請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83165完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | zh_TW |
| dc.contributor.advisor | Chih-Ting Lin | en |
| dc.contributor.author | 林承育 | zh_TW |
| dc.contributor.author | Cheng-Yu Lin | en |
| dc.date.accessioned | 2023-01-10T17:04:47Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-07 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] G. Kucinskis, G. Bajars, and J. Kleperis, "Graphene in lithium ion battery cathode materials: A review," Journal of Power Sources, vol. 240, pp. 66-79, 2013, doi: 10.1016/j.jpowsour.2013.03.160.
[2] Q. Ke and J. Wang, "Graphene-based materials for supercapacitor electrodes – A review," Journal of Materiomics, vol. 2, no. 1, pp. 37-54, 2016, doi: 10.1016/j.jmat.2016.01.001. [3] D. Reddy, L. F. Register, G. D. Carpenter, and S. K. Banerjee, "Graphene field-effect transistors," Journal of Physics D: Applied Physics, vol. 44, no. 31, 2011, doi: 10.1088/0022-3727/44/31/313001. [4] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, "Graphene Based Electrochemical Sensors and Biosensors: A Review," Electroanalysis, vol. 22, no. 10, pp. 1027-1036, 2010, doi: 10.1002/elan.200900571. [5] E. W. Hill, A. Vijayaragahvan, and K. Novoselov, "Graphene Sensors," IEEE Sensors Journal, vol. 11, no. 12, pp. 3161-3170, 2011, doi: 10.1109/jsen.2011.2167608. [6] T. Wang et al., "A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications," Nanomicro Lett, vol. 8, no. 2, pp. 95-119, 2016, doi: 10.1007/s40820-015-0073-1. [7] A. Nag, A. Mitra, and S. C. Mukhopadhyay, "Graphene and its sensor-based applications: A review," Sensors and Actuators A: Physical, vol. 270, pp. 177-194, 2018, doi: 10.1016/j.sna.2017.12.028. [8] M. D. Stoller et al., "Interfacial capacitance of single layer graphene," Energy & Environmental Science, vol. 4, no. 11, 2011, doi: 10.1039/c1ee02322e. [9] E. Uesugi, H. Goto, R. Eguchi, A. Fujiwara, and Y. Kubozono, "Electric double-layer capacitance between an ionic liquid and few-layer graphene," Sci Rep, vol. 3, p. 1595, 2013, doi: 10.1038/srep01595. [10] F. Schwierz, "Graphene transistors," Nat Nanotechnol, vol. 5, no. 7, pp. 487-96, Jul 2010, doi: 10.1038/nnano.2010.89. [11] T. F. Fuller and J. N. Harb, Electrochemical engineering. John Wiley & Sons, 2018. [12] P. Gaddam and W. Ducker, "Electrostatic Screening Length in Concentrated Salt Solutions," Langmuir, vol. 35, no. 17, pp. 5719-5727, Apr 30 2019, doi: 10.1021/acs.langmuir.9b00375. [13] Y. Wang, S. R. Narayanan, and W. Wu, "Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells," ACS Nano, vol. 11, no. 8, pp. 8421-8428, Aug 22 2017, doi: 10.1021/acsnano.7b04038. [14] Marin S. Halper and J. C. Ellenbogen, "Supercapacitors: A Brief Overview," The MITRE Corporation, McLean, Virginia, USA, vol. 1, 2006. [Online]. Available: http://www.mitre.org/sites/default/files/pdf/06_0667.pdf. [15] A. Velasco et al., "Recent trends in graphene supercapacitors: from large area to microsupercapacitors," Sustainable Energy & Fuels, vol. 5, no. 5, pp. 1235-1254, 2021, doi: 10.1039/d0se01849j. [16] L. Zhang, X. Hu, Z. Wang, F. Sun, and D. G. Dorrell, "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, vol. 81, pp. 1868-1878, 2018, doi: 10.1016/j.rser.2017.05.283. [17] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner’s Guide to Cyclic Voltammetry," Journal of Chemical Education, vol. 95, no. 2, pp. 197-206, 2017, doi: 10.1021/acs.jchemed.7b00361. [18] "Bode and Nyquist Plot." PalmSens. https://www.palmsens.com/knowledgebase-article/bode-and-nyquist-plot/ (accessed August 14, 2022). [19] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, no. 1, pp. 109-162, 2009, doi: 10.1103/RevModPhys.81.109. [20] H. Lee, K. Paeng, and I. S. Kim, "A review of doping modulation in graphene," Synthetic Metals, vol. 244, pp. 36-47, 2018, doi: 10.1016/j.synthmet.2018.07.001. [21] C. Zhan, J. Neal, J. Wu, and D.-e. Jiang, "Quantum Effects on the Capacitance of Graphene-Based Electrodes," The Journal of Physical Chemistry C, vol. 119, no. 39, pp. 22297-22303, 2015, doi: 10.1021/acs.jpcc.5b05930. [22] M. Mousavi-Khoshdel, E. Targholi, and M. J. Momeni, "First-Principles Calculation of Quantum Capacitance of Codoped Graphenes as Supercapacitor Electrodes," The Journal of Physical Chemistry C, vol. 119, no. 47, pp. 26290-26295, 2015, doi: 10.1021/acs.jpcc.5b07943. [23] H. M. Jeong et al., "Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes," Nano Lett, vol. 11, no. 6, pp. 2472-7, Jun 8 2011, doi: 10.1021/nl2009058. [24] Z. Zeng, W. Wei, B. Li, M. Gao, W. K. Chim, and C. Zhu, "Low Drift Reference-less ISFET Comprising Two Graphene Films with Different Engineered Sensitivities," ACS Applied Electronic Materials, vol. 4, no. 1, pp. 416-423, 2022, doi: 10.1021/acsaelm.1c01066. [25] C. Reiner-Rozman, M. Larisika, C. Nowak, and W. Knoll, "Graphene-based liquid-gated field effect transistor for biosensing: Theory and experiments," Biosens Bioelectron, vol. 70, pp. 21-7, Aug 15 2015, doi: 10.1016/j.bios.2015.03.013. [26] L. Lyu, P. Jaswal, and G. Xu, "Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing," AIP Advances, vol. 8, no. 3, 2018, doi: 10.1063/1.5021959. [27] J. Y. Hwang, C. C. Kuo, L. C. Chen, and K. H. Chen, "Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density," Nanotechnology, vol. 21, no. 46, p. 465705, Nov 19 2010, doi: 10.1088/0957-4484/21/46/465705. [28] Q. Su and S. J. Koester, "Understanding Sources of Electrical Disorder in Graphene Grown by Chemical Vapor Deposition for Wafer-Scale Device Applications," ACS Applied Nano Materials, vol. 2, no. 6, pp. 3426-3433, 2019, doi: 10.1021/acsanm.9b00350. [29] A. Veligura, P. J. Zomer, I. J. Vera-Marun, C. Józsa, P. I. Gordiichuk, and B. J. van Wees, "Relating hysteresis and electrochemistry in graphene field effect transistors," Journal of Applied Physics, vol. 110, no. 11, 2011, doi: 10.1063/1.3665196. [30] Z. Lukács and T. Kristóf, "A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy," Electrochimica Acta, vol. 363, 2020, doi: 10.1016/j.electacta.2020.137199. [31] B.-A. Mei, J. Lau, T. Lin, S. H. Tolbert, B. S. Dunn, and L. Pilon, "Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage," The Journal of Physical Chemistry C, vol. 122, no. 43, pp. 24499-24511, 2018, doi: 10.1021/acs.jpcc.8b05241. [32] C. SatyanarayanaRaju and C. V. Krishnamurthy, "Charge migration model for the impedance response of DI water," AIP Advances, vol. 9, no. 3, 2019, doi: 10.1063/1.5078709. [33] A. Bellunato, H. Arjmandi Tash, Y. Cesa, and G. F. Schneider, "Chemistry at the Edge of Graphene," Chemphyschem, vol. 17, no. 6, pp. 785-801, Mar 16 2016, doi: 10.1002/cphc.201500926. [34] S. M. M. Alavi, A. Mahdi, S. J. Payne, and D. A. Howey, "Identifiability of Generalized Randles Circuit Models," IEEE Transactions on Control Systems Technology, vol. 25, no. 6, pp. 2112-2120, 2017, doi: 10.1109/tcst.2016.2635582. [35] S. Holm, T. Holm, and O. G. Martinsen, "Simple circuit equivalents for the constant phase element," PLoS One, vol. 16, no. 3, p. e0248786, 2021, doi: 10.1371/journal.pone.0248786. [36] M. Munz, C. E. Giusca, R. L. Myers-Ward, D. K. Gaskill, and O. Kazakova, "Thickness-Dependent Hydrophobicity of Epitaxial Graphene," ACS Nano, vol. 9, no. 8, pp. 8401-11, Aug 25 2015, doi: 10.1021/acsnano.5b03220. [37] K. Xu and J. R. Heath, "Contact with what?," Nature Materials, vol. 12, no. 10, pp. 872-873, 2013. [38] A. Akaishi, T. Yonemaru, and J. Nakamura, "Formation of Water Layers on Graphene Surfaces," ACS Omega, vol. 2, no. 5, pp. 2184-2190, May 31 2017, doi: 10.1021/acsomega.7b00365. [39] Y. Zhang, G. Stirnemann, J. T. Hynes, and D. Laage, "Water dynamics at electrified graphene interfaces: a jump model perspective," Phys Chem Chem Phys, vol. 22, no. 19, pp. 10581-10591, May 21 2020, doi: 10.1039/d0cp00359j. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83165 | - |
| dc.description.abstract | 石墨烯是一種由碳原子以六角型排列而成的二維材料,具有良好的電性、導熱性與機械特性。基於其極高的表面積和載子遷移率,石墨烯常被用作感測器的感測材料。這些感測器中,包含了以液態閘極石墨烯電晶體(liquid-gated graphene field effect transistor)為基礎的溶液感測器。由於其靈敏度與石墨烯-水的介面特性有關,本篇論文希望以電化學阻抗譜法(electrochemical impedance spectroscopy, EIS)量測石墨烯-去離子水的阻抗曲線,建立該介面的等效電路模型,並討論電路模型中每個元件所代表的意義。
本實驗所使用的石墨烯是以化學氣相沉積法(chemical vapor deposition, CVD)在銅箔上合成,再轉移到二氧化矽晶圓破片上。由於元件尺寸較小,電化電槽的待測溶液會以打洞的二甲基矽氧烷聚合體(polydimethylsiloxane, PDMS)片盛裝於石墨烯電極表面,並透過eDAQ leakless Ag/AgCl 參考電極定義溶液電壓。本次實驗以BioLogic SP-150恆電位儀進行循環伏安法(cyclic voltammetry, CV)及EIS的量測,並以BioLogic EC-Lab®軟體進行EIS曲線的擬合。 石墨烯的ESI曲線在奈奎斯特圖(Nyquist plot)上呈現出兩個半圓,我們透過改變水溶液及電及表面的阻抗的實驗,顯示高頻半圓對應到的是溶液阻抗、而低頻半圓對應到電極表面阻抗。在進行EIS阻抗曲線的擬合後,我們發現由於本實驗的水溶液為去離子水,沒有添加輔助電解質(supporting electrolyte),溶液阻抗中出現明顯的質量傳輸(mass-transport)限制效應。在擬合結果中,我們發現石墨烯的電極介面電容值只有金電極的1/65倍,透過計算可發現石墨烯極低的介面電容來自於石墨烯本身的量子電容(quantum capacitance)效應。 在未來的研究裡,我們希望能透過電化學方法觀測石墨烯表面第一水層的表現。然而在前面的實驗中我們得知量測石墨烯介面電容時電容值會被量子電容主導,使得水中的電雙層電容效應較難被觀測,因此我們未來的量測中應以多層石墨烯作為樣本或施加偏壓以降低量子電容的主導性,並利用量測到的電雙層電容特性來佐證石墨烯表面水分子結構的相關模擬研究。 | zh_TW |
| dc.description.abstract | Graphene is a 2D carbon hexagonal lattice that possesses extraordinary electrical, thermal and mechanical properties. Due to its remarkable carrier mobility and large surface area, it has been used as sensing layers of solution sensors based on liquid-gated graphene field effect transistor (GFET). The sensitivity of a liquid-gated GFET depends on the properties of the graphene-water interface. This work focuses on building an electrical model of the interface between single-layer graphene (SLG) and deionized (DI) water for electrochemical impedance spectroscopy (EIS) analysis and discusses the meaning of each element.
Graphene used in our experiments was grown by chemical vapor deposition (CVD) and transferred to Si/SiO2 substrates which were pre-deposited with Ti/Au pads. The solution of the electrochemical cell was confined on the electrodes by polydimethylsiloxane(PDMS) pieces. Solution potential was applied through an eDAQ leakless Ag/AgCl reference electrode suspended above the substrate. Cyclic voltammetry (CV) and EIS measurement were conducted with BioLogic SP-150 potentiostat. The EIS results were fit with proposed electric circuit models by BioLogic EC-Lab® Software. The EIS curve of graphene showed two semicircles in the Nyquist plot, which suggested that the circuit model of impedance should base on two RC parallel circuits connected in series. By modifying surface and solution impedance, we identified that the high-frequency semicircle corresponds to solution impedance, while the low-frequency one relates to interface impedance. Through impedance fitting, we found that the impedance of DI water possessed a large mass-transport-limitation characteristic due to the absence of supporting electrolytes. The impedance fitting result showed that surface capacitance Cs of SLG working electrode was about 65 times smaller than gold working electrode and found to meet the theoretic value of SLG quantum capacitance CQ. In the future, we want to look into the first-water-layer behavior at the graphene surface through electrochemical methods. Since the surface impedance has been dominated by CQ in SLG electrodes, we have to use multilayer graphene or apply a back-gate voltage to enlarge CQ value and bring out the effect of electrical double layer capacitance Cdl. We hope to use the experimental value of Cdl to back up other simulation works. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:04:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-10T17:04:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract v Contents vii List of Figures x List of Tables xii Chapter 1 Introduction 1 Chapter 2 Theory and Paper Review 3 2.1 Electrochemistry 3 2.1.1 Basic of electrochemistry 3 2.1.2 Transportation in solution 5 2.1.3 Electrical double layer 6 2.1.4 Electrochemical cell 9 2.1.5 CV measurement 10 2.1.6 EIS measurement 13 2.2 Graphene properties 15 2.2.1 Properties and review of papers 15 2.2.2 Quantum capacitance 17 2.2.3 Graphene field effect transistor 19 Chapter 3 Method 22 3.1 Substrate preparation 22 3.2 Graphene synthesis 22 3.3 Graphene transfer 23 3.4 Electrochemical experiment setup 25 3.5 Impedance fitting 26 3.6 Liquid gated GFET measurement 27 Chapter 4 Result and Discussion 28 4.1 Liquid-gated GFET measurement 28 4.2 CV and EIS result of graphene electrode 29 4.3 Modify the biasing potential 33 4.4 Modify electrode area 35 4.5 Modify solution conductance 37 4.6 Two-electrode configuration 39 4.7 EIS curves of Au, SLG/Au and SLG 41 4.8 Impedance fitting 43 4.8.1 Electrochemical circuit model determination 43 4.8.2 Fitting results 49 Chapter 5 Conclusion and Future Work 54 5.1 Conclusion 54 5.2 Future work 54 Reference 57 | - |
| dc.language.iso | en | - |
| dc.subject | 電化學阻抗譜法 | zh_TW |
| dc.subject | 量子電容 | zh_TW |
| dc.subject | 去離子水 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | quantum capacitance | en |
| dc.subject | graphene | en |
| dc.subject | deionized water | en |
| dc.subject | electrochemical impedance spectroscopy | en |
| dc.title | 以電化學阻抗譜法分析石墨烯與水介面的電路模型 | zh_TW |
| dc.title | An Exploration of Graphene-Water Interfacial Model Based on Electrochemical Impedance Spectroscopy | en |
| dc.title.alternative | An Exploration of Graphene-Water Interfacial Model Based on Electrochemical Impedance Spectroscopy | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張子璿;吳靖宙 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Hsuan Chang;Ching-Chou Wu | en |
| dc.subject.keyword | 石墨烯,去離子水,電化學阻抗譜法,量子電容, | zh_TW |
| dc.subject.keyword | graphene,deionized water,electrochemical impedance spectroscopy,quantum capacitance, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202203439 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-21 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1509202215470000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
