cycle. 2014; 13(13):2038-45. 49. Christopher M. Hinea,b, Andrei Seluanova, and Vera Gorbunovaa, Use of the Rad51 promoter for targeted anti-cancer therapy. Proc Natl Acad Sci U S A. 2008 Dec 30; 105(52):20810-5. 50. Yi-Ju Chen, Theodoros I. Roumeliotis, Ya-Hsuan Chang, Ching-Tai Chen, Chia-Li Han, Miao-Hsia Lin,…Yu-Ju Chen. Proteogenomics of Non-smoking Lung Cancerin East Asia Delineates Molecular Signaturesof Pathogenesis and Progression. (2020) Cell, July 9, 182, 226–244. 51. Rena Zheng and Gerd A. Blobel. GATA Transcription Factors and Cancer. Genes Cancer. 2010 Dec; 1(12): 1178–1188. 52. Kenichi Kashimada, Peter Koopman. Sry: the master switch in mammalian sex determination. Development. 2010 137: 3921-3930. 53. Lucie Larigot, Ludmila Juricek, Julien Dairou, and Xavier Coumoul. AhR signaling pathways and regulatory functions. Biochim Open. 2018 Dec; 7: 1–9. 54. Necola Guerrina, Hussein Traboulsi, David H. Eidelman and Carolyn J. Baglole. The Aryl Hydrocarbon Receptor and the Maintenance of Lung Health. Int J Mol Sci. 2018 Dec; 19(12): 3882. 55. Xiao-Fei Yin, Jie Chen, Wei Mao, Yu-Hong Wang, Min-Hu Chen. Downregulation of aryl hydrocarbon receptor expression decreases gastric cancer cell growth and invasion. Oncol Rep. 2013 Jul; 30(1):364-70. 57. Simon Müller, Markus Glaß, Anurag K Singh, Jacob Haase, Nadine Bley, Tommy Fuchs, Marcell Lederer, Andreas Dahl, Huilin Huang, Jianjun Chen, Guido Posern and Stefan Hüttelmaier. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 2019 Jan 10; 47(1): 375–390. 58. Souhila Medjkane, Cristina Perez-Sanchez, Cedric Gaggioli, Erik Sahai, Richard Treisman. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 2009 Mar; 11(3):257-68. 59. Carolina Vizcaíno, Sylvia Mansilla, José Portugal. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther. 2015 Aug; 152:111-24. 60. T-I Hsu, M-C Wang, S-Y Chen, Y-M Yeh, W-C Su, W-C Chang, J-J Hung. Sp1 expression regulates lung tumor progression. Oncogene. 2012; 31, 3973~3988. 61. Alan D.D’AndreaDNA Repair Pathways and Human Cancer. The Molecular Basis of Cancer. 2015: 47-66. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8318 | - |
| dc.description.abstract | DNA損傷修復一直是癌症轉移和化療藥物抗藥性相關研究中的熱門議題。由於基因突變頻率和複製數目變化,使得DNA修復機制發生改變是造成癌症惡化過程中很常見的事件。通常,惡性腫瘤會突變DNA修復基因使它們可藉由非同源性末端結合或同源性定向修復路徑,進而抵抗被放射線或化學物質誘導產生的雙股斷裂。近期,有研究指出DNA修復能力跟癌症轉移存在相關性,但是調控癌轉移相關基因是否會參與細胞中DNA的修復仍然未知。先前,我們實驗室研究發現LCRMP1的表現,除了可以有效促進癌細胞侵襲與轉移能力外,其表現量的高低,在臨床上可用於評估肺癌病人的癒後情形。不僅如此,我們也發現LCRMP1蛋白可以進入細胞核,透過轉錄的方式調控SERPINE1表現並促進腫瘤血管新生。此外,利用體外與體內的研究模式,發現LCRMP1蛋白的表現與肺癌細胞對於化療藥物的抗藥性有明顯的正相關性。這些發現開啟一項新的研究,探討是否癌症轉移的調控子可以參與在DNA修復路徑。從目前結果,我們假設在惡性肺癌細胞中,LCRMP1可能會參與在DNA損傷反應的DNA修復。為了進一步確認,我們使用了pimEJ5-GFP 和 pDR-GFP兩種綠色螢光的報導系統進行偵測,發現LCRMP1的表現對同源性定向的DNA損傷修復路徑(homologous directed recombination簡稱HDR)有較顯著之調控。另外,甚至發現LCRMP1會坐落到RAD51啟動子的區域,透過基因轉錄增加RAD51的表現,進而促進肺癌細胞中DNA損傷的修復。 | zh_TW |
| dc.description.abstract | DNA damage repair is critical for cancer metastasis and chemotherapeutic resistance. The frequency of gene mutations and copy number variations demonstrated that alterations of DNA repair mechanisms are common events in carcinogenesis. Usually, malignant tumors exhibit mutational DNA repair genes which enable them to overcome double strand breaks (DSBs) induced by neither irradiation nor chemical compound via non-homologous end joining (NHEJ) or homology directed repair (HDR). Recently, literatures showed that the DNA repair capacity may correlate with cancer malignancy. However, whether the regulators of cancer metastasis are involved in the process of DNA repair remain as a mystery. In the past, we identified that long form collapsin response mediator protein 1 (LCRMP1) plays as a metastatic enhancer and the expression levels could be used to predict the clinical outcome of lung cancer patients. Moreover, we found that LCRMP1 could increase the expressions of SERPINE1 through transcriptional regulation in cell nucleus, and promote tumor angiogenesis. We even found that the expression of LCRMP1 is positively correlated with chemotherapeutic resistant in vitro and in vivo. The finding creates a vast area to investigate whether the regulators of cancer metastasis are also contributed to DNA repair pathways. These results let us hypothesize that LCRMP1 may collaborate with DNA repair and attend DNA damage response in malignant lung cancer. Here, we used pimEJ5-GFP and pDR-GFP reporter system to explore how LCRMP1 participates in DNA repair, and homology directed repair is dominant upregulation. Furthermore, all results suggest LCRMP1 could bind to the promoter region of RAD51 to promote the expressions through transcriptional regulation and increase the DNA repair capacity in lung cancer cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:52:00Z (GMT). No. of bitstreams: 1 U0001-0508202012210000.pdf: 4770774 bytes, checksum: 1d7d3601cb700cd743a02e56794cf8d9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Contents 口試委員審定書 I 誌謝 II 中文摘要 III ABSTRACT IV LIST OF FIGURES VI LIST OF TABLES VII ABBREVIATIONS VIII Chapter 1 Introduction 1 1.1 About lung cancer 1 1.2 The therapeutic strategies for lung cancer patients 3 1.3 Chemotherapeutic drugs in lung cancer 7 1.4 DNA damage response 8 1.5 DNA repair pathway 9 1.6 CRMP1 and LCRMP1 11 Research Motivation 12 Chapter 2 Materials and Methods 14 2.1 Cell lines 14 2.2 Antibodies 14 2.3 Primer design 15 2.4 Drug treatment 15 2.5 Western blot analysis 16 2.6 Cell viability assay 17 2.7 Flow cytometric analysis of DNA repair pathway choice 18 2.8 Construction of human Rad51 promoter region 18 2.9 Chromatin immunoprecipitation (ChIP) assays 20 2.10 Reverse transcription polymerase chain reaction (RT-PCR) 21 2.11 Quantitative polymerase chain reaction (RT-qPCR) 21 2.12 Immunohistochemistry (IHC) 22 2.13 Xenograft tumor growth assay 23 2.14 Luciferase assay 23 2.15 Statistical analysis 25 Chapter 3 Results 26 3.1 High LCRMP1-expressing cells are more resistant to chemotherapeutics in vitro. 26 3.2 LCRMP1 overexpression increases the ability to overcome double stand breaks induced by etoposide in vivo 27 3.3 Developing the reporter systems to detect the favorable validation of the functional HDR assay 27 3.4 Distinct expression patterns of DNA repair genes in high LCRMP1 expression cells were proved by expression profiling. 29 3.5 LCRMP1 promotes the transcriptional activity of RAD51 via binding to its promoter region 31 3.6 The prediction of potent transcriptional factors compose of three different software packages 32 Summary 33 Discussion 35 References 68 Appendixes 79 | |
| dc.language.iso | en | |
| dc.title | 肺癌中LCRMP1透過調控RAD51基因轉錄促進DNA修復能力 | zh_TW |
| dc.title | LCRMP1 Enhances DNA Repair Capacity through Transcriptional Regulation of RAD51 in Lung Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳金銓(Chin-Chuan Chen),陳佑宗(You-Tzung Chen) | |
| dc.subject.keyword | LCRMP1,DNA修復,RAD51,肺癌細胞, | zh_TW |
| dc.subject.keyword | LCRMP1,DNA repair,RAD51,lung cancer cells, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202002448 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-07 | - |
| 顯示於系所單位: | 基因體暨蛋白體醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202012210000.pdf | 4.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
