請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83135
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾孫霖 | zh_TW |
dc.contributor.advisor | Sun-Lin Chung | en |
dc.contributor.author | 黃健哲 | zh_TW |
dc.contributor.author | Chien-Che Huang | en |
dc.date.accessioned | 2023-01-09T17:01:35Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-01-06 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2022-12-16 | - |
dc.identifier.citation | Allen, J. C., & Boettcher, A. L. (1983). The stability of amphibole in andesite and basalt at high pressures. American Mineralogist, 68(3-4), 307-314.
Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2), 59-79. Bağci, U., Parlak, O., & Höck, V. (2008). Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite, Southern Turkey. Turkish Journal of Earth Sciences, 17(1), 43-71. Bas, M. L., Maitre, R. L., Streckeisen, A., Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of petrology, 27(3), 745-750. Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2), 48-57. Chappell, B. W., & Wyborn, D. (2004). Cumulate and cumulative granites and associated rocks. Resource Geology, 54(3), 227-240. Davidson, J., Turner, S., Handley, H., Macpherson, C., & Dosseto, A. (2007). Amphibole "sponge" in arc crust? Geology, 35(9), 787-790. Dilek, Y., & Thy, P. (2009). Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc–forearc magmatism in Tethyan subduction factories. Lithos, 113(1-2), 68-87. Gill, R. (2011). Igneous rocks and processes: a practical guide. John Wiley & Sons. Greene, A. R., Debari, S. M., Kelemen, P. B., Blusztajn, J., & Clift, P. D. (2006). A detailed geochemical study of island arc crust: the Talkeetna Arc section, south–central Alaska. Journal of petrology, 47(6), 1051-1093. Griffin, W., Pearson, N., Belousova, E., Jackson, S. v., Van Achterbergh, E., O’Reilly, S. Y., & Shee, S. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1), 133-147. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353-431. Hall, R. (2011). Australia-SE Asia collision: plate tectonics and crustal flow. Se Asian Gateway: History and Tectonics of the Australia-Asia Collision, 355, 75-109. Hall, R. (2017). Southeast Asia: New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45, 331-358. Harker, A. (1909). The natural history of igneous rocks. Methuen & Company. 344 Harris, R. (2006). Rise and fall of the Eastern Great Indonesian arc recorded by the assembly, dispersion and accretion of the Banda Terrane, Timor. Gondwana Research, 10(3-4), 207-231. Hawkesworth, C., Turner, S., McDermott, F., Peate, D., & Van Calsteren, P. (1997). U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276(5312), 551-555. Hinschberger, F., Malod, J. A., Rehault, J. P., Villeneuve, M., Royer, J. Y., & Burhanuddin, S. (2005). Late Cenozoic geodynamic evolution of eastern Indonesia. Tectonophysics, 404(1-2), 91-118. Honthaas, C., Rehault, J. P., Maury, R. C., Bellon, H., Hemond, C., Malod, J. A., Cornee, J. J., Villeneuve, M., Cotten, J., Burhanuddin, S., Guillou, H., & Arnaud, N. (1998). A Neogene back-arc origin for the Banda Sea basins: geochemical and geochronological constraints from the Banda ridges (East Indonesia). Tectonophysics, 298(4), 297-317. Hunter, R. (1996). Texture development in cumulate rocks. In Developments in Petrology 15, 77-101 Hutton, J. (1899). Theory of the earth: With proofs and illustrations (Vol. 111). Geological society. Irvine, T. (1982). Terminology for layered intrusions. Journal of petrology, 23(2), 127-162. Irvine, T. N., & Baragar, W. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5), 523-548. Ishikawa, A., Kaneko, Y., Kadarusman, A., & Ota, T. (2007). Multiple generations of forearc mafic-ultramafic rocks in the Timor-Tanimbar ophiolite, eastern Indonesia. Gondwana Research, 11(1-2), 200-217. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1-2), 47-69. Jacobsen, S., & Wasserburg, G. (1984). Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth and Planetary Science Letters, 67(2), 137-150. Jeandel, C., Thouron, D., & Fieux, M. (1998). Concentrations and isotopic compositions of neodymium in the eastern Indian Ocean and Indonesian straits. Geochimica et Cosmochimica Acta, 62(15), 2597-2607. Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: a new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29(3), 333-338. Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O., & Enzweiler, J. (2016). Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research, 40(3), 333-350. Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., & Frick, D. A. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397-429. Johnson, M. C., & Plank, T. (2000). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12). Kaneko, Y., Maruyama, S., Kadarusman, A., Ota, T., Ishikawa, M., Tsujimori, T., Ishikawa, A., & Okamoto, K. (2007). On-going orogeny in the outer-arc of the Timor-Tanimbar region, eastern Indonesia. Gondwana Research, 11(1-2), 218-233. Kelemen, P. B., Hanghøj, K., & Greene, A. (2014). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. 3, 749-806 Kelemen, P. B., Koga, K., & Shimizu, N. (1997). Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters, 146(3-4), 475-488. Kessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437(7059), 724-727. Kinny, P. D., & Maas, R. (2003). Lu–Hf and Sm–Nd isotope systems in zircon. Reviews in mineralogy and geochemistry, 53(1), 327-341. Kogiso, T., Tatsumi, Y., & Nakano, S. (1997). Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148(1-2), 193-205. Lai, Y.-M., Chung, S.-L., Ghani, A. A., Murtadha, S., Lee, H.-Y., & Chu, M.-F. (2021). Mid-Miocene volcanic migration in the westernmost Sunda arc induced by India-Eurasia collision. Geology, 49(6), 713-717. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., & Bateman, P. (2005). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. Leake, R. (1997). Prediction of hormone sensitivity - the receptor years and onwards. Endocrine-Related Cancer, 4(3), 289-296. Ludwig, K. (2012). User’s Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel. 5. Berkley Geochronological Centre, Special Publication. Lugmair, G., & Marti, K. (1978). Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349-357. Lytwyn, J., Rutherford, E., Burke, K., & Xia, C. (2001). The geochemistry of volcanic, plutonic and turbiditic rocks from Sumba, Indonesia. Journal of Asian Earth Sciences, 19(4), 481-500. McCulloch, M. T., & Gamble, J. (1991). Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4), 358-374. Parlak, O., HÖck, V., & Delaloye, M. (2000). Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geological Society, London, Special Publications, 173(1), 219-234. Rehman, H. U., Khan, T., Lee, H.-Y., Chung, S.-L., Jan, M. Q., Zafar, T., & Murata, M. (2021). Petrogenetic source and tectonic evolution of the Neoproterozoic Nagar Parkar Igneous Complex granitoids: Evidence from zircon Hf isotope and trace element geochemistry. Precambrian Research, 354, 106047. Reinhardt, E., Blenkinsop, J., & Patterson, R. (1998). Assessment of a Sr isotope vital effect (87Sr/86Sr) in marine taxa from Lee Stocking Island, Bahamas. Geo-Marine Letters, 18(3), 241-246. Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4), 247-263. Rollinson, H. (1993). Using geochemical data. Evaluation, presentation, interpretation Rotenberg, E., Davis, D. W., Amelin, Y., Ghosh, S., & Bergquist, B. A. (2012). Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr. Geochimica et Cosmochimica Acta, 85, 41-57. Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4), 311-324. Salters, V. J., & Stracke, A. (2004). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5). Shen, P., Pan, H. D., Zhou, T. F., & Wang, J. B. (2014). Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock? Mineralium Deposita, 49(6), 709-731. Simandjuntak, Partoyo, E., & Samodra, H. (1993). Peta geologi lembar Tanimbar, Indonesia (Geological map Tanimbar). Pusat Penelitian dan Pengembangan Geologi. Slama, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plesovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1-35. Smith, D. J. (2014). Clinopyroxene precursors to amphibole sponge in arc crust. Nature Communications, 5(1), 1-6. Soeria-Atmadja, R., Maury, R., Bellon, H., Pringgoprawiro, H., Polve, M., & Priadi, B. (1994). Tertiary magmatic belts in Java. Journal of southeast asian earth sciences, 9(1-2), 13-27. Soeria-Atmadja, R., & Noeradi, D. (2005). Distribution of Early Tertiary volcanic rocks in south Sumatra and west Java. Island Arc, 14(4), 679-686. Spakman, W., & Hall, R. (2010). Surface deformation and slab-mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3(8), 562-566. Spandler, C., Hermann, J., Arculus, R., & Mavrogenes, J. (2003). Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology, 146(2), 205-222. Sun, S.-S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345. Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., & Shimizu, H. (2000). JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3-4), 279-281. Tatsumi, Y. (2000). Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochemistry, Geophysics, Geosystems, 1(12). Vervoort, J. D., & Kemp, A. I. S. (2016). Clarifying the zircon Hf isotope record of crust-mantle evolution. Chemical Geology, 425, 65-75. Vroon, P., Van Bergen, M., Klaver, G., & White, W. (1995). Strontium, neodymium, and lead isotopic and trace-element signatures of the East Indonesian sediments: provenance and implications for Banda Arc magma genesis. Geochimica et Cosmochimica Acta, 59(12), 2573-2598. White, W., & Klein, E. (2014). 4.13-Composition of the oceanic crust. Treatise on Geochemistry (second edition), 457-496. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J. C., & Speigel, W. (1995). 3 Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and Ree Analyses. Geostandards Newsletter, 19(1), 1-23. Woodhead, J. D., & Hergt, J. M. (2005). A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29(2), 183-195. Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H., & Xu, P. (2006). Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology, 234(1-2), 105-126. 田佳諭. (2018). 南蘇拉威西新生代岩漿活動的時空變化與地體意義 國立臺灣大學碩士論文]. 宋彪, 张玉海, 万渝生, & 简平. (2002). 锆石 SHRIMP 样品靶制作, 年龄测定及有关现象讨论. 地质论评, (S1), 26-30. 宋彪. (2015). 用 SHRIMP 测定锆石 U-Pb 年龄的工作方法. 地质通报, 34(10), 1777-1788. 李寄嵎、蔡榮浩、何孝恒、楊燦堯、鍾孫霖、陳正宏. (1997). 應用X光 螢光分析儀從事岩石樣品之定量分析(I)主要元素,中國地質學 會八十六年年會暨學術研討會論文摘要,第418-420 頁. 黃則寧. (2020). 北蘇拉威西新生代岩漿活動的年代與地球化學特徵 國立臺灣大學碩士論文]. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83135 | - |
dc.description.abstract | 在班達隱沒系統中韋伯海盆普遍被認為是個從3 Ma開始張裂形成的弧前盆地,而達伊島即位在韋伯海盆南緣;達伊島主要由第四紀的石灰岩與輝長岩類組成,後者在沒有定年資料的情況下被部分文獻認為是韋伯海盆延伸的產物。本文將首次報導達伊島上火成岩的鋯石鈾鉛定年(N =19)、全岩鍶-釹同位素(N = 13)以及鋯石鉿同位素分析(N = 15)的結果,還有全岩的主量以及微量元素的資訊,其中包括輝長岩(N = 38)、安山岩(N = 4)、花崗閃長岩(N = 4)、流紋岩(N = 1)以及花崗岩(N = 3)。根據達伊島火成岩礦物組成、全岩主量及微量元素的結果可將其分成兩類:晶堆岩以及非晶堆岩,前者係指早期結晶並堆積在岩漿部底部的材料,並且具有高Mg# (Mg# > 70)和/或斜長石富集(Eu/Eu* > 1.5)的特徵,後者則可細分為矽質岩石(N = 14)以及鈣鹼岩石(N = 1),這兩種岩石在蛛網圖中皆出現Ta、Nb、Ti虧損的情形,指示了岩石成因與隱沒作用相關;此外,分析的結果還表明鈣鹼岩石的輕稀土元素富集且全岩鍶-釹同位素顯示有其有受到陸源物質影響的跡象,至於矽質岩石則相反地呈現平坦的稀土元素或輕稀土虧損的情形,而全岩鍶-釹同位素與鋯石鉿同位素的結果皆指出矽質岩石的岩漿源區具有虧損地函的性質;另外,鋯石鈾鉛定年的結果指出這些火成岩具有兩種年代特性:(1)以岩漿鋯石為主以及(2)以繼承鋯石為主,其中以岩漿鋯石為主的岩樣(N = 15)年代介於32 ~ 25 Ma之間,並且集中在ca. 30與26 Ma,此類岩石涵蓋了晶堆岩、鈣鹼岩石以及基性及酸性矽質岩石,至於以繼承鋯石為主的樣本則僅有晶堆岩及中性的矽質岩石(N = 4);此外,本文亦有針對基性岩(N = 2)進行礦物相的觀察以及礦物成分分析,結果表明這些基性岩中出現高鎂普通角閃石和陽起石等角閃石族礦物富集的情形,且在背向散射電子影像中亦發現高鎂普通角閃石受蝕變影響而漸變成陽起石的證據,另一方面根據相圖所提供角閃石與輝長岩共存的壓力條件可推斷這些角閃石是在中、下部地殼中由含水的熔體結晶而來。根據鋯石鈾鉛定年的結果可知達伊島火成岩之岩石成因與韋伯海盆的張裂並無關係,而全岩化學分析的亦顯示達伊島之矽質岩石符合島弧矽質系列岩漿的特徵,即這些火成岩皆屬漸新世島弧岩漿活動的產物。 | zh_TW |
dc.description.abstract | Dai Island is situated at the southern extension of the Weber Deep, a forearc basin that started rifting in the Banda subduction system in 3 Ma. The island is composed mainly of Quaternary limestones and gabbroic rocks, the latter were widely related to the Weber deep rifting. Here this study reports the first set of zircon U-Pb ages (N = 19) and Hf isotope ratio (N = 15), whole-rock Sr-Nd isotope signatures of igneous rocks from Dai (N = 13), and together with whole-rock major and trace element data, including gabbro (N = 38), andesite (N = 4), granodiorite (N = 4), rhyolite (N = 1) and granite (N = 3). Igneous rocks in Dai can be divided into 2 groups by mineral assemblages, major and trace element data: cumulates and non-cumulates. Cumulates are considered as the products of early-stage crystallization and deposited in the bottom of the magma chamber, furthermore, cumulates show low contents of SiO2, REE concentration, and high-Mg (Mg# > 70) and/or Eu (+) anomaly (plagioclase-bearing and Eu/Eu* > 1.5). The major element data indicate that non-cumulates are either tholeiitic or calc-alkaline composition, with the former named “Tholeiitic rocks” (TH; N = 14) and the latter “Calc-alkaline rock” (CA; N = 1). The tholeiitic and calc-alkaline rocks are relative depletion of Ta-Nb-Ti in the spidergram, indicating a subduction-related petrogenesis. Furthermore, CA is LREE-enriched, coupled with (87Sr/86Sr)i = 0.7068 and ℇNd(t) = −10, which indicates that it may be affected by continental materials. Additionally, zircon Hf isotope data, whole-rock trace element data, and Sr-Nd isotope data of tholeiitic rocks show flat-REE or LREE-depleted, and the features of the depleted mantle source. Our zircon U-Pb ages also suggest that the rock samples mainly contained magmatic zircons, including cumulates, calc-alkaline rock and mafic and felsic tholeiitic rocks, are 32 ~ 25 Ma, and that inherited zircons commonly appear in cumulates and intermediate tholeiitic rocks (N = 4). Moreover, this study also reports the result of thin section observation and mineral composition analysis in mafic rocks (N = 2), the results show that there are lots of amphibole group minerals, including magnetism hornblende and actinolite, enriched in mafic rocks, and that actinolites were formed by the alteration of magnetism hornblende. In accordance with the phase diagram of gabbro and amphibole, these amphiboles were crystallized from water-saturated magma in the middle and lower crust. According to zircon U-Pb ages, whole-rock Sr-Nd isotope, major and trace element data and zircon Hf isotope results, we can learn that the igneous rocks in Dai island were not the products of Weber Deep rifting, but mostly an island arc tholeiitic rocks, that is, this study considers that most of the igneous rocks in Dai are the relict of a Oligocene island arc. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T17:01:35Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-01-09T17:01:35Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 區域地質背景 3 1.3.1巽它陸塊與印澳板塊的構造演化 4 1.3.2 班達海灣下的海洋岩石圈回捲與巽它陸塊東南緣的弧後張裂 5 1.3.3 亞洲東南緣的弧前張裂與達伊島地質背景 7 第二章 研究方法 10 2.1 全岩主量元素組成與燒失量 10 2.1.1 前處理 13 2.1.2 燒失量上機分析 13 2.1.3 主量元素上機分析 14 2.2 全岩微量元素組成 14 2.2.1 前處理 15 2.2.2 微量元素上機分析與數據檢測 16 2.3 岩石薄片 18 2.4 掃描式電子顯微鏡觀察與波長分散式光譜儀分析 18 2.4.1 前處理 19 2.4.2 背向散射電子影像拍攝 19 2.4.3 波長分散式光譜儀分析 20 2.5 鋯石鈾-鉛定年 20 2.5.1 前處理 21 2.5.2 上機分析與數據處理 22 2.6 全岩鍶-釹同位素 23 2.6.1 前處理 23 2.6.2 全岩鍶-釹同位素上機分析與數據檢測 27 2.7 鋯石鉿同位素 27 2.7.1 鋯石鉿同位素上機分析與數據檢測 28 第三章 結果 29 3.1 燒失量、全岩主量元素與微量元素組成 29 3.1.1晶堆岩 33 3.1.2 矽質岩石與鈣鹼岩石 36 3.1.3 矽質岩石擄獲晶堆岩⸺ DT-1 40 3.2 礦物學岩象觀察與分析 42 3.2.1 晶堆岩 42 3.2.2 矽質岩石與鈣鹼岩石 44 3.2.3 矽質岩石擄獲晶堆岩 ⸺ DT-1 48 3.3 鋯石鈾-鉛定年 50 3.4 全岩鍶-釹同位素 56 3.5 鋯石鉿同位素 58 第四章 討論 60 4.1達伊島火成岩岩石成因與相對應之地體構造 60 4.1.1 矽質岩石之岩石成因 60 4.1.2 鈣鹼岩石之岩石成因 64 4.2 基性岩中的角閃石族礦物 65 4.2.1 鎂普通角閃石與陽起石之生長關係 65 4.2.2 角閃石富集之基性矽質岩石分類 65 4.2.3 角閃石結晶之環境條件與成因 67 4.3 達伊島火成岩形成過程 69 第五章 結論 71 參考文獻 72 附錄 A 81 附錄 B 93 附錄 C 95 | - |
dc.language.iso | zh_TW | - |
dc.title | 印尼東側達伊島漸新世島弧岩漿活動的年代與地球化學特徵 | zh_TW |
dc.title | Age and geochemical constraints on igneous rocks from Dai island, Eastern Indonesia: Discovery of Oligocene island arc magmatism | en |
dc.title.alternative | Age and geochemical constraints on igneous rocks from Dai island, Eastern Indonesia: Discovery of Oligocene island arc magmatism | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 江威德;賴昱銘;李皓揚;朱美妃 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Teh Jiang;Yu-Ming Lai;Hao-Yang Lee;Mei-Fei Chu | en |
dc.subject.keyword | 達伊島,印尼,韋伯海盆,鋯石鈾鉛定年,島弧矽質系列岩漿,晶堆岩,輝長岩類, | zh_TW |
dc.subject.keyword | Dai Island,Indonesia,Weber Deep,Zircon U-Pb age,Island Arc Tholeiitic magma,Cumulates,Gabbroic rocks, | en |
dc.relation.page | 97 | - |
dc.identifier.doi | 10.6342/NTU202210140 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-12-19 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0156221215114114.pdf | 36.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。