請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83144
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許哲源 | zh_TW |
dc.contributor.advisor | Je-Yuan Hsu | en |
dc.contributor.author | 葉伏家 | zh_TW |
dc.contributor.author | Fu-Chia Yeh | en |
dc.date.accessioned | 2023-01-09T17:04:58Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-01-06 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2022-12-08 | - |
dc.identifier.citation | A.B. Kara, P.A. Rochford, H. Hurlburt, (2000). An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105 (2000), pp. 16803-16821.
Bernie, D. J., E. Guilyardi, G. Madec, J. M. Slingo, S. J. Woolnough and J. Cole, (2008). Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM. Climate Dynamics, 31, 909-925, doi: 10.1007/s00382-008-0429-z. Chen, D., L.M. Rothstein, and A.J. Busalacchi, (1994). A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys.Oceanogr.,24, 2156–2179. Cole, R., J. Kinder, C. L. Ning, W. Yu, and Y. Chao, (2011). “Bai-Long”: A TAO-hybrid on RAMA. OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, IEEE, https://doi.org/10.23919/OCEANS.2011.6106952 DeMott, C. A., Klingaman, N. P. & Woolnough, S. J. (2015). Atmosphere–ocean coupled processes in the Madden-Julian Oscillation. Rev. Geophys. 53, 1099–1154. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976, doi:10.1175/1520-0469(1995)052, 3969: SOTCTS.2.0.CO;2. Fairall, C. W., E. F., Bradley, D. P., Rogers, J. B., Edson, and G. S., Young, 1996a. Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled Ocean Atmosphere Response Experiment, J. Geophys. Res., 101, 3747– 3764, doi:10.1029/95JC03205. Fairall, C.W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003. Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Climate, 16, pp 571-591. Feng, M., Y., Duan, S., Wijffels, J.-Y., Hsu, C., Li, H., Wang, Y., Yang, H., Shen, J., Liu, C., Ning, and W., Yu, 2020. Tracking air-sea exchange and upper ocean variability in the Southeast Indian Ocean during the onset of the 2018-19 Australian summer monsoon. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-19-654 0278.1. Friedrich A. Schott, Shang-Ping Xie, Julian P. McCreary Jr (2009). Indian Ocean circulation and climate variability. Rev. Geophys., 47 (1), p. G1002. Geernaert, G. L., 1990: Bulk parameterizations for the wind stress and heat fluxes. Surface Waves and Fluxes, G. L. Geernaert and W. J. Plant, Eds., Vol. 1, Kluwer Academic, 336 pp. Howard, L. (1961). Note on a paper of John W. Miles. Journal of Fluid Mechanics, 10(4), 509-512. doi:10.1017/S0022112061000317. Hsu, J.-Y., R.-C. Lien, E. A. D’Asaro, and T. B. Sanford, (2017). Estimates of surface wind stress and drag coefficients in Typhoon Megi. J. Phys. Oceanogr., 47, 545–565, https://doi.org/10.1175/JPO-D-16-0069.1. Je-Yuan Hsu, Ming Feng and Susan Wijffels (2022). Rapid restratification of the ocean surface boundary layer during the suppressed phase of the MJO in austral spring. Environ. Res. Lett. 17 024031. Large, W. G., J. C. McWilliams, and S. C. Doney, (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Reviews of Geophysics, 32, 363- 403. Liu, L. L., Li, Y. L., & Wang, F. (2021). MJO-induced intraseasonal mixed layer depth variability in the equatorial Indian Ocean and impacts on subsurface water obduction. Journal of Physical Oceanography, 51, 1247– 1263. https://doi.org/10.1175/JPO-D-20-0179.1. Lorbacher, K., Dommenget, D., Niiler, P. P., & Köhl, A. (2006). Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. Journal of Geophysical Research, 111(C7). https://doi.org/10.1029/2003JC002157. Lukas, R., and E. Lindstrom, 1991. The mixed layer of the western equatorial Pacific Ocean, J. Geophys. Res., 96(S01), 3343– 3357, doi:10.1029/90JC01951. Madden, R. A., & Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29(6), 1109– 1123. https://doi.org/10.1175/15200469(1972)029<1109:dogscc>2.0.co;2. Marshall, A. G., and H. H. Hendon, (2014). Impacts of the MJO in the Indian Ocean and on the western Australian coast. Climate Dyn., 42, 579–595, https://doi.org/10.1007/s00382-012-1643-2. Marshall, A.G., Hendon, H.H. Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Clim Dyn 42, 579–595 (2014). https://doi.org/10.1007/s00382-012-1643-2 Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496. Moum, J. N., S. P. de Szoeke, W. D. Smyth, J. B. Edson, H. L. DeWitt, A. J. Moulin, E. J. Thompson, C.J. Zappa, S. A. Rutledge, R. H. Johnson, and C. W. Fairall, (2014). Air–Sea Interactions from Westerly Wind Bursts During the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 1185–1199, https://doi.org/10.1175/BAMS-D-12-00225.1. Nagura, M., and M. J. McPhaden, (2008). The dynamics of zonal current variations in the central equatorial Indian Ocean. Geophys. Res.Lett., 35, L23603, doi:10.1029/2008GL035961. Price, J. F., R. A. Weller and R. Pinkel (1986). Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research: Oceans, 91, 8411-8427, doi: 10.1029/JC091iC07p08411. Ruppert, J. H., and R. H. Johnson, (2015). Diurnally modulated cumulus moistening in the preonset stage of the Madden-Julian oscillation during DYNAMO, Journal of the Atmospheric Sciences, 72, 1622–1647. Sanford, T. B., J. F. Price, and J. B. Girton, (2011). Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 1041 1056, doi:10.1175/2010JPO4313.1. Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, (2005). Autonomous velocity and density profiler: EM-APEX. Proc. IEEE/OES Eighth Working Conf. on Current Measurement Technology, 2005, Southampton, United Kingdom, IEEE, 152–156, doi:10.1109/CCM.2005.1506361. Shchepetkin, A. F., and J. C. McWilliams, 2005. The regional oceanic modeling system (ROMS) a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, pp. 347-404. Thorpe Stephen Austen (1977). Turbulence and mixing in a Scottish Loch Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences286125–181. https://doi.org/10.1098/rsta.1977.0112. Ushijima, Y., Yoshikawa, Y (2020). Mixed layer deepening due to wind-induced shear-driven turbulence and scaling of the deepening rate in the stratified ocean. Ocean Dynamics 70, 505–512. https://doi.org/10.1007/s10236-020-01344-w. Vialard, J., G. Foltz, M. McPhaden, J.-P. Duvel, and C. de Boyer Montegut, (2008). Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian oscillation in late 2007 and early 2008. Geophys. Res. Lett.,35, L19608, https://doi.org/10.1029/2008GL035238. Vialard, J., K. Drushka, H. Bellenger, M. Lengaigne, S. Pous, and J. P. Duvel, (2013) Understanding Madden-Julian-induced sea surface temperature variations in the north western Australian Basin. Climate Dyn., 41, 3203–3218, https://doi.org/10.1007/s00382-012-1541-7. Wheeler, M. C. and H. H. Hendon, (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917-1932. Wheeler, M. C., and H. H. Hendon, (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, https://doi.org/10.1175/15200493(2004)132<1917:AARMMI>2.0.CO;2. Wyrtki, K. (1973) Physical Oceanography of the Indian Ocean. In: B. Zeitzschel, and Gerlach, S.A., Eds., Ecological Studies: Analysis and Synthesis, Vol. 3, Springer, Berlin, Heidelberg, 18-36. https://doi.org/10.1007/978-3-642-65468-8_3. Wyrtki, K., (1964). The thermal structure of the eastern Pacific Ocean, Deutsche hydrographische Zeitschrift, 8, 6-84. Yanli Jia, Kelvin J. Richards, H. Annamalai, (2021) The impact of vertical resolution in reducing biases in sea surface temperature in a tropical Pacific Ocean model, Ocean Modelling, Volume 157101722, ISSN 14635003, https://doi.org/10.1016/j.ocemod.2020.101722. Zhang, C., (2005). Madden-Julian Oscillation, Reviews of Geophysics, 43, RG2003, doi:10.1029/2004RG000158. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83144 | - |
dc.description.abstract | 在北半球冬季,馬登-朱利安振盪 (MJO) 為季節內天氣系統具有顯著的深對流,從印度洋西部開始沿著赤道向東移動。2018年11月在澳洲西北所佈放的兩個EM-APEX floats、兩個ALAMO floats和一個 FIO buoy,測量2018年12月中旬MJO通過期間的海洋溫度、鹽度、水平流速與基本大氣參數。自12月14日以來,浮標量測到混合層在五天內從25m快速加深到50m,並且該段時間內MJO所帶來的西風維持9 ms-1以上,引起高達0.4 ms-1的海流,破壞上層海洋的穩定。透過計算梯度理查森數(Ri)以發現不穩定性,由於經常觀測到小於0.25的Ri,因此推測在強風作用下,上層海洋可能會出現不穩定和強烈的紊流混合。本研究使用Thorpe scale方法估算紊流耗散率,結果顯示混合層的紊流耗散率約為10-7 Wkg-1至10-6 Wkg-1,大於典型溫躍層內的紊流耗散率。在MJO連續幾天的風力作用下,剪切不穩定可能會發生強烈的紊流混合,從而使混合層加深。混合層加深導致海表溫度(SST)冷卻約1.1°C,SST的變化改變了潛熱加顯熱量由100 Wm-2增至400Wm-2,並有可能影響MJO的發展。由於混合層加深可能有助於海表冷卻,因此MLD變化在模式模擬中至關重要,研究中模式結果顯示,在MJO下使用COARE 3.0算法計算的風應力可能低估。因此通過觀測資料測量與估算正確風應力,可以在模式中更好地模擬MJO觀測的特徵,並進一步改進MJO的預報。 | zh_TW |
dc.description.abstract | During the boreal winter, Madden–Julian Oscillations (MJOs) as organized deep convections and intra-seasonal weather systems propagate eastward along the equator, starting from the west of the Indian Ocean. Two EM-APEX, two ALAMO floats, and an FIO buoy were deployed in the northwest coast of Australia, which captured the ocean responses of temperature, salinity, and horizontal current velocity during the passage of one MJO in the middle of December 2018. The four floats captured a rapid deepening of mixed layer depth (MLD) from 25 m to 50 m since 14th Dec in five days. At the same time, strong westerly wind associated with MJO was mostly > 9 m s-1. The wind-induced a strong current up to 0.4 m s-1 for destabilizing the upper ocean. The gradient Richardson number (Ri) was computed for identifying the instability. Because the low Ri < 0.25 was frequently observed, instability and strong turbulence might occur in the upper ocean under the strong wind forcing. Using the Thorpe-scale method, the turbulent dissipation rate was approximately 10-7 to 10-6 W kg-1 in the MLD, which was larger than those within the typical thermocline. Strong turbulent mixing might occur via shear instability under the consecutive days of wind forcing, thereby MLD deepening. MLD deepening contributed to cooling sea surface temperature (SST) by about 1.1 °C. The heat fluxes were modulated by SST variation from 100 to 400 W m-2. The heat flux variation might affect the development of MJOs. Because MLD deepening may contribute to the cooling of SST, the simulation of MLD variation is critical in models. In the study, model results demonstrate that the computation of the wind stress using the COARE 3.0 algorithm may be underestimated under MJO. Therefore, with correct wind stress based on the float measurements, several features of the observations can be better captured in models and further improve MJOs’ forecasts. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T17:04:58Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-01-09T17:04:58Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Content v List of Figures viii List of Tables xiii 1 Introduction 1 2 Measurements under the MJO in 2018 4 2.1 Profiling floats and buoy measurement 4 2.2 Other datasets in the study 7 2.3 Madden-Julian Oscillation in 2018 8 3 Upper ocean structure and atmosphere responses to the MJO 11 3.1 Surface wind, ocean responses, and SST cooling 11 3.1.1 Surface wind on the buoy 11 3.1.2 Upper ocean structure 12 3.1.3 Current velocity 15 3.2 Heat fluxed variations 16 3.3 Summary to MJO in 2018 17 4 Wind-induce mixed layer deepening 19 4.1 Mixed layer depth deepening 19 4.2 Gradient Richardson number 21 4.3 Thorpe scale method and dispassion rate 23 4.4 Summary of mixed layer depth deepening 25 5 Effect of Turbulent Mixing under MJOs 26 5.1 Model description 26 5.2 Simulating mixed layer depth deepening 28 5.3 Effects on vertical resolution in the upper ocean 29 5.4 Parameters in the KPP mixing scheme 31 5.5 Summary of MLD simulation by using KPP 33 6 Momentum and Buoyancy Response during MJOs 35 6.1 Wind drag coefficient 36 6.2 Wind-induce current 37 6.3 Linear momentum budget method and wind stress 40 6.3.1 Linear momentum budget method 40 6.3.2 Wind stress 41 6.4 Buoyancy flux effect 45 7 Conclusion and discussion 47 Reference 51 | - |
dc.language.iso | en | - |
dc.title | 2018年馬登-朱利安振盪(Madden-Julian Oscillation)活躍期下風所引發之混合層加深 | zh_TW |
dc.title | Wind-Induced Mixed Layer Deepening under the Active Phase of Madden-Julian Oscillations (MJOs) in 2018 | en |
dc.title.alternative | Wind-Induced Mixed Layer Deepening under the Active Phase of Madden-Julian Oscillations (MJOs) in 2018 | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張明輝;曾于恒;鄭宇昕 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Huei Chang;Yu-Heng Tseng;Yu-Hsin Cheng | en |
dc.subject.keyword | 馬登-朱利安振盪(MJO),混合層加深,海表溫度冷卻,COARE 3.0,風應力, | zh_TW |
dc.subject.keyword | Madden–Julian Oscillations,Mixed layer deepening,SST cooling,COARE 3.0 algorithm,wind stress, | en |
dc.relation.page | 57 | - |
dc.identifier.doi | 10.6342/NTU202210114 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-12-09 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0429221207181105.pdf | 5.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。