Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83125
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢zh_TW
dc.contributor.advisorTsung-Hsien Linen
dc.contributor.author鄧厚威zh_TW
dc.contributor.authorHou-Wei Tengen
dc.date.accessioned2023-01-09T06:28:46Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-11-15-
dc.identifier.citation[1] Jake Hertz, ‘‘Once 5G Hits, DC-DC Converters May Be RF Power Amplifier’s Saving Grace,’’ July 01, 2020.
[2] B. Razavi, RF Microeletronics, Second Edition, Prentice-Hall, 2012.
[3] [Online]. Available:https://www.tutorialspoint.com/lte/lte_ofdm_technology.htm
[4] Z. Wang, Envelope Tracking Power Amplifiers for Wireless Communications, Artech House, 2014.
[5] [Online]. Available:https://www.rfwireless-world.com/Articles/Difference_between_SC_and_OFDM.html
[6] S. Haykin, Communication Systems, Fourth edition, J. Wiley & Sons, 2001.
[7] R. Shrestha, R. Zee, A. Graauw and B. Nauta, ‘‘A Wideband Supply Modulator for 20 MHz RF Bandwidth Polar Pas in 65nm CMOS,’’ IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1272-1280, Apr. 2009.
[8] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, Second Edition, Springer, 2001.
[9] K.-H. Chen, Power Management Techniques for Integrated Circuit Design, Wiley, 2016.
[10] W.-H. Ki, K.-M. Lai and C. Zhan, ‘‘Charge Balance Analysis and State Transition Analysis of Hysteresis Voltage Mode Switching Converters,’’ IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 58, no. 5, pp. 1142-1153, May 2011.
[11] M. Hassan, L. E. Larson, V. W. Leung and P. M. Asbeck, ‘‘A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,’’ IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp. 1185-1198, May 2012.
[12] X. Liu, H. Zhang, P. K. T. Mok and H. C. Luong, ‘‘A Multi-Loop Controlled AC-Coupling Supply Modulator with a Mode Switching CMOS PA in an EER System with Envelope Shaping,’’ IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1553-1563, June 2019.
[13] R. Shrestha, R. van der Zee, A. de Graauw and B. Nauta, ‘‘A Wideband Supply Modulator for 20 MHz RF Bandwidth Polar PAs in 65 nm CMOS,’’ IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1272-1280, April 2009.
[14] J. Choi, D. Kim, D. Kang and B. Kim, ‘‘A Polar Transmitter with CMOS Programmable Hysteretic Controlled Hybrid Switching Supply Modulator for Multistandard Applications,’’ IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 7, pp. 1675-1686, July 2009.
[15] M. Hassan, L. E. Larson, V. W. Leung, D. F. Kimball and P. M. Asbeck, ‘‘A Wideband CMOS/GaAs HBT Envelope Tracking Power Amplifier for 4G LTE Mobile Terminal Applications,’’ IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1321-1330, May 2012.
[16] M. Tan and W. Ki, ‘‘An Efficiency Enhanced Hybrid Supply Modulator with Single Capacitor Current Integration Control,’’ IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 533-542, Feb. 2016.
[17] H. He, Y. Kang, T. Ge, L. Guo and J. S. Chang, ‘‘A 2.5-W 40-MHz-Bandwidth Hybrid Supply Modulator with 91% Peak Efficiency, 3-V Output Swing, and 4-mV Output Ripple at 3.6-V Supply,’’ IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 712-723, Jan. 2019.
[18] P. Y. Wu and P. K. T. Mok, ‘‘A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement,’’ IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2543-2556, Dec. 2010.
[19] M. Hassan, P. M. Asbeck and L. E. Larson, ‘‘A CMOS Dual-Switching Power-Supply Modulator with 8% Efficiency Improvement for 20MHz LTE Envelope Tracking RF Power Amplifiers,’’ IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, pp. 366-367, 2013.
[20] P. Amò, M. Thomas, V. Molata and T. Jeřábek, ‘‘Envelope Modulator for Multimode Transmitters with AC-coupled Multilevel Regulators,’’ IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, pp. 296-297, 2014.
[21] P. Riehl, P. Fowers, H. Hong and M. Ashburn, ‘‘An AC-coupled Hybrid Envelope Modulator for HSUPA Transmitters with 80% Modulator Efficiency,’’ IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, pp. 364-365, 2013.
[22] W.-Y. Chu, B. Bakkaloglu and S.Kiaei, ‘‘A 10 MHz Bandwidth, 2 mV Ripple PA Regulator for CDMA Transmitters,’’ IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2809-2819, Dec. 2008.
[23] P. Gray, Analysis and Design of Analog Integrated Circuits, Wiley, 2009.
[24] [Online]. Available:https://www.mouser.com/datasheet/2/472/SKY66184_11_203259G-1097676.pdf
[25] [Online]. Available:https://www.keysight.com/tw/zh/assets/7018-06017/technical-overviews/5992-2741.pdf
[26] J. Choi, D. Kim, D. Kang and B. Kim, “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, pp. 1796-1802, Jul. 2011.
[27] M. Hati, T. Bhattacharyya, “A Power Efficient and Constant-gm 1.8 V CMOS Operational Transconductance Amplifier with Rail-to-Rail Input and Output Ranges for Charge Pump in Phase-Locked Loop,” IEEE International Conference on Devices, Circuits and Systems, Mar. 2012.
[28] D. A. Johns, K. Martin, Analog Integrated Circuit Design, Wiley, Nov. 2011.
[29] M. H. Perrott, Analysis and Design of Analog Integrated Circuit, Lecture 16, Apr. 2012.
[30] W.–C. Chen et al., “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-Time Control for Buck Converter With Multilayer Ceramic Capacitors,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2366-2376, May 2013.
[31] [Online]. Available:https://www.etsi.org/deliver/etsi_ts/136100_136199/136101/08.10.00_60/ts_136101v081000p.pdf
[32] J. Ham et al., “CMOS Power Amplifier Integrated Circuit with Dual-Mode Supply Modulator for Mobile Terminals,” IEEE Transactions on Circuits and Systems–I: Regular Papers, vol. 63, no. 1, pp. 157-167, Jan. 2016.
[33] Y. Jing and B. Bakkaloglu, “A High Slew-Rate Adaptive Biasing Hybrid Envelope Tracking Supply Modulator for LTE Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 9, pp. 3245-3256, Sep. 2017.
[34] J.-S. Paek, D. Kim, Y. Choo, Y.-S. Youn, J. Lee, and T. B.-H. Cho, “Design of Boosted Supply Modulator with Reverse Current Protection for Wide Battery Range in Envelope Tracking Operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 1, pp. 183-194, Jan. 2019.
[35] Y. Chen et al., “A Hybrid Supply Modulator for 10-MHz LTE Power Amplifier with 17.3% PAE Improvement,” IEEE International Symposium on VLSI Design, Automation and Test, Apr. 2021.
[36] J.-S. Paek et al., “A −137 dBm/Hz Noise, 82% Efficiency AC-Coupled Hybrid Supply Modulator with Integrated Buck-Boost Converter,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2757-2768, Nov. 2016.
[37] M. Tan and W.-H. Ki, “A 100 MHz Hybrid Supply Modulator with Ripple-Current-Based PWM Control,” IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 569-578, Feb. 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83125-
dc.description.abstract隨著全球通訊的演進,如今的通訊協定已發展到了第五代。射頻傳輸訊號的通道頻寬及峰均功率比等規格皆不斷上升,因此功率放大器之效率逐漸成為一項重要的議題,封包追蹤技術可根據射頻訊號之封包來動態調整提供給功率放大器之供應電壓,相較於傳統高準位的固定電壓,能提升功率放大器之轉換效率。
對於封包追蹤轉換器的系統而言,電路所採用的架構會顯著的影響整體的性能。為了同時達到良好的轉換效率以及準確的訊號追蹤能力,本研究採用並聯組合架構,主要由一線性放大器與一切換放大器所組成,前者擁有高頻訊號之追蹤能力,並具備用以壓抑雜訊之低輸出阻抗;後者則可輸出直流功率並維持高效率。線性放大器整體由一個軌對軌輸入之摺疊疊接運算放大器搭配浮動電流源控制的Class-AB輸出級所組成,另外此電路也利用定轉導偏壓電路以保持線性放大器對於各項變異的低敏感度;切換放大器則使用一加入了電阻、電容補償之遲滯比較器,可以有效的降低比較時間延遲,達到較快之控制迴路速度。除此之外在前端電流感測的部份加入一轉導放大器解決Class-AB電流鏡的通道調變效應,同時也提升整體電流迴路的速度。
本晶片實作於台積電180奈米之CMOS製程。電路部分使用3.3伏特的高壓元件以提供3.5伏特之供應電壓。另外,此晶片之整體面積包含pad為0.875平方毫米。當測量電源轉換器本身之效能,負載端可由被動元件替代功率放大器。此時系統量測到之峰值效率為83.96%。而於測量封包追蹤功率放大器整體系統性能方面,其傳輸效率於最大輸出功率下可從11.44%改善至30.59%,相鄰頻道洩漏比則為-53.63 dBc。
zh_TW
dc.description.abstractWith the evolution of global communication, the protocol has been developed to the 5th generation. Specifications such as channel bandwidth and peak-to-average power ratio (PAPR) of RF transmission signals are constantly rising. Therefore, the efficiency of a power amplifiers (PA) has gradually become an important issue. The envelope tracking technique dynamically adjust the supply voltage of the power amplifier based on the input RF signal, which can provide a higher conversion efficiency when compared to traditional fixed-supply topology.
For the envelope tracking supply modulator (ETSM) system, the circuit architecture being adopted will highly influence the total performance. In order to obtain high efficiency while maintaining accurate signal tracking ability, a parallel-connected topology is adopted in this thesis. It consists of a linear amplifier (LA) and a switching amplifier (SA). The former is capable of wideband envelope signal tracking while possessing low output impedance for noise suppression, and the latter is responsible for providing most of the power to the output with high efficiency. The LA consists of a rail-to-rail input folded-cascode amplifier and a floating-current-source-controlled Class-AB output stage. Furthermore, a constant-gm bias circuit is added to maintain low sensitivity toward variations. The SA employs a hysteresis comparator with RC compensation for less time delay, and thus achieving faster control loop speed. In addition, a transimpedance amplifier (TIA) is inserted in front of the hysteresis comparator to manage the effect of channel-length modulation and enhance the control loop response at the same time.
The chip is fabricated in TSMC 0.18-um CMOS process with 3.3-V high-voltage devices for 3.5-V supply voltage and the total occupied area including I/O pads is 0.875-mm2. For measuring the performance of ETSM itself, the PA can be replaced by passive elements. In this case, the measured peak efficiency reaches 83.96%. Considering the performance of the ETPA system, the transmission efficiency is improved from 11.44% to 30.59% at the maximum output power while the adjacent channel leakage ratio (ACLR) of the output spectrum is -53.63 dBc.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T06:28:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-09T06:28:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文審定書 iii
摘要 vii
Abstract ix
List of Figures xiii
List of Tables xvi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation 4
1.3 Thesis Outline 5
Chapter 2 Fundamentals of Envelope Tracking Techniques in Communications 7
2.1 Basic Concepts 7
2.1.1 Wireless Communication 7
2.1.2 Envelope Tracking (ET) Technique 10
2.2 Circuit Architectures of the ETSM 11
2.2.1 Linear Supply Modulator 12
2.2.2 Switching Supply Modulator 14
2.2.3 Series Type Hybrid Supply Modulator 22
2.2.4 Parallel Type Hybrid Supply Modulator 23
2.3 Techniques for Efficiency Improvement 25
2.3.1 Delay-Based Hysteresis Control 26
2.3.2 Multiphase Switching Technique 27
2.3.3 Multilevel Switching Technique 28
2.3.4 AC-coupling Technique 30
2.4 Modeling of Parallel Type Hybrid Supply Modulator 31
Chapter 3 Design of the Proposed Wideband Envelope Tracking Supply Modulator 35
3.1 Introduction 35
3.1.1 Design Motivation 35
3.1.2 System Requirements 37
3.1.3 Design Procedure 39
3.2 Supply Modulator Architecture 41
3.2.1 Top-Level Design 41
3.2.2 Modeling and Efficiency Analysis 43
3.3 Circuit Implementations 49
3.3.1 Linear Amplifier (LA) 49
3.3.2 Sense and Control Circuit 54
3.3.3 Switching Amplifier (SA) 57
3.4 Simulation Results 59
3.4.1 Simulation of Subcircuits 59
3.4.2 Simulation of the ETSM System 63
3.4.3 Summary 69
Chapter 4 Measurement Results 71
4.1 Measurement Environment Setup 71
4.1.1 4G-LTE Signal Generation 71
4.1.2 Instruments Setup 73
4.1.3 Chip Die Photo & PCB Layout 74
4.1.4 PCB Setup 76
4.2 Measurement Results 76
4.2.1 Stand-alone ETSM 77
4.2.2 Connected with PA Module 82
4.3 Performance Summary 86
Chapter 5 Conclusions and Future Works 89
5.1 Conclusions 89
5.2 Future Works 90
References 93
-
dc.language.isoen-
dc.subject浮動電流源控制zh_TW
dc.subject封包追蹤zh_TW
dc.subject峰均功率比zh_TW
dc.subject混合式並聯組合架構zh_TW
dc.subject相鄰頻道洩漏比zh_TW
dc.subjectparallel-connected hybrid topologyen
dc.subjectenvelope trackingen
dc.subjectadjacent channel leakage ratioen
dc.subjectfloating current source controlen
dc.subjectpeak-to-average power ratioen
dc.title應用於LTE-20MHz無線通訊傳輸功率放大器之混合式封包追蹤電源調變器設計zh_TW
dc.titleDesign of the Envelope Tracking Hybrid Supply Modulator for Power Amplifier in LTE-20MHz Wireless Communication Applicationsen
dc.title.alternativeDesign of the Envelope Tracking Hybrid Supply Modulator for Power Amplifier in LTE-20MHz Wireless Communication Applications-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂良鴻;蔡宗亨zh_TW
dc.contributor.oralexamcommitteeLiang-Hung Lu;Tsung-Heng Tsaien
dc.subject.keyword封包追蹤,峰均功率比,混合式並聯組合架構,浮動電流源控制,相鄰頻道洩漏比,zh_TW
dc.subject.keywordenvelope tracking,peak-to-average power ratio,parallel-connected hybrid topology,floating current source control,adjacent channel leakage ratio,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202210047-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-11-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2027-11-01-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0545221112563030.pdf
  未授權公開取用
7.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved