請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83138完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雅珍 | zh_TW |
| dc.contributor.advisor | Ya-Jane Lee | en |
| dc.contributor.author | 黃化臻 | zh_TW |
| dc.contributor.author | Hua-Chen Huang | en |
| dc.date.accessioned | 2023-01-09T17:02:47Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-12-15 | - |
| dc.identifier.citation | 1. Brown, C.A., et al., Chronic Kidney Disease in Aged Cats: Clinical Features, Morphology, and Proposed Pathogeneses. Vet Pathol, 2016. 53(2): p. 309-26.
2. Reynolds, B.S. and H.P. Lefebvre, Feline CKD:Pathophysiology and risk factors — what do we know? Journal of Feline Medicine and Surgery, 2013. 15(1_suppl): p. 3-14. 3. Sparkes, A.H., et al., ISFM Consensus Guidelines on the Diagnosis and Management of Feline Chronic Kidney Disease. J Feline Med Surg, 2016. 18(3): p. 219-39. 4. Kongtasai, T., et al., Renal biomarkers in cats: A review of the current status in chronic kidney disease. J Vet Intern Med, 2022. 36(2): p. 379-396. 5. Quimby, J., et al., Renal Senescence, Telomere Shortening and Nitrosative Stress in Feline Chronic Kidney Disease. Vet Sci, 2021. 8(12). 6. van Swelm, R.P.L., J.F.M. Wetzels, and D.W. Swinkels, The multifaceted role of iron in renal health and disease. Nat Rev Nephrol, 2020. 16(2): p. 77-98. 7. Ikeda, Y., et al., Dietary iron restriction alleviates renal tubulointerstitial injury induced by protein overload in mice. Sci Rep, 2017. 7(1): p. 10621. 8. Ikeda, Y., et al., Dietary iron restriction inhibits progression of diabetic nephropathy in db/db mice. Am J Physiol Renal Physiol, 2013. 304(7): p. F1028-36. 9. Wang, J., et al., Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov, 2022. 8(1): p. 127. 10. Malyszko, J., et al., Is hemojuvelin a possible new player in iron metabolism in hemodialysis patients? Int Urol Nephrol, 2012. 44(6): p. 1805-11. 11. Young, G.H., et al., Hemojuvelin modulates iron stress during acute kidney injury: improved by furin inhibitor. Antioxid Redox Signal, 2014. 20(8): p. 1181-94. 12. Luciani, N., et al., Hemojuvelin: a new link between obesity and iron homeostasis. Obesity (Silver Spring), 2011. 19(8): p. 1545-51. 13. Agarwal, A.K. and J. Yee, Hepcidin. Adv Chronic Kidney Dis, 2019. 26(4): p. 298-305. 14. Zhang, A.S., Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr, 2010. 1(1): p. 38-45. 15. Ferro, E., et al., Soluble hemojuvelin in transfused and untransfused thalassaemic subjects. Eur J Haematol, 2017. 98(1): p. 67-74. 16. Wang, J.J., et al., Urinary biomarkers predict advanced acute kidney injury after cardiovascular surgery. Crit Care, 2018. 22(1): p. 108. 17. Ko, S.W., et al., Hemojuvelin Predicts Acute Kidney Injury and Poor Outcomes Following Cardiac Surgery. Sci Rep, 2018. 8(1): p. 1938. 18. Jing, H., et al., Urine hemojuvelin in cats with naturally occurring kidney disease. J Vet Intern Med, 2020. 34(3): p. 1222-1230. 19. Bayraktar, A., et al., The Effect of Hepcidin on Cardiac Ischemia-Reperfusion Injury. J Invest Surg, 2020. 33(9): p. 813-821. 20. Schwartz, A.J., et al., Hepcidin sequesters iron to sustain nucleotide metabolism and mitochondrial function in colorectal cancer epithelial cells. Nat Metab, 2021. 3(7): p. 969-982. 21. Folgueras, A.R., et al., Matriptase-2 deficiency protects from obesity by modulating iron homeostasis. Nat Commun, 2018. 9(1): p. 1350. 22. Tsikas, D., Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem, 2017. 524: p. 13-30. 23. Liu, D., et al., Using inflammatory and oxidative biomarkers in urine to predict early acute kidney injury in patients undergoing liver transplantation. Biomarkers, 2014. 19(5): p. 424-9. 24. Hodovanets, Y., et al., URINARY MALONDIALDEHYDE AS A PREDICTIVE AND DIAGNOSTIC MARKER FOR NEONATAL ACUTE KIDNEY INJURY. Georgian Med News, 2018(278): p. 126-132. 25. Vida, C., et al., Oxidative Stress in Patients with Advanced CKD and Renal Replacement Therapy: The Key Role of Peripheral Blood Leukocytes. Antioxidants (Basel), 2021. 10(7). 26. Tomas-Simo, P., et al., Oxidative Stress in Non-Dialysis-Dependent Chronic Kidney Disease Patients. Int J Environ Res Public Health, 2021. 18(15). 27. Li, G., et al., Association between age-related decline of kidney function and plasma malondialdehyde. Rejuvenation Res, 2012. 15(3): p. 257-64. 28. Yu, S. and I. Paetau-Robinson, Dietary supplements of vitamins E and C and beta-carotene reduce oxidative stress in cats with renal insufficiency. Vet Res Commun, 2006. 30(4): p. 403-13. 29. Valle, E., et al., Investigation of hallmarks of carbonyl stress and formation of end products in feline chronic kidney disease as markers of uraemic toxins. Journal of Feline Medicine and Surgery, 2018. 21(6): p. 465-474. 30. McCown, J.L. and A.J. Specht, Iron homeostasis and disorders in dogs and cats: a review. J Am Anim Hosp Assoc, 2011. 47(3): p. 151-60. 31. Tucker, P.S., A.T. Scanlan, and V.J. Dalbo, Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev, 2015. 2015: p. 806358. 32. Weiss, A., et al., Orchestrated regulation of iron trafficking proteins in the kidney during iron overload facilitates systemic iron retention. PLoS One, 2018. 13(10): p. e0204471. 33. Bochi, G.V., et al., Fenton Reaction-Generated Advanced Oxidation Protein Products Induces Inflammation in Human Embryonic Kidney Cells. Inflammation, 2016. 39(4): p. 1285-90. 34. Wang, J., et al., The Cross-Link between Ferroptosis and Kidney Diseases. Oxid Med Cell Longev, 2021. 2021: p. 6654887. 35. Belavgeni, A., et al., Ferroptosis and Necroptosis in the Kidney. Cell Chem Biol, 2020. 27(4): p. 448-462. 36. Linkermann, A., et al., Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A, 2014. 111(47): p. 16836-41. 37. Friedmann Angeli, J.P., et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol, 2014. 16(12): p. 1180-91. 38. Nakayama, M., et al., A case of IgA nephropathy and renal hemosiderosis associated with primary hemochromatosis. Ren Fail, 2008. 30(8): p. 813-7. 39. Ozkurt, S., et al., Renal hemosiderosis and rapidly progressive glomerulonephritis associated with primary hemochromatosis. Ren Fail, 2014. 36(5): p. 814-6. 40. Moulouel, B., et al., Hepcidin regulates intrarenal iron handling at the distal nephron. Kidney Int, 2013. 84(4): p. 756-66. 41. Probst, S., et al., Role of hepcidin in oxidative stress and cell death of cultured mouse renal collecting duct cells: protection against iron and sensitization to cadmium. Arch Toxicol, 2021. 95(8): p. 2719-2735. 42. Norden, A.G., et al., Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int, 2001. 60(5): p. 1885-92. 43. Vilasi, A., et al., Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am J Physiol Renal Physiol, 2007. 293(2): p. F456-67. 44. Kovac, S., et al., Anti-hemojuvelin antibody corrects anemia caused by inappropriately high hepcidin levels. Haematologica, 2016. 101(5): p. e173-6. 45. Krijt, J., et al., Matriptase-2 and Hemojuvelin in Hepcidin Regulation: In Vivo Immunoblot Studies in Mask Mice. Int J Mol Sci, 2021. 22(5). 46. Silvestri, L., et al., The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab, 2008. 8(6): p. 502-11. 47. Rumjon, A., et al., Serum hemojuvelin and hepcidin levels in chronic kidney disease. Am J Nephrol, 2012. 35(3): p. 295-304. 48. Noels, H., et al., Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol, 2021. 17(8): p. 528-542. 49. Baek, J., et al., Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol, 2022. 18(1): p. 38-55. 50. Bermudez-Lopez, M., et al., New perspectives on CKD-induced dyslipidemia. Expert Opin Ther Targets, 2017. 21(10): p. 967-976. 51. Hager, M.R., A.D. Narla, and L.R. Tannock, Dyslipidemia in patients with chronic kidney disease. Rev Endocr Metab Disord, 2017. 18(1): p. 29-40. 52. Brunetto, M.A., et al., Healthy and Chronic Kidney Disease (CKD) Dogs Have Differences in Serum Metabolomics and Renal Diet May Have Slowed Disease Progression. Metabolites, 2021. 11(11). 53. Behling-Kelly, E., Serum lipoprotein changes in dogs with renal disease. J Vet Intern Med, 2014. 28(6): p. 1692-8. 54. Gyebi, L., Z. Soltani, and E. Reisin, Lipid nephrotoxicity: new concept for an old disease. Curr Hypertens Rep, 2012. 14(2): p. 177-81. 55. Cases, A. and E. Coll, Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl, 2005(99): p. S87-93. 56. Hsu, C.Y., et al., Diabetes, hemoglobin A(1c), cholesterol, and the risk of moderate chronic renal insufficiency in an ambulatory population. Am J Kidney Dis, 2000. 36(2): p. 272-81. 57. Fox, C.S., et al., Predictors of new-onset kidney disease in a community-based population. Jama, 2004. 291(7): p. 844-50. 58. Florens, N., et al., Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins. Toxins (Basel), 2016. 8(12). 59. Kang, H.M., et al., Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med, 2015. 21(1): p. 37-46. 60. Han, S.H., et al., PGC-1alpha Protects from Notch-Induced Kidney Fibrosis Development. J Am Soc Nephrol, 2017. 28(11): p. 3312-3322. 61. Miguel, V., et al., Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J Clin Invest, 2021. 131(5). 62. Martino-Costa, A.L., et al., Renal Interstitial Lipid Accumulation in Cats with Chronic Kidney Disease. J Comp Pathol, 2017. 157(2-3): p. 75-79. 63. McLeland, S.M., et al., A comparison of biochemical and histopathologic staging in cats with chronic kidney disease. Vet Pathol, 2015. 52(3): p. 524-34. 64. Schmiedt, C.W., et al., Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats. Vet Pathol, 2016. 53(1): p. 87-101. 65. Bargmann, W., et al., Lipids in the proximal convoluted tubule of the cat kidney and the reabsorption of cholesterol. Cell and Tissue Research, 1977. 177(4): p. 523-538. 66. Schwarz, T., et al., CT features of feline lipiduria and renal cortical lipid deposition. J Feline Med Surg, 2021. 23(4): p. 357-363. 67. Daenen, K., et al., Oxidative stress in chronic kidney disease. Pediatr Nephrol, 2019. 34(6): p. 975-991. 68. Duni, A., et al., Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne's Thread. Int J Mol Sci, 2019. 20(15). 69. Gyuraszova, M., et al., Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxid Med Cell Longev, 2020. 2020: p. 5478708. 70. Moradi, H., et al., Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res, 2009. 153(2): p. 77-85. 71. Pieniazek, A., J. Bernasinska-Slomczewska, and L. Gwozdzinski, Uremic Toxins and Their Relation with Oxidative Stress Induced in Patients with CKD. Int J Mol Sci, 2021. 22(12). 72. Ruggiero, C., et al., Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am J Physiol Renal Physiol, 2014. 306(8): p. F896-906. 73. Whitehouse, W., et al., Urinary F2 -Isoprostanes in Cats with International Renal Interest Society Stage 1-4 Chronic Kidney Disease. J Vet Intern Med, 2017. 31(2): p. 449-456. 74. Gonzalez-Dominguez, A., et al., Iron Metabolism in Obesity and Metabolic Syndrome. Int J Mol Sci, 2020. 21(15). 75. Alshwaiyat, N.M., et al., Association between obesity and iron deficiency (Review). Exp Ther Med, 2021. 22(5): p. 1268. 76. Miricescu, D., et al., Impact of adipose tissue in chronic kidney disease development (Review). Exp Ther Med, 2021. 21(5): p. 539. 77. Martos-Rus, C., et al., Macrophage and adipocyte interaction as a source of inflammation in kidney disease. Sci Rep, 2021. 11(1): p. 2974. 78. Wang, C., et al., A high-fructose diet in rats induces systemic iron deficiency and hepatic iron overload by an inflammation mechanism. J Food Biochem, 2021. 45(1): p. e13578. 79. Citelli, M., et al., Obesity promotes alterations in iron recycling. Nutrients, 2015. 7(1): p. 335-48. 80. Javard, R., et al., Acute-Phase Proteins and Iron Status in Cats with Chronic Kidney Disease. J Vet Intern Med, 2017. 31(2): p. 457-464. 81. Coimbra, S., C. Catarino, and A. Santos-Silva, The role of adipocytes in the modulation of iron metabolism in obesity. Obes Rev, 2013. 14(10): p. 771-9. 82. Forcina, G.C. and S.J. Dixon, GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 2019. 19(18): p. e1800311. 83. Plotnikov, E.Y., et al., Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria. Biochim Biophys Acta, 2009. 1792(8): p. 796-803. 84. Song, S.J., et al., Rhabdomyolysis-Induced AKI Was Ameliorated in NLRP3 KO Mice via Alleviation of Mitochondrial Lipid Peroxidation in Renal Tubular Cells. Int J Mol Sci, 2020. 21(22). 85. Merle, U., et al., The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology, 2007. 148(6): p. 2663-8. 86. Grotto, D., et al., Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification. Quím. Nova. 32(1): p. 169-174. 87. Mendes, R., C. Cardoso, and C. Pestana, Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test. Food Chemistry, 2009. 112(4): p. 1038-1045. 88. Cowgill, L.D., et al., Is Progressive Chronic Kidney Disease a Slow Acute Kidney Injury? Vet Clin North Am Small Anim Pract, 2016. 46(6): p. 995-1013. 89. Betting, A., A. Schweighauser, and T. Francey, Diagnostic value of reticulocyte indices for the assessment of the iron status of cats with chronic kidney disease. J Vet Intern Med, 2022. 36(2): p. 619-628. 90. Chalhoub, S., C. Langston, and A. Eatroff, Anemia of renal disease: what it is, what to do and what's new. J Feline Med Surg, 2011. 13(9): p. 629-40. 91. Gest, J., C. Langston, and A. Eatroff, Iron Status of Cats with Chronic Kidney Disease. J Vet Intern Med, 2015. 29(6): p. 1488-93. 92. Samsu, N. and M.I. Bellini, Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Research International, 2021. 2021: p. 1-17. 93. Seki, M., et al., Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3-5 chronic kidney disease: a prospective observational study. BMC Nephrol, 2019. 20(1): p. 115. 94. Keegan, R.F. and C.B. Webb, Oxidative stress and neutrophil function in cats with chronic renal failure. J Vet Intern Med, 2010. 24(3): p. 514-9. 95. Krofic Zel, M., N. Tozon, and A. Nemec Svete, Plasma and erythrocyte glutathione peroxidase activity, serum selenium concentration, and plasma total antioxidant capacity in cats with IRIS stages I-IV chronic kidney disease. J Vet Intern Med, 2014. 28(1): p. 130-6. 96. Palaka, E., et al., Associations between serum potassium and adverse clinical outcomes: A systematic literature review. Int J Clin Pract, 2020. 74(1): p. e13421. 97. Valdivielso, J.M., et al., Hyperkalemia in Chronic Kidney Disease in the New Era of Kidney Protection Therapies. Drugs, 2021. 81(13): p. 1467-1489. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83138 | - |
| dc.description.abstract | 在多種腎臟疾病中,鐵代謝的失衡,是造成腎臟疾病惡化的因子。鐵透過多種途 徑傷害腎臟組織,其中,氧化壓力是最主要的途徑之一;與鐵堆積及脂質氧化高度 相關的鐵依賴性細胞凋亡(ferroptosis),也已證實與人類和大鼠的腎損傷密切相關。 Hemojuvelin 是身體調控鐵平衡的重要因子,其尿中濃度可作為人類急性腎衰竭的 早期指標,而慢性腎病的貓其尿中 hemojuvelin 濃度也顯著高於健康者。在大鼠的 實驗模型中,腎臟細胞 hemojuvelin 的調控,與腎臟的鐵堆積及組織傷害相關;急 性腎損傷會導致腎臟 hemojuvelin 的表現上升,而抑制 hemojuvelin 的切割,則可 降低腎臟組織的鐵堆積、並降低腎臟組織的受損程度。然而尿液中的 hemojuvelin 與腎臟氧化壓力的關聯性,以及兩者與貓慢性腎病進程的關聯,目前尚未有相關數 據可供參考。
本研究回溯性納入了 2018 一月至 2021 十一月,於台大動物醫院就診的 60 隻慢 性腎病貓。並分別以酵素結合免疫吸附分析法(ELISA),測定其尿中 hemojuvelin 濃 度;硫代巴比妥酸反應測試搭配高效液相層析法(HPLC),測定其尿中脂質氧化指 標—malondialdehyde 濃度。兩者皆以尿中肌酸酐濃度作為校正基準,分別得 urine hemojuvelin-to-creatinine ratio (UHCR)及 urine malondialdehyde-to-creatinine ratio (UMCR)。 實驗結果顯示 UHCR 與慢性腎病的惡化顯著相關。90 天內發生慢性腎病惡化者 有顯著較高的 UHCR(中位數 54.42 [IQR 25.31, 97.96] *10^-7 vs. 15.89 [IQR 5.58, 39.55] *10^-7,p=0.009)。ROC 曲線分析顯示,UHCR 預測 90 天內惡化的最佳臨界值為 47.744*10^-7;在此臨界值下,預測 90 天內惡化的敏感性及特異性分別為 0.611 和 0.867。以此臨界值為分界,K-M 生存分析顯示 UHCR 較高者,其惡化期間顯著 較短(中位數 81 [95% CI, 40-122]天 vs. 556 [95% CI, 246-866]天,p<0.001)。Cox regression analysis 同樣顯示高 UHCR 者有較高的惡化風險(HR 4.337 [95% CI, 1.971-9.545],p<0.001),且此風險獨立於傳統的腎指標。此外,在線性迴歸模型下, UHCR 與 UMCR 顯著相關,此相關獨立於傳統的腎指標、但與較高的 globulin 有 關。然而,UMCR 與慢性腎病惡化間未能發現關聯。 總結來說,UHCR 具有預測貓慢性腎病惡化的潛力,雖然 UMCR 未和病程惡化顯 著相關。同時,UHCR 與 UMCR 二者的顯著關聯性,顯示 UHCR 的升高與相關的 鐵代謝失衡,與脂質氧化相關。 | zh_TW |
| dc.description.abstract | Iron dysregulation contributes to multiple types of renal diseases. Iron causes damage to kidneys through several pathways, and many of them related to increased oxidative stress. Specifically, the iron-dependent cell death, known as ferroptosis, is featured by iron accumulation and lipid peroxidation. Ferroptosis is known to correlate closely to kidney injury in human and rats. Hemojuvelin (Hjv), an iron-regulating protein, is shown to be a promising early biomarker for human acute kidney injury (AKI). Meanwhile, the urinary concentration of Hjv elevated significantly in cats with chronic kidney disease (CKD). Regulation of renal cells’ Hjv is related to iron accumulation and tissue injury in rats’ model. AKI led to Hjv upregulation in kidney tissues, while inhibiting Hjv cleavage can reduce renal injury significantly. However, the relation between urinary Hjv and renal oxidative stress, as well as their relation with CKD progression, has not yet been investigated in feline CKD.
We retrospectively included 60 client-own CKD cats, presented to NTUVH during January 2018 to November 2021. Urinary Hjv concentration was measured by commercial enzyme-linked immunosorbent assay (ELISA) kit. Renal oxidative status was evaluated through urinary malondialdehyde (MDA) concentration, which was measured by thiobarbituric acid reactive substances (TBARS) assay combined with high performance liquid chromatography (HPLC). Both concentrations will be normalized by urine creatinine concentration (urine Hjv-to-creatinine ratio, UHCR; urine MDA-to- creatinine ratio, UMCR). Our results showed a significant correlation between UHCR and feline CKD progression. Those who progressed within 90 days have significantly higher UHCR (median [IQR], 54.42 [25.31, 97.96] *10^-7 vs. 15.89 [5.58, 39.55] *10^-7; p=0.009). ROC analysis showed the best cut-off for UHCR prediction of 90-day progression was 47.744*10^-7, with sensitivity and specificity of 0.611 and 0.867, respectively. When divided by this cut-off, K-M survival analysis showed a significantly shorter progression-free interval for those with higher UHCR (median [96% CI], 81 [40-122] days vs. 556 [246-866 days], p<0.001). Similarly, Cox regression analysis also showed an increased HR for progression in those with higher UHCR (HR 4.337, 95% CI 1.971-9.545; p<0.001), which was independent of tradition renal indexes i.e., sCrea and BUN. UHCR was found significantly correlated with UMCR, which was independent of traditional renal indexes but dependent on serum globulin. There was no significant correlation between UMCR and CKD progression. To sum up, UHCR predicts CKD progression in cats. On the other hand, no correlation was found between UMCR and feline CKD progression. UHCR correlates significantly with UMCR, indicating UHCR and related iron dysregulation may correlates with lipid oxidation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T17:02:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-09T17:02:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS ii
中文摘要 v Abstract vii List of Figures ix List of Tables x Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Hemojuvelin and renal disease 3 2.1.1 Iron regulation in renal disease 3 2.1.2 Hemojuvelin and iron regulation 7 2.1.3 Hemojuvelin in renal diseases 8 2.2 Lipid oxidation in renal disease 10 2.2.1 Lipid metabolism in renal disease 10 2.2.2 Lipid oxidation markers in renal disease 12 2.3 Hemojuvelin and MDA 14 2.3.1 Impact of lipid dysregulation on iron homeostasis 14 2.3.2 Role of iron in lipid oxidation 16 2.3.3 Hemojuvelin and lipid oxidative stress 18 Chapter 3 Materials and Methods 19 3.1 Patients and sample collection 19 3.1.1 Case selection and follow-up 19 3.1.2 Sample collection and storage 20 3.1.3 Clinical parameters measurements 20 3.2 Urinary MDA measurement 20 3.2.1 Chemicals and reagents 21 3.2.2 Supplies 21 3.2.3 Apparatus 22 3.2.4 HPLC conditions 22 3.2.5 Sample and standard solution preparation 22 3.3 Urinary Hjv measurement 23 3.4 Statistical analysis 24 Chapter 4 Results 25 4.1 Feline urinary Hjv and MDA measurement 25 4.1.1 Feline urinary MDA measurement 25 4.1.2 Feline urinary Hjv measurement 26 4.2 Urinary Hjv and MDA in CKD cats 27 4.2.1 Cases population 27 4.2.2 Correlation between clinical parameters, urinary Hjv, and urinary MDA in CKD cats 28 4.3 Correlation between UHCR, UMCR, and feline CKD progression 34 4.3.1 Correlation of clinical parameters, UHCR, UMCR, and progression within 90 days 34 4.3.2 Receiver operating curve (ROC) for 90-day progression 37 4.3.3 Survival analysis for CKD progression 38 Chapter 5 Discussion 40 5.1 UHCR and feline CKD progression 40 5.2 The correlation between UHCR and UMCR in CKD cats 41 5.3 Urinary Hjv and other clinical parameters in CKD cats 42 5.4 Urinary MDA and other clinical parameters in CKD cats 43 5.5 Limitations 44 5.6 Conclusions 44 References 45 | - |
| dc.language.iso | en | - |
| dc.subject | 貓 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 鐵 | zh_TW |
| dc.subject | 丙二醛 | zh_TW |
| dc.subject | 血幼素 | zh_TW |
| dc.subject | 慢性腎病 | zh_TW |
| dc.subject | oxidative stress | en |
| dc.subject | chronic kidney disease | en |
| dc.subject | cat | en |
| dc.subject | hemojuvelin | en |
| dc.subject | malondialdehyde | en |
| dc.subject | iron | en |
| dc.title | 尿液血幼素及丙二醛濃度與貓慢性腎病進程之相關性 | zh_TW |
| dc.title | Correlation between feline urinary hemojuvelin, urinary malondialdehyde, and chronic kidney disease progression | en |
| dc.title.alternative | Correlation between feline urinary hemojuvelin, urinary malondialdehyde, and chronic kidney disease progression | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡沛學;吳允升;徐維莉;周濟眾 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Hsueh Tsai;Yun-Sheng Wu;Wei-Li Hsu;Chi-Chung Chou | en |
| dc.subject.keyword | 慢性腎病,貓,血幼素,丙二醛,鐵,氧化壓力, | zh_TW |
| dc.subject.keyword | chronic kidney disease,cat,hemojuvelin,malondialdehyde,iron,oxidative stress, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202210133 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-12-16 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 臨床動物醫學研究所 | - |
| dc.date.embargo-lift | 2025-12-21 | - |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 2.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
