請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83149
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋麗英 | zh_TW |
dc.contributor.advisor | Li-Ying Sung | en |
dc.contributor.author | 歐陽桓 | zh_TW |
dc.contributor.author | Huan Ou-Yang | en |
dc.date.accessioned | 2023-01-09T17:06:45Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-01-06 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2022-12-05 | - |
dc.identifier.citation | Ahlskog, J.K., Larsen, B.D., Achanta, K., Sorensen, C.S., 2016. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function. EMBO Rep. 17, 671-681.
Al Abo, M., Dejsuphong, D., Hirota, K., Yonetani, Y., Yamazoe, M., Kurumizaka, H., Takeda, S., 2014. Compensatory functions and interdependency of the DNA-binding domain of BRCA2 with the BRCA1-PALB2-BRCA2 complex. Cancer Res. 74, 797-807. Alvarez, D., Callejo, M., Shoucri, R., Boyer, L., Price, G.B., Zannis-Hadjopoulos, M., 2003. Analysis of the cruciform binding activity of recombinant 14-3-3zeta-MBP fusion protein, its heterodimerization profile with endogenous 14-3-3 isoforms, and effect on mammalian DNA replication in vitro. Biochemistry 42, 7205-7215. Alvarez, D., Novac, O., Callejo, M., Ruiz, M.T., Price, G.B., Zannis-Hadjopoulos, M., 2002. 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication. J. Cell. Biochem. 87, 194-207. Amoasii, L., Hildyard, J.C.W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.R., Massey, C., Shelton, J.M., Bassel-Duby, R., Piercy, R.J., Olson, E.N., 2018. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86-91. Bader, A.S., Bushell, M., 2020. DNA:RNA hybrids form at DNA double-strand breaks in transcriptionally active loci. Cell Death Dis. 11, 280. Bader, A.S., Hawley, B.R., Wilczynska, A., Bushell, M., 2020. The roles of RNA in DNA double-strand break repair. Br. J. Cancer 122, 613-623. Baker, E.S., Dupuis, N.F., Bowers, M.T., 2009. DNA hairpin, pseudoknot, and cruciform stability in a solvent-free environment. J. Phys. Chem. B 113, 1722-1727. Bedell, V.M., Wang, Y., Campbell, J.M., Poshusta, T.L., Starker, C.G., Krug, R.G., 2nd, Tan, W., Penheiter, S.G., Ma, A.C., Leung, A.Y., Fahrenkrug, S.C., Carlson, D.F., Voytas, D.F., Clark, K.J., Essner, J.J., Ekker, S.C., 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114-118. Beri, S., Bonaglia, M.C., Giorda, R., 2013. Low-copy repeats at the human VIPR2 gene predispose to recurrent and nonrecurrent rearrangements. Eur. J. Hum. Genet. 21, 757-761. Bertolini, L.R., Meade, H., Lazzarotto, C.R., Martins, L.T., Tavares, K.C., Bertolini, M., Murray, J.D., 2016. The transgenic animal platform for biopharmaceutical production. Transgenic Res. 25, 329-343. Bikard, D., Loot, C., Baharoglu, Z., Mazel, D., 2010. Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol. Mol. Biol. Rev. 74, 570-588. Bishop, P., Lawson, J., 2004. Recombinant biologics for treatment of bleeding disorders. Nat. Rev. Drug Discov. 3, 684-694. Bowater, R.P., Bohalova, N., Brazda, V., 2022. Interaction of proteins with inverted repeats and cruciform structures in nucleic acids. Int. J. Mol. Sci. 23(11), 6171. Brazda, V., Laister, R.C., Jagelska, E.B., Arrowsmith, C., 2011. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 12, 33. Buck, T.M., Wijnholds, J., 2020. Recombinant adeno-associated viral vectors (rAAV)-vector elements in ocular gene therapy clinical trials and transgene expression and bioactivity assays. Int. J. Mol. Sci. 21(12), 4197. Burkard, C., Lillico, S.G., Reid, E., Jackson, B., Mileham, A.J., Ait-Ali, T., Whitelaw, C.B., Archibald, A.L., 2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 13, e1006206. Buse, J.B., Davies, M.J., Frier, B.M., Philis-Tsimikas, A., 2021. 100 years on: the impact of the discovery of insulin on clinical outcomes. BMJ Open Diabetes Res. Care 9:e002373. Butler, J.R., Paris, L.L., Blankenship, R.L., Sidner, R.A., Martens, G.R., Ladowski, J.M., Li, P., Estrada, J.L., Tector, M., Tector, A.J., 2016. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers. Transplantation 100, 571-576. Campbell, K.H., McWhir, J., Ritchie, W.A., Wilmut, I., 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64-66. Caraceni, P., Tufoni, M., Bonavita, M.E., 2013. Clinical use of albumin. Blood Transfus. 11 Suppl 4, s18-25. Carballar, R., Martinez-Lainez, J.M., Samper, B., Bru, S., Ballega, E., Mirallas, O., Ricco, N., Clotet, J., Jimenez, J., 2020. CDK-mediated Yku80 phosphorylation regulates the balance between non-homologous end joining (NHEJ) and homologous directed recombination (HDR). J. Mol. Biol. 432, 166715. Carlson, D.F., Lancto, C.A., Zang, B., Kim, E.S., Walton, M., Oldeschulte, D., Seabury, C., Sonstegard, T.S., Fahrenkrug, S.C., 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 34, 479-481. Castilla, J., Pintado, B., Sola, I., Sánchez-Morgado, J.M., Enjuanes, L., 1998a. Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nat. Biotechnol. 16, 349. Castilla, J., Sola, I., Pintado, B., Sánchez-Morgado, J., Enjuanes, L., 1998b. Lactogenic immunity in transgenic mice producing recombinant antibodies neutralizing coronavirus, Coronaviruses and Arteriviruses. Springer, Boston, MA. pp. 675-686. Cataldi, M.P., McCarty, D.M., 2013. Hairpin-end conformation of adeno-associated virus genome determines interactions with DNA-repair pathways. Gene Ther. 20, 686-693. Charpentier, M., Khedher, A.H.Y., Menoret, S., Brion, A., Lamribet, K., Dardillac, E., Boix, C., Perrouault, L., Tesson, L., Geny, S., De Cian, A., Itier, J.M., Anegon, I., Lopez, B., Giovannangeli, C., Concordet, J.P., 2018. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat. Commun. 9, 1133. Chasovskikh, S., Dimtchev, A., Smulson, M., Dritschilo, A., 2005. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Cytometry A 68, 21-27. Chen, F., Pruett-Miller, S.M., Huang, Y., Gjoka, M., Duda, K., Taunton, J., Collingwood, T.N., Frodin, M., Davis, G.D., 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753-755. Chen, S., Sun, S., Moonen, D., Lee, C., Lee, A.Y., Schaffer, D.V., He, L., 2019. CRISPR-READI: Efficient Generation of Knockin Mice by CRISPR RNP Electroporation and AAV Donor Infection. Cell Rep. 27, 3780-3789. Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., Voytas, D.F., 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761. Coufal, J., Jagelska, E.B., Liao, J.C., Brazda, V., 2013. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem. Biophys. Res. Commun. 441, 83-88. Crickard, J.B., Moevus, C.J., Kwon, Y., Sung, P., Greene, E.C., 2020. Rad54 drives atp hydrolysis-dependent dna sequence alignment during homologous recombination. Cell 181, 1380-1394. Cristea, S., Freyvert, Y., Santiago, Y., Holmes, M.C., Urnov, F.D., Gregory, P.D., Cost, G.J., 2013. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioeng. 110, 871-880. Cui, C., Song, Y., Liu, J., Ge, H., Li, Q., Huang, H., Hu, L., Zhu, H., Jin, Y., Zhang, Y., 2015. Gene targeting by TALEN-induced homologous recombination in goats directs production of beta-lactoglobulin-free, high-human lactoferrin milk. Sci. Rep. 5, 10482. Cutova, M., Manta, J., Porubiakova, O., Kaura, P., Stastny, J., Jagelska, E.B., Goswami, P., Bartas, M., Brazda, V., 2020. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae. Genomics 112, 1897-1901. De Wachter, C., Van Landuyt, L., Callewaert, N., 2021. Engineering of yeast glycoprotein expression. Adv. Biochem. Eng. Biotechnol. 175, 93-135. Demain, A.L., Vaishnav, P., 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27, 297-306. Duan, D., Sharma, P., Yang, J., Yue, Y., Dudus, L., Zhang, Y., Fisher, K.J., Engelhardt, J.F., 1998. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568-8577. Dutra, B.E., Lovett, S.T., 2006. Cis and trans-acting effects on a mutational hotspot involving a replication template switch. J. Mol. Biol. 356, 300-311. Dyck, M.K., Lacroix, D., Pothier, F., Sirard, M.-A., 2003a. Making recombinant proteins in animals – different systems, different applications. Trends Biotechnol. 21, 394-399. Dyck, M.K., Lacroix, D., Pothier, F., Sirard, M.A., 2003b. Making recombinant proteins in animals--different systems, different applications. Trends Biotechnol. 21, 394-399. Earley, L.F., Conatser, L.M., Lue, V.M., Dobbins, A.L., Li, C., Hirsch, M.L., Samulski, R.J., 2020. Adeno-associated virus serotype-specific inverted terminal repeat sequence role in vector transgene expression. Hum. Gene Ther. 31, 151-162. Esposito, D., Chatterjee, D.K., 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17, 353-358. Estrada, J.L., Martens, G., Li, P., Adams, A., Newell, K.A., Ford, M.L., Butler, J.R., Sidner, R., Tector, M., Tector, J., 2015. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22, 194-202. Farnaud, S., Evans, R.W., 2003. Lactoferrin--a multifunctional protein with antimicrobial properties. Mol. Immunol. 40, 395-405. Feng, X., Xie, F.Y., Ou, X.H., Ma, J.Y., 2020. Cruciform DNA in mouse growing oocytes: Its dynamics and its relationship with DNA transcription. PLoS One 15, e0240844. Fleming, A.M., Zhu, J., Jara-Espejo, M., Burrows, C.J., 2020. Cruciform DNA sequences in gene promoters can impact transcription upon oxidative modification of 2'-deoxyguanosine. Biochemistry 59, 2616-2626. Freitas, A.I., Domingues, L., Aguiar, T.Q., 2022. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J. Adv. Res. 36, 249-264. Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., Zhang, Y., 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 18, 13. Gavin, W., Pollock, D., Fell, P., Yelton, D., Cammuso, C., Harrington, M., Lewis-Williams, J., Midura, P., Oliver, A., Smith, T., 1997. Expression of the antibody hBR96-2 in the milk of transgenic mice and production of hBR96-2 transgenic goats. Theriogenology 1, 214. Ghosh, N., Saha, I., Plewczynski, D., 2022. Genome-wide analysis to identify palindromes, mirror and inverted repeats in SARS-CoV-2, MERS-CoV and SARS-CoV-1. IEEE Access 10, 23708-23715. Goldenberg, N.A., Manco-Johnson, M.J., 2008. Protein C deficiency. Haemophilia 14, 1214-1221. Goyal, N., Rossi, M.J., Mazina, O.M., Chi, Y., Moritz, R.L., Clurman, B.E., Mazin, A.V., 2018. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions. Nat. Commun. 9, 34. Gu, B., Posfai, E., Rossant, J., 2018. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat. Biotechnol. 36, 632-637. Gudmundsdottir, K., Ashworth, A., 2006. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25, 5864-5874. Guo, Y., Feng, W., Sy, S.M., Huen, M.S., 2015. ATM-dependent phosphorylation of the fanconi anemia protein PALB2 promotes the dna damage response. J. Biol. Chem. 290, 27545-27556. Han, J., Wan, L., Jiang, G., Cao, L., Xia, F., Tian, T., Zhu, X., Wu, M., Huen, M.S.Y., Wang, Y., Liu, T., Huang, J., 2021. ATM controls the extent of DNA end resection by eliciting sequential posttranslational modifications of CtIP. Proc. Nat. Acad. Sci. USA 118(12) e2022600118. Han, Z.S., Li, Q.W., Zhang, Z.Y., Yu, Y.S., Xiao, B., Wu, S.Y., Jiang, Z.L., Zhao, H.W., Zhao, R., Li, J., 2008. Adenoviral vector mediates high expression levels of human lactoferrin in the milk of rabbits. J. Microbiol. Biotechnol. 18, 153-159. Hemsworth, P.H., Barnett, J.L., Beveridge, L., Matthews, L.R., 1995. The welfare of extensively managed dairy cattle: A review. Appl. Anim. Behav. Sci. 42, 161-182. Henry Li, H., Riedl, M., Kashkin, J., 2019. Update on the use of C1-esterase inhibitor replacement therapy in the acute and prophylactic treatment of hereditary angioedema. Clin. Rev. Allergy Immunol. 56, 207-218. Heyer, W.D., 2004. Recombination: Holliday junction resolution and crossover formation. Curr. Biol. 14, R56-58. Hirsch, M.L., 2015. Adeno-associated virus inverted terminal repeats stimulate gene editing. Gene Ther. 22, 190-195. Hoa, N.N., Akagawa, R., Yamasaki, T., Hirota, K., Sasa, K., Natsume, T., Kobayashi, J., Sakuma, T., Yamamoto, T., Komatsu, K., Kanemaki, M.T., Pommier, Y., Takeda, S., Sasanuma, H., 2015. Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes Cells 20, 1059-1076. Holkers, M., de Vries, A.A., Goncalves, M.A., 2012. Nonspaced inverted DNA repeats are preferential targets for homology-directed gene repair in mammalian cells. Nucleic Acids Res. 40, 1984-1999. Hosny, N., Matson, A.W., Kumbha, R., Steinhoff, M., Sushil Rao, J., El-Abaseri, T.B., Sabek, N.A., Mahmoud, M.A., Hering, B.J., Burlak, C., 2021. 3'UTR enhances hCD47 cell surface expression, self-signal function, and reduces ER stress in porcine fibroblasts. Xenotransplantation 28, e12641. Houdebine, L.M., 2009. Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infect. Dis. 32, 107-121. Hu, S., Qiao, J., Fu, Q., Chen, C., Ni, W., Wujiafu, S., Ma, S., Zhang, H., Sheng, J., Wang, P., Wang, D., Huang, J., Cao, L., Ouyang, H., 2015. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. eLife 4, e06951. Hu, Z., Shi, Z., Guo, X., Jiang, B., Wang, G., Luo, D., Chen, Y., Zhu, Y.-S., 2018. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci. 8, 12-12. Ide, K., Wang, H., Tahara, H., Liu, J., Wang, X., Asahara, T., Sykes, M., Yang, Y.G., Ohdan, H., 2007. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc. Natl. Acad. Sci. USA 104, 5062-5066. Ingram, S.P., Warmenhoven, J.W., Henthorn, N.T., Smith, E.A.K., Chadwick, A.L., Burnet, N.G., Mackay, R.I., Kirkby, N.F., Kirkby, K.J., Merchant, M.J., 2019. Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci. Rep. 9, 6359. Inui, M., Miyado, M., Igarashi, M., Tamano, M., Kubo, A., Yamashita, S., Asahara, H., Fukami, M., Takada, S., 2014. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4, 5396. Jachimowicz, R.D., Goergens, J., Reinhardt, H.C., 2019. DNA double-strand break repair pathway choice - from basic biology to clinical exploitation. Cell Cycle 18, 1423-1434. Jakobovits, A., Amado, R.G., Yang, X., Roskos, L., Schwab, G., 2007. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat. Biotechnol. 25, 1134-1143. Jakobsen, J.E., Johansen, M.G., Schmidt, M., Liu, Y., Li, R., Callesen, H., Melnikova, M., Habekost, M., Matrone, C., Bouter, Y., Bayer, T.A., Nielsen, A.L., Duthie, M., Fraser, P.E., Holm, I.E., Jorgensen, A.L., 2016. Expression of the Alzheimer's disease mutations abetapp695sw and psen1m146i in double-transgenic gottingen minipigs. J. Alzheimers Dis. 53, 1617-1630. Jamil, M.A., Sharma, A., Nuesgen, N., Pezeshkpoor, B., Heimbach, A., Pavlova, A., Oldenburg, J., El-Maarri, O., 2019. F8 Inversions at Xq28 causing hemophilia a are associated with specific methylation changes: implication for molecular epigenetic diagnosis. Front. Genet. 10, 508. Jayavaradhan, R., Pillis, D.M., Goodman, M., Zhang, F., Zhang, Y., Andreassen, P.R., Malik, P., 2019. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat. Commun. 10, 2866. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., Doudna, J., 2013. RNA-programmed genome editing in human cells. eLife 2, e00471. Johnson, I.S., 1983. Human insulin from recombinant DNA technology. Science 219, 632-637. Kambadur, R., Sharma, M., Smith, T.P., Bass, J.J., 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7, 910-916. Kamionka, M., 2011. Engineering of therapeutic proteins production in Escherichia coli. Curr. Pharm. Biotechnol. 12, 268-274. Kerr, D.E., Liang, F., Bondioli, K.R., Zhao, H., Kreibich, G., Wall, R.J., Sun, T.T., 1998. The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nat. Biotechnol. 16, 75-79. Kim, J.Y., Kim, Y.G., Lee, G.M., 2012. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 93, 917-930. Kim, Y.G., Cha, J., Chandrasegaran, S., 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156-1160. Kling, J., 2009. First US approval for a transgenic animal drug. Nat. Biotechnol. 27, 302-304. Klymiuk, N., Blutke, A., Graf, A., Krause, S., Burkhardt, K., Wuensch, A., Krebs, S., Kessler, B., Zakhartchenko, V., Kurome, M., Kemter, E., Nagashima, H., Schoser, B., Herbach, N., Blum, H., Wanke, R., Aartsma-Rus, A., Thirion, C., Lochmuller, H., Walter, M.C., Wolf, E., 2013. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum. Mol. Genet. 22, 4368-4382. Klymiuk, N., Mundhenk, L., Kraehe, K., Wuensch, A., Plog, S., Emrich, D., Langenmayer, M.C., Stehr, M., Holzinger, A., Kroner, C., Richter, A., Kessler, B., Kurome, M., Eddicks, M., Nagashima, H., Heinritzi, K., Gruber, A.D., Wolf, E., 2012. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J. Mol. Med. (Berl) 90, 597-608. Kosobokova, E.N., Skrypnik, K.A., Kosorukov, V.S., 2016. Overview of Fusion Tags for Recombinant Proteins. Biochemistry (Mosc.) 81, 187-200. Kroiss, S., Albisetti, M., 2010. Use of human protein C concentrates in the treatment of patients with severe congenital protein C deficiency. Biologics 4, 51-60. Kurihara, T., Kouyama-Suzuki, E., Satoga, M., Li, X., Badawi, M., Thiha, Baig, D.N., Yanagawa, T., Uemura, T., Mori, T., Tabuchi, K., 2020. DNA repair protein RAD51 enhances the CRISPR/Cas9-mediated knock-in efficiency in brain neurons. Biochem. Biophys. Res. Commun. 524, 621-628. Kwon, D.N., Lee, K., Kang, M.J., Choi, Y.J., Park, C., Whyte, J.J., Brown, A.N., Kim, J.H., Samuel, M., Mao, J., Park, K.W., Murphy, C.N., Prather, R.S., Kim, J.H., 2013. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci. Rep. 3, 1981. Lafuente-Barquero, J., Garcia-Rubio, M.L., Martin-Alonso, M.S., Gomez-Gonzalez, B., Aguilera, A., 2020. Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner. eLife 9:e56674. Lai, C.W., Chen, H.L., Tsai, T.C., Chu, T.W., Yang, S.H., Chong, K.Y., Chen, C.M., 2016. Sexually dimorphic expression of eGFP transgene in the Akr1A1 locus of mouse liver regulated by sex hormone-related epigenetic remodeling. Sci. Rep. 6, 24023. Lai, C.W., Chen, H.L., Tu, M.Y., Lin, W.Y., Rohrig, T., Yang, S.H., Lan, Y.W., Chong, K.Y., Chen, C.M., 2017. A novel osteoporosis model with ascorbic acid deficiency in Akr1A1 gene knockout mice. Oncotarget 8, 7357-7369. Lai, L., Kolber-Simonds, D., Park, K.W., Cheong, H.T., Greenstein, J.L., Im, G.S., Samuel, M., Bonk, A., Rieke, A., Day, B.N., Murphy, C.N., Carter, D.B., Hawley, R.J., Prather, R.S., 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089-1092. Laible, G., 2018. Production of transgenic livestock: overview of transgenic technologies, in: Niemann, H., Wrenzycki, C. (Eds.), Animal Biotechnology 2: Emerging breeding technologies. Springer International Publishing, Cham, pp. 95-121. Lamarche, B.J., Orazio, N.I., Weitzman, M.D., 2010. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 584, 3682-3695. Leach, D.R., 1994. Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays 16, 893-900. Lee, S.E., Hyun, H., Park, M.R., Choi, Y., Son, Y.J., Park, Y.G., Jeong, S.G., Shin, M.Y., Ha, H.J., Hong, H.S., Choi, M.K., Im, G.S., Park, E.W., Kim, Y.H., Park, C., Kim, E.Y., Park, S.P., 2017. Production of transgenic pig as an Alzheimer's disease model using a multi-cistronic vector system. PLoS One 12, e0177933. Lentz, T.B., Samulski, R.J., 2015. Insight into the mechanism of inhibition of adeno-associated virus by the Mre11/Rad50/Nbs1 complex. J. Virol. 89, 181-194. Li, G., Wang, H., Zhang, X., Wu, Z., Yang, H., 2021. A Cas9-transcription factor fusion protein enhances homology-directed repair efficiency. J. Biol. Chem. 296, 100525. Lilley, D.M., 1985. The kinetic properties of cruciform extrusion are determined by DNA base-sequence. Nucleic Acids Res. 13, 1443-1465. Limonta, J., Pedraza, A., Rodriguez, A., Freyre, F., Barral, A., Castro, F., Lleonart, R., Gracia, C., Gavilondo, J., De la Fuente, J., 1995. Production of active anti-CD6 mouse/human chimeric antibodies in the milk of transgenic mice. Immunotechnology 1, 107-113. Lin, S., Staahl, B.T., Alla, R.K., Doudna, J.A., 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766. Liu, X., Wu, X., Tan, H., Xie, B., Deng, Y., 2020. Large inverted repeats identified by intra-specific comparison of mitochondrial genomes provide insights into the evolution of Agrocybe aegerita. Comput. Struct. Biotechnol. J. 18, 2424-2437. Lobachev, K.S., Gordenin, D.A., Resnick, M.A., 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108, 183-193. Lord, C.J., Ashworth, A., 2007. RAD51, BRCA2 and DNA repair: a partial resolution. Nat. Struct. Mol. Biol. 14, 461-462. Luo, J., Song, Z., Yu, S., Cui, D., Wang, B., Ding, F., Li, S., Dai, Y., Li, N., 2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One 9, e95225. Luo, Y., Wang, Y., Liu, J., Cui, C., Wu, Y., Lan, H., Chen, Q., Liu, X., Quan, F., Guo, Z., Zhang, Y., 2016. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands. Sci. Rep. 6, 20657. Lyu, C., Xue, F., Liu, X., Liu, W., Fu, R., Sun, T., Wu, R., Zhang, L., Li, H., Zhang, D., Yang, R., Zhang, L., 2016. Identification of mutations in the F8 and F9 gene in families with haemophilia using targeted high-throughput sequencing. Haemophilia 22, e427-434. Ma, H., Naseri, A., Reyes-Gutierrez, P., Wolfe, S.A., Zhang, S., Pederson, T., 2015. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. USA 112, 3002-3007. Ma, L., Ruan, J., Song, J., Wen, L., Yang, D., Zhao, J., Xia, X., Chen, Y.E., Zhang, J., Xu, J., 2020. MiCas9 increases large size gene knock-in rates and reduces undesirable on-target and off-target indel edits. Nat. Commun. 11, 6082. Macreadie, I., Dhakal, S., 2022. ‘The awesome power of yeast’. Microbiology Australia 43, 19-21. Maksimenko, O.G., Deykin, A.V., Khodarovich, Y.M., Georgiev, P.G., 2013. Use of transgenic animals in biotechnology: prospects and problems. Acta. Naturae. 5, 33-46. Mandal, S., Selvam, S., Cui, Y., Hoque, M.E., Mao, H., 2018. Mechanical cooperativity in dna cruciform structures. Chemphyschem 19, 2627-2634. Margaglione, M., Castaman, G., Morfini, M., Rocino, A., Santagostino, E., Tagariello, G., Tagliaferri, A.R., Zanon, E., Bicocchi, M.P., Castaldo, G., Peyvandi, F., Santacroce, R., Torricelli, F., Grandone, E., Mannucci, P.M., Group, A.I.-G.S., 2008. The italian AICE-genetics hemophilia A database: results and correlation with clinical phenotype. Haematologica 93, 722-728. Marie, L., Symington, L.S., 2022. Mechanism for inverted-repeat recombination induced by a replication fork barrier. Nat. Commun. 13, 32. Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., Ploegh, H.L., 2015a. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538-542. Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., Ploegh, H.L., 2015b. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33. Matsushita, H., Sano, A., Wu, H., Wang, Z., Jiao, J.A., Kasinathan, P., Sullivan, E.J., Kuroiwa, Y., 2015. Species-specific chromosome engineering greatly improves fully human polyclonal antibody production profile in cattle. PLoS One 10, e0130699. Mazina, O.M., Rossi, M.J., Thomaa, N.H., Mazin, A.V., 2007. Interactions of human rad54 protein with branched DNA molecules. J. Biol. Chem. 282, 21068-21080. McVey, M., Khodaverdian, V.Y., Meyer, D., Cerqueira, P.G., Heyer, W.D., 2016. Eukaryotic DNA polymerases in homologous recombination. Annu. Rev. Genet. 50, 393-421. Meyer, M., Ortiz, O., Hrabe de Angelis, M., Wurst, W., Kuhn, R., 2012. Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc. Natl. Acad. Sci. USA 109, 9354-9359. Miller, D.G., Petek, L.M., Russell, D.W., 2004. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767-773. Mizuno, K., Lambert, S., Baldacci, G., Murray, J.M., Carr, A.M., 2009. Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev. 23, 2876-2886. Mizuno, N., Mizutani, E., Sato, H., Kasai, M., Ogawa, A., Suchy, F., Yamaguchi, T., Nakauchi, H., 2018. Intra-embryo gene cassette knockin by CRISPR/Cas9-mediated genome editing with adeno-associated viral vector. iScience 9, 286-297. Modesti, M., Budzowska, M., Baldeyron, C., Demmers, J.A., Ghirlando, R., Kanaar, R., 2007. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol. Cell 28, 468-481. Nakamura, M., Gao, Y., Dominguez, A.A., Qi, L.S., 2021. CRISPR technologies for precise epigenome editing. Nat. Cell. Biol. 23, 11-22. Naseem, R., Sturdy, A., Finch, D., Jowitt, T., Webb, M., 2006. Mapping and conformational characterization of the DNA-binding region of the breast cancer susceptibility protein BRCA1. Biochem. J. 395, 529-535. Newton, D.L., Pollock, D., DiTullio, P., Echelard, Y., Harvey, M., Wilburn, B., Williams, J., Hoogenboom, H.R., Raus, J.C., Meade, H.M., 1999. Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. J. Immunol. Methods 231, 159-167. Niemann, H., Verhoeyen, E., Wonigeit, K., Lorenz, R., Hecker, J., Schwinzer, R., Hauser, H., Kues, W.A., Halter, R., Lemme, E., Herrmann, D., Winkler, M., Wirth, D., Paul, D., 2001. Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation 72, 1898-1906. Niu, D., Ma, X., Yuan, T., Niu, Y., Xu, Y., Sun, Z., Ping, Y., Li, W., Zhang, J., Wang, T., Church, G.M., 2021. Porcine genome engineering for xenotransplantation. Adv. Drug. Deliv. Rev. 168, 229-245. Nottle, M.B., Beebe, L.F., Harrison, S.J., McIlfatrick, S.M., Ashman, R.J., O'Connell, P.J., Salvaris, E.J., Fisicaro, N., Pommey, S., Cowan, P.J., d'Apice, A.J., 2007. Production of homozygous alpha-1,3-galactosyltransferase knockout pigs by breeding and somatic cell nuclear transfer. Xenotransplantation 14, 339-344. Ono, R., Yasuhiko, Y., Aisaki, K.I., Kitajima, S., Kanno, J., Hirabayashi, Y., 2019. Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing. Commun. Biol. 2, 57. Paulsen, B.S., Mandal, P.K., Frock, R.L., Boyraz, B., Yadav, R., Upadhyayula, S., Gutierrez-Martinez, P., Ebina, W., Fasth, A., Kirchhausen, T., Talkowski, M.E., Agarwal, S., Alt, F.W., Rossi, D.J., 2017. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nat. Biomed. Eng. 1, 878-888. Pearson, C.E., Zorbas, H., Price, G.B., Zannis-Hadjopoulos, M., 1996. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J. Cell. Biochem. 63, 1-22. Penaud-Budloo, M., Le Guiner, C., Nowrouzi, A., Toromanoff, A., Cherel, Y., Chenuaud, P., Schmidt, M., von Kalle, C., Rolling, F., Moullier, P., Snyder, R.O., 2008. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875-7885. Piazza, A., Wright, W.D., Heyer, W.D., 2017. Multi-invasions are recombination byproducts that induce chromosomal rearrangements. Cell 170, 760-773 e715. Pires, E., Sharma, N., Selemenakis, P., Wu, B., Huang, Y., Alimbetov, D.S., Zhao, W., Wiese, C., 2021. RAD51AP1 mediates RAD51 activity through nucleosome interaction. J. Biol. Chem. 297, 100844. Powell, J.S., 2009. Recombinant factor VIII in the management of hemophilia A: current use and future promise. Ther. Clin. Risk Manag. 5, 391-402. Qian, L., Tang, M., Yang, J., Wang, Q., Cai, C., Jiang, S., Li, H., Jiang, K., Gao, P., Ma, D., Chen, Y., An, X., Li, K., Cui, W., 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep. 5, 14435. Ramreddy, T., Sachidanandam, R., Strick, T.R., 2011. Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation. Nucleic Acids Res. 39, 4275-4283. Ranawakage, D.C., Okada, K., Sugio, K., Kawaguchi, Y., Kuninobu-Bonkohara, Y., Takada, T., Kamachi, Y., 2020. Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Front. Cell. Dev. Biol. 8, 598634. Rogers, C.S., Stoltz, D.A., Meyerholz, D.K., Ostedgaard, L.S., Rokhlina, T., Taft, P.J., Rogan, M.P., Pezzulo, A.A., Karp, P.H., Itani, O.A., Kabel, A.C., Wohlford-Lenane, C.L., Davis, G.J., Hanfland, R.A., Smith, T.L., Samuel, M., Wax, D., Murphy, C.N., Rieke, A., Whitworth, K., Uc, A., Starner, T.D., Brogden, K.A., Shilyansky, J., McCray, P.B., Jr., Zabner, J., Prather, R.S., Welsh, M.J., 2008. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837-1841. Saini, M., Selokar, N., 2018. Approaches used to improve epigenetic reprogramming in buffalo cloned embryos. Indian J. Med. Res. 148, 115-119. Sanchez, O., Toledo, J.R., Rodriguez, M.P., Castro, F.O., 2004. Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats. J. Biotechnol. 114, 89-97. Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., Van der Flier, W.M., 2016. Alzheimer's disease. The Lancet 388, 505-517. Schnieke, A.E., Kind, A.J., Ritchie, W.A., Mycock, K., Scott, A.R., Ritchie, M., Wilmut, I., Colman, A., Campbell, K.H.S., 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130-2133. Schnutgen, F., Doerflinger, N., Calleja, C., Wendling, O., Chambon, P., Ghyselinck, N.B., 2003. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21, 562-565. Schuster, F., Aldag, P., Frenzel, A., Hadeler, K.G., Lucas-Hahn, A., Niemann, H., Petersen, B., 2020. CRISPR/Cas12a mediated knock-in of the Polled Celtic variant to produce a polled genotype in dairy cattle. Sci. Rep. 10, 13570. Sharma, A., Martin, M.J., Okabe, J.F., Truglio, R.A., Dhanjal, N.K., Logan, J.S., Kumar, R., 1994. An isologous porcine promoter permits high level expression of human hemoglobin in transgenic swine. Bio/technology (Nature Publishing Company) 12, 55-59. Shen, W., Ma, Y., Qi, H., Wang, W., He, J., Xiao, F., Zhu, H., He, S., 2021. Kinetics model of DNA double-strand break repair in eukaryotes. DNA Repair (Amst) 100, 103035. Shimatsu, Y., Yamada, K., Horii, W., Hirakata, A., Sakamoto, Y., Waki, S., Sano, J., Saitoh, T., Sahara, H., Shimizu, A., Yazawa, H., Sachs, D.H., Nunoya, T., 2013. Production of cloned NIBS (Nippon Institute for Biological Science) and alpha-1, 3-galactosyltransferase knockout MGH miniature pigs by somatic cell nuclear transfer using the NIBS breed as surrogates. Xenotransplantation 20, 157-164. Sieluk, J., Levy, J., Sandhaus, R.A., Silverman, H., Holm, K.E., Mullins, C.D., 2018. Costs of medical care among augmentation therapy users and non-users with alpha-1 antitrypsin deficiency in the united states. Chronic. Obstr. Pulm. Dis. 6, 6-16. Slesarev, A., Viswanathan, L., Tang, Y., Borgschulte, T., Achtien, K., Razafsky, D., Onions, D., Chang, A., Cote, C., 2019. CRISPR/CAS9 targeted CAPTURE of mammalian genomic regions for characterization by NGS. Sci. Rep. 9, 3587. Smith, E.A., Gole, B., Willis, N.A., Soria, R., Starnes, L.M., Krumpelbeck, E.F., Jegga, A.G., Ali, A.M., Guo, H., Meetei, A.R., Andreassen, P.R., Kappes, F., Vinnedge, L.M., Daniel, J.A., Scully, R., Wiesmuller, L., Wells, S.I., 2017. DEK is required for homologous recombination repair of DNA breaks. Sci. Rep. 7, 44662. Sola, I., Castilla, J., Pintado, B., Sánchez-Morgado, J.M., Whitelaw, C.B.A., Clark, A.J., Enjuanes, L., 1998. Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J. Virol. 72, 3762-3772. Song, J., Yang, D., Xu, J., Zhu, T., Chen, Y.E., Zhang, J., 2016. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548. Song, Q., Hu, Y., Yin, A., Wang, H., Yin, Q., 2022. DNA holliday junction: history, regulation and bioactivity. Int. J. Mol. Sci. 23(17):9730. Sumiyama, K., Kawakami, K., Yagita, K., 2010. A simple and highly efficient transgenesis method in mice with the Tol2 transposon system and cytoplasmic microinjection. Genomics 95, 306-311. Suzuki, Y., Chew, M.L., Suzuki, Y., 2012. Role of host-encoded proteins in restriction of retroviral integration. Front. Microbiol. 3, 227. Swanson, M.E., Martin, M.J., O'Donnell, J.K., Hoover, K., Lago, W., Huntress, V., Parsons, C.T., Pinkert, C.A., Pilder, S., Logan, J.S., 1992. Production of functional human hemoglobin in transgenic swine. Bio/technology (Nature Publishing Company) 10, 557-559. Tang, B., Yu, S., Zheng, M., Ding, F., Zhao, R., Zhao, J., Dai, Y., Li, N., 2008. High level expression of a functional human/mouse chimeric anti-CD20 monoclonal antibody in milk of transgenic mice. Transgenic Res. 17, 727-732. Tavares, E.M., Wright, W.D., Heyer, W.D., Le Cam, E., Dupaigne, P., 2019. In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nat. Commun. 10, 4058. Tavares, K.C., Dias, A.C., Lazzarotto, C.R., Gaudencio Neto, S., de Sa Carneiro, I., Ongaratto, F.L., Pinto, A.F., de Aguiar, L.H., Calderon, C.E., Toledo, J.R., Castro, F.O., Santos, D.S., Chies, J.M., Bertolini, M., Bertolini, L.R., 2016. Transient expression of functional glucocerebrosidase for treatment of gaucher's disease in the goat mammary gland. Mol. Biotechnol. 58, 47-55. Toledo, J.R., Sanchez, O., Segui, R.M., Garcia, G., Montanez, M., Zamora, P.A., Rodriguez, M.P., Cremata, J.A., 2006. High expression level of recombinant human erythropoietin in the milk of non-transgenic goats. J. Biotechnol. 123, 225-235. Tran, N.-T., Bashir, S., Li, X., Rossius, J., Chu, V.T., Rajewsky, K., Kühn, R., 2019. Enhancement of precise gene editing by the association of cas9 with homologous recombination factors. Front. Genet. 10:365. Trier, N.H., Hansen, P.R., Houen, G., 2012. Production and characterization of peptide antibodies. Methods 56, 136-144. Tu, C.F., Chuang, C.K., Hsiao, K.H., Chen, C.H., Chen, C.M., Peng, S.H., Su, Y.H., Chiou, M.T., Yen, C.H., Hung, S.W., Yang, T.S., Chen, C.M., 2019. Lessening of porcine epidemic diarrhoea virus susceptibility in piglets after editing of the CMP-N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression. PLoS One 14, e0217236. Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., Holmes, M.C., 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646-651. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., Gregory, P.D., 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet 11, 636-646. Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., Shiloh, Y., 2003. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612-5621. Velander, W.H., Johnson, J.L., Page, R.L., Russell, C.G., Subramanian, A., Wilkins, T.D., Gwazdauskas, F.C., Pittius, C., Drohan, W.N., 1992. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc. Natl. Acad. Sci. USA 89, 12003-12007. Waldmann, T., Baack, M., Richter, N., Gruss, C., 2003. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res. 31, 7003-7010. Wang, X., Niu, Y., Zhou, J., Zhu, H., Ma, B., Yu, H., Yan, H., Hua, J., Huang, X., Qu, L., Chen, Y., 2018. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim. Genet. 49, 43-51. Wang, Y., Zhao, S., Bai, L., Fan, J., Liu, E., 2013. Expression systems and species used for transgenic animal bioreactors. Biomed. Res. Int. 2013, 580463. Whitworth, K.M., Rowland, R.R., Ewen, C.L., Trible, B.R., Kerrigan, M.A., Cino-Ozuna, A.G., Samuel, M.S., Lightner, J.E., McLaren, D.G., Mileham, A.J., Wells, K.D., Prather, R.S., 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34, 20-22. Wienert, B., Nguyen, D.N., Guenther, A., Feng, S.J., Locke, M.N., Wyman, S.K., Shin, J., Kazane, K.R., Gregory, G.L., Carter, M.A.M., Wright, F., Conklin, B.R., Marson, A., Richardson, C.D., Corn, J.E., 2020. Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat. Commun. 11, 2109. Wilson, M.H., Coates, C.J., George, A.L., Jr., 2007. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 15, 139-145. Wright, G., Carver, A., Cottom, D., Reeves, D., Scott, A., Simons, P., Wilmut, I., Garner, I., Colman, A., 1991. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology. (N. Y.) 9, 830-834. Wu, H., Wang, Y., Zhang, Y., Yang, M., Lv, J., Liu, J., Zhang, Y., 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc. Natl. Acad. Sci. USA 112, E1530-1539. Xue, C., Greene, E.C., 2018. New roles for RAD52 in DNA repair. Cell Res. 28, 1127-1128. Yamamoto, Y., Miura, O., Ohyama, T., 2021. Cruciform formable sequences within Pou5f1 enhancer are indispensable for mouse es cell integrity. Int. J. Mol. Sci. 22, 3399. Yang, H., Li, Q., Han, Z., Hu, J., 2012. High level expression of recombinant human antithrombin in the mammary gland of rabbits by adenoviral vectors infection. Anim. Biotechnol. 23, 89-100. Yang, H., Zhang, J., Zhang, X., Shi, J., Pan, Y., Zhou, R., Li, G., Li, Z., Cai, G., Wu, Z., 2018. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral. Res. 151, 63-70. Yang, P., Wang, J., Gong, G., Sun, X., Zhang, R., Du, Z., Liu, Y., Li, R., Ding, F., Tang, B., Dai, Y., Li, N., 2008. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS One 3, e3453. Yang, X.W., Gong, S., 2005. An overview on the generation of BAC transgenic mice for neuroscience research. Curr. Protoc. Neurosci. Chapter 5, Unit 5.20. Yasuhara, T., Kato, R., Hagiwara, Y., Shiotani, B., Yamauchi, M., Nakada, S., Shibata, A., Miyagawa, K., 2018. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558-570 e511. Yen, C.C., Chang, W.H., Tung, M.C., Chen, H.L., Liu, H.C., Liao, C.H., Lan, Y.W., Chong, K.Y., Yang, S.H., Chen, C.M., 2020. Lactoferrin protects hyperoxia-induced lung and kidney systemic inflammation in an in vivo imaging model of nf-kappab/luciferase transgenic mice. Mol. Imaging Biol. 22, 526-538. Yin, C., Yau, S.S., 2021. Inverted repeats in coronavirus SARS-CoV-2 genome manifest the evolution events. J. Theor. Biol. 530, 110885. Yoshimi, K., Kunihiro, Y., Kaneko, T., Nagahora, H., Voigt, B., Mashimo, T., 2016. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat. Commun. 7, 10431. Young, S.M., Jr., Samulski, R.J., 2001. Adeno-associated virus (AAV) site-specific recombination does not require a Rep-dependent origin of replication within the AAV terminal repeat. Proc. Natl. Acad. Sci. USA 98, 13525-13530. Yu, H.H., Zhao, H., Qing, Y.B., Pan, W.R., Jia, B.Y., Zhao, H.Y., Huang, X.X., Wei, H.J., 2016. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int. J. Mol. Sci. 17, 1668. Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., Li, N., 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 21, 1638-1640. Zannis-Hadjopoulos, M., Yahyaoui, W., Callejo, M., 2008. 14-3-3 cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem. Sci. 33, 44-50. Zbikowska, H.M., Soukhareva, N., Behnam, R., Chang, R., Drews, R., Lubon, H., Hammond, D., Soukharev, S., 2002. The use of the uromodulin promoter to target production of recombinant proteins into urine of transgenic animals. Transgenic Res. 11, 425-435. Zhang, R., Rao, M., Li, C., Cao, J., Meng, Q., Zheng, M., Wang, M., Dai, Y., Liang, M., Li, N., 2009. Functional recombinant human anti-HAV antibody expressed in milk of transgenic mice. Transgenic Res. 18, 445-453. Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., Cao, C., Hambly, C., Qin, G., Yao, J., Song, R., Jia, Q., Wang, X., Li, Y., Zhang, N., Piao, Z., Ye, R., Speakman, J.R., Wang, H., Zhou, Q., Wang, Y., Jin, W., Zhao, J., 2017. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc. Natl. Acad. Sci. USA 114, 9474-9482. Zhou, C.Y., McInnes, E., Copeman, L., Langford, G., Parsons, N., Lancaster, R., Richards, A., Carrington, C., Thompson, S., 2005. Transgenic pigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor. Xenotransplantation 12, 142-148. Zhou, Q., Tian, W., Liu, C., Lian, Z., Dong, X., Wu, X., 2017. Deletion of the B-B' and C-C' regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression. Sci. Rep. 7, 5432. Zhou, Z.X., Lujan, S.A., Burkholder, A.B., Garbacz, M.A., Kunkel, T.A., 2019. Roles for DNA polymerase delta in initiating and terminating leading strand DNA replication. Nat. Commun. 10, 3992. Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31, 3406-3415. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83149 | - |
dc.description.abstract | 醫藥用蛋白質量產方法的開發是生物相似藥生產的重要項目之一。哺乳類動物的乳腺是一種高產量且轉譯後修飾與人體相似的生物反應器。本研究室於克弗爾發酵乳中分離出抗高血壓胜肽 (Anti-hypertension Peptide; AP1)。本研究欲使用不同轉殖技術製造乳腺專一性表現 AP1 之基因轉殖小鼠。結果顯示直接施打線性 DNA (8.7%) 產製基因轉殖小鼠效率較使用 CRISPR/Cas9 技術 (5.6%) 效率接近。胚胎移殖存活率於施打線性 DNA 組 (39%) 較使用 CRISPR/Cas9 技術 (16%) 之存活率稍高。本研究成功製備三品系乳腺專一性表現抗高血壓胜肽AP1之基因轉殖小鼠,分別為: FVB-Tg(αLA-AP1x1) 、 FVB-Tg(αLA-AP1x6)4 及 ICR-Gt(ROSA)26Sorem(αLA-AP1x6)BM2 。欲比較三種不同數量 AP1 的 CDS 序列及不同轉殖法生產之小鼠,其乳腺 AP1 胜肽的產能差異。然而,本研究中顯示此三品系基因轉殖小鼠在乳腺中 AP1 mRNA 產量皆低落。並且,僅成功經由 HPLC 及 LC/MS 辨識出 FVB-Tg(αLA-Ap1x1) 鼠乳含有 AP1 胜肽。而三品系基因轉殖小鼠乳皆無檢測出抑制血管收縮素轉化酶 (angiotensin-converting enzyme; ACE) 活性的能力。基於三品系基因轉殖小鼠的 AP1 mRNA 含量低落,我們懷疑 αLA 啟動子可能受到上下游沈默子 (Silencer) 抑制其轉錄活性。其中沈默子最有可能存在於 AP1 CDS 序列。此外,我們想了解為何 CRISPR/Cas9 的基因敲入率低落。透過比較四種基因轉殖動物的轉殖基因嵌插區周邊染色質結構,發現周邊序列具高相似性長片段不完全吻合的十字形 DNA 結構。推測大型十字形 DNA 是容易發生重組並被嵌入的序列。進一步製備 ROSA 的 5’ 端同源重組臂的反向重複序列,用以製造長片段十字形 DNA 結構。實驗結果顯示,反向重複組 (5’IR; 31.5%) 的基因敲入率高於非反向重複組 (KIR; 21.3%) 。由上述結果推測,同源重組中十字形 DNA 結構將會更易被辨識為模板,有助於外源 DNA 嵌入染色體組的效率。 | zh_TW |
dc.description.abstract | Developing methods for mass-producing pharmaceutical protein is one of the important projects in the macromolecular drugs market. The mammary gland of mammals is a high-yield bioreactor with post-translational modification similar to the human body. The Anti-hypertension Peptide (AP1) had previously been isolated from Kefir in our lab. We produced mammary gland specific expressed AP1 transgenic mice using different transgenic techniques. The efficiency of genetically transgenic mice produced by the linear DNA group (8.7%) is similar to that of the CRISPR/Cas9 group (5.6%). Moreover, the survival rate of embryo transfer in the linear DNA group (39%) is higher than that of the CRISPR/Cas9 group (16%). And, we successfully produced three transgenic mouse strains FVB-Tg(αLA-AP1x1), FVB-Tg(αLA-Ap1x6)4, and ICR-Gt(ROSA)26Sorem(αLA-AP1x6)BM2, respectively. Unfortunately, the AP1 mRNA levels were low in the mammary glands of these transgenic mouse strains. Furthermore, the AP1 peptide was only detected by HPLC and LC/MS in the milk from FVB-Tg(αLA-Ap1x1). Then, angiotensin-converting enzyme (ACE) inhibition capabilities were undetectable in milk from these transgenic mouse strains. We thought that there might include silencers in AP1 CDS to inhibit the αLA promoter. On the other hand, we are interested in why CRISPR/Cas9 treatment is only low transgenic efficiency. We analyzed the chromatin structure around the transgenic insertion region of the four transgenic animals and found a cruciform DNA structure with high similarity in the surrounding sequence. We prepared the inverted repeat sequence of the 5-terminal homologous recombination arm of ROSA (5’IR) to create a cruciform DNA structure. The experimental results showed that the Knock-in rate of the 5’IR group (31.5%) was higher than that of the non-inverted repeat (KIR) group (21.3%). From the above results, we suggest that the structural characteristics of the template strand DNA play an important role in homologous recombination. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T17:06:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-01-09T17:06:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 序言 iii 摘要 iv Abstract v 目錄 vii 圖目錄 xi 表目錄 xii 縮寫表 xiii 第一章 文獻探討 1 1.1 醫藥用蛋白質生產平台 1 1.2 大型哺乳類基因轉殖方法 2 1.3 基因編輯技術的開發 3 1.4 同源重組機制 5 1.5 十字形 DNA 結構 6 1.6 基因轉殖應用面向 9 1.7 基因轉殖動物生產藥用蛋白質醫藥案例 14 1.8 抗高血壓胜肽 (AP1) 18 1.9 研究動機及架構 18 第二章 使用線性 DNA 或 CRISPR/Cas9 誘導基因敲入方法 製備乳腺表現 AP1 基因轉殖小鼠及其特徵分析 25 2.1 引言 25 2.2 材料及方法 25 2.2.3 小鼠胚胎操作 27 2.2.4 基因型鑑定 28 2.2.5 反轉錄油滴數位聚合酶連鎖反應 29 2.2.6 小鼠乳汁分析 30 2.3 結果 31 2.3.1 比較線性 DNA 與 CRISPR/Cas9 誘導基因敲入方法 經原核注射製造基因轉殖小鼠之效率差異 31 2.3.2 基因轉殖片段於基因轉殖小鼠基因體內之完整度及數量 31 2.3.3 基因轉殖小鼠乳腺 AP1 mRNA 表現量分析 32 2.3.4 FVB-Tg(αLA-Ap1x1) 鼠乳內 AP1 胜肽身份鑑定 32 2.3.5 基因轉殖小鼠鼠乳抑制血管收縮素轉化酶之能力分析 32 2.4 討論 33 第三章 十字形 DNA 結構較易於被體內同源重組機制辨識 為模板股 42 3.1 引言 42 3.2 材料及方法 43 3.2.1 基因轉殖動物 43 3.2.2 αLA-LPH基因轉殖羊的轉殖基因嵌入點分析 43 3.2.3 ICR-Akr1a1eGFP/eGFP 基因轉殖小鼠的轉殖基因嵌入點 分析 44 3.2.4 FVB-Tg(NF𝜅B-Luc) 基因轉殖小鼠的轉殖基因嵌入點 分析 44 3.2.5 ICR-Gt(ROSA)26Sorem(αLA-AP1x6)BM2/M 基因編輯小鼠的轉 殖基因嵌入點分析 45 3.2.6 DNA 二級結構預測 45 3.2.7 基因敲入報導供體質體構築 45 3.2.8 細胞培養及細胞轉染 45 3.2.9 基因敲入率量化 46 3.2.10 統計分析 46 3.3 結果 46 3.3.1 基因轉殖動物基因體中十字形 DNA 結構扮演同源重組 的熱點 46 3.3.2 基因編輯小鼠基因體中二級結構的穩定度影響同源重組 後的序列修飾 47 3.3.4 十字形 DNA 結構促進基因敲入發生率 48 3.3.5 僅十字形 DNA 結構存在於同源重組臂才會促進基因 敲入發生率 49 3.4 討論 49 第四章 總結 68 參考文獻 69 個人簡歷 104 附錄 106 | - |
dc.language.iso | zh_TW | - |
dc.title | 基因轉殖小鼠生產暨十字形 DNA 結構與基因重組之關聯性研究 | zh_TW |
dc.title | Productions of transgenic mice and the relationship between the cruciform DNA structure and the genomic recombination | en |
dc.title.alternative | Productions of transgenic mice and the relationship between the cruciform DNA structure and the genomic recombination | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 陳全木 | zh_TW |
dc.contributor.coadvisor | Chuan-Mu Chen | en |
dc.contributor.oralexamcommittee | 楊尚訓;沈朋志;吳信志 | zh_TW |
dc.contributor.oralexamcommittee | Shang-Hsun Yang;Perng-Chih Shen;Shinn-Chih Wu | en |
dc.subject.keyword | 基因轉殖,基因編輯,CRISPR/Cas9,同源重組,十字形DNA結構,抗高血壓胜肽AP1, | zh_TW |
dc.subject.keyword | Transgene,Gene Edit,CRISPR/Cas9,Homologous Recombination,Cruciform DNA Structure,Anti-hypertension peptide AP1, | en |
dc.relation.page | 114 | - |
dc.identifier.doi | 10.6342/NTU202210094 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2022-12-07 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物科技研究所 | - |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0942221201332004.pdf 目前未授權公開取用 | 12.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。