Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83123
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣zh_TW
dc.contributor.advisorJiun-Yun Lien
dc.contributor.author李宗穎zh_TW
dc.contributor.authorTsung-Ying Lien
dc.date.accessioned2023-01-09T06:28:01Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-11-14-
dc.identifier.citation[1] C. Morrison, P. Wiśniewski, S. D. Rhead, J. Foronda, D. R. Leadley, and M. Myronov, “Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas,” Applied Physics Letters, vol. 105, no. 18, p. 182401, Nov. 2014.
[2] Chia-Tse Tai, Po-Yuan Chiu, Chia-You Liu, Hsiang-Shun Kao, C. Thomas Harris, Tzu-Ming Lu, Chi-Ti Hsieh, Shu-Wei Chang, Jiun-Yun Li, “Strain Effects on Rashba Spin‐Orbit Coupling of 2D Hole Gases in GeSn/Ge Heterostructures,” Advanced Materials, vol. 33, no. 26, p. 2007862, May 2021.
[3] S. Datta and B. Das, “Electronic analog of the electro‐optic modulator,” Applied Physics Letters, vol. 56, no. 7, pp. 665–667, Feb. 1990.
[4] Y. H. Park, J. W. Choi, H J Kim, J. Chang, S. H. Han, H. J. Choi, and H.C. Koo, “Complementary spin transistor using a quantum well channel,” Scientific Reports, vol. 7, no. 1, Apr. 2017.
[5] P. Chuang, S. C. Ho, L. W. Smith, F. Sfigakis, M. Pepper, C. H. Chen, J. C. Fan, J. P. Griffiths, I. Farrer, H. E. Beere, G. A. C. Jones, D. A. Ritchie, and T. M. Chen, “All-electric all-semiconductor spin field-effect transistors,” Nature Nanotechnology, vol. 10, no. 1, pp. 35–39, Dec. 2014.
[6] J. Chow, O. Dial, and J. Gambetta, “IBM Quantum breaks the 100 qubit processor barrier,” IBM Research Blog, Feb. 09, 2021. https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
[7] A. M. J. Zwerver, T. Krähenmann, T. F. Watson, L. Lampert, H. C. George, R. Pillarisetty, S. A. Bojarski, P. Amin, S. V. Amitonov, J. M. Boter, R. Caudillo, D. Correas-Serrano, J. P. Dehollain, G. Droulers, E. M. Henry, R. Kotlyar, M. Lodari, F. Lüthi, D. J. Michalak, B. K. Mueller, S. Neyens, J. Roberts, N. Samkharadze, G. Zheng, O. K. Zietz, G. Scappucci, M. Veldhorst, L. M. K. Vandersypen and J. S. Clarke, “Qubits made by advanced semiconductor manufacturing,” Nature Electronics, vol. 5, no. 3, pp. 184–190, Mar. 2022.
[8] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, “Few-electron quantum dot circuit with integrated charge read out,” Physical Review B, vol. 67, no. 16, Apr. 2003.
[9] A. Pfund, I. Shorubalko, K. Ensslin, and R. Leturcq, “Suppression of Spin Relaxation in an InAs Nanowire Double Quantum Dot,” Physical Review Letters, vol. 99, no. 3, Jul. 2007.
[10] C. Barthel, M. Kjærgaard, J. Medford, M. Stopa, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot,” Physical Review B, vol. 81, no. 16, Apr. 2010.
[11] S. A. Studenikin, J. Thorgrimson, G. C. Aers, A. Kam, P. Zawadzki, Z. R. Wasilewski, A. Bogan, and A. S. Sachrajda, “Enhanced charge detection of spin qubit readout via an intermediate state,” Applied Physics Letters, vol. 101, no. 23, p. 233101, Dec. 2012.
[12] J. M. Hornibrook, J. I. Colless, A. C. Mahoney, X. G. Croot, S. Blanvillain, H. Lu, A. C. Gossard, and D. J. Reilly, “Frequency multiplexing for readout of spin qubits,” Applied Physics Letters, vol. 104, no. 10, p. 103108, Mar. 2014.
[13] W. I. L. Lawrie, H. G. J. Eenink, N. W. Hendrickx, J. M. Boter, L. Petit, S. V. Amitonov, M. Lodari, B. Paquelet Wuetz, C. Volk, S. G. J. Philips, G. Droulers, N. Kalhor, F. van Riggelen, D. Brousse, A. Sammak, L. M. K. Vandersypen, G. Scappucci, and M. Veldhorst, “Quantum dot arrays in silicon and germanium,” Applied Physics Letters, vol. 116, no. 8, p. 080501, Feb. 2020.
[14] C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Camirand Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, M. Pioro-Ladrière, A. Laucht and A. S. Dzurak, “Operation of a silicon quantum processor unit cell above one kelvin,” Nature, vol. 580, no. 7803, pp. 350–354, Apr. 2020.
[15] L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, S. G. J. Philips, J. S. Clarke, L. M. K. Vandersypen and M. Veldhorst, “Universal quantum logic in hot silicon qubits,” Nature, vol. 580, no. 7803, pp. 355–359, Apr. 2020.
[16] L. C. Camenzind, S. Geyer, A. Fuhrer, R. J. Warburton, D. M. Zumbühl, and A. V. Kuhlmann, “A hole spin qubit in a fin field-effect transistor above 4 kelvin,” Nature Electronics, vol. 5, no. 3, pp. 178–183, Mar. 2022.
[17] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello and A. S. Dzurak, “A Two Qubit Logic Gate in Silicon,” Nature, vol. 526, no. 7573, pp. 410–414, Oct. 2015.
[18] C. B. Simmons, J. R. Prance, B. J. Van Bael, Teck Seng Koh, Zhan Shi, D. E. Savage, M. G. Lagally, R. Joynt, Mark Friesen, S. N. Coppersmith, and M. A. Eriksson, “Tunable Spin Loading andT1of a Silicon Spin Qubit Measured by Single-Shot Readout,” Physical Review Letters, vol. 106, no. 15, Apr. 2011.
[19] J. R. Prance, Zhan Shi, C. B. Simmons, D. E. Savage, M. G. Lagally, L. R. Schreiber, L. M. K. Vandersypen, Mark Friesen, Robert Joynt, S. N. Coppersmith, and M. A. Eriksson, “Single-Shot Measurement of Triplet-Singlet Relaxation in aSi/SiGe Double Quantum Dot,” Physical Review Letters, vol. 108, no. 4, Jan. 2012.
[20] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson and L. M. K. Vandersypen, “Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot,” Nature Nanotechnology, vol. 9, no. 9, pp. 666–670, Aug. 2014.
[21] C. Payette, K. Wang, P. J. Koppinen, Y. Dovzhenko, J. C. Sturm, and J. R. Petta, “Single charge sensing and transport in double quantum dots fabricated from commercially grown Si/SiGe heterostructures,” Applied Physics Letters, vol. 100, no. 4, p. 043508, Jan. 2012.
[22] Takashi Nakajima, Matthieu R. Delbecq, Tomohiro Otsuka, Peter Stano, Shinichi Amaha, Jun Yoneda, Akito Noiri, Kento Kawasaki, Kenta Takeda, Giles Allison, Arne Ludwig, Andreas D. Wieck, Daniel Loss, and Seigo Tarucha, “Robust Single-Shot Spin Measurement with 99.5% Fidelity in a Quantum Dot Array,” Physical Review Letters, vol. 119, no. 1, Jul. 2017.
[23] Jun Yoneda, Kenta Takeda, Tomohiro Otsuka, Takashi Nakajima, Matthieu R. Delbecq, Giles Allison, Takumu Honda, Tetsuo Kodera, Shunri Oda, Yusuke Hoshi, Noritaka Usami, Kohei M. Itoh and Seigo Tarucha, “A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%,” Nature Nanotechnology, vol. 13, no. 2, pp. 102–106, Dec. 2017.
[24] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer and S. De Franceschi, “A CMOS silicon spin qubit,” Nature Communications, vol. 7, no. 1, Nov. 2016.
[25] Nico W. Hendrickx, William I. L. Lawrie, Maximilian Russ, Floor van Riggelen, Sander L. de Snoo, Raymond N. Schouten, Amir Sammak, Giordano Scappucci and Menno Veldhorst, “A four-qubit germanium quantum processor,” Nature, vol. 591, no. 7851, pp. 580–585, Mar. 2021.
[26] Stephan G. J. Philips, Mateusz T. Mądzik, Sergey V. Amitonov, Sander L. de Snoo, Maximilian Russ, Nima Kalhor, Christian Volk, William I. L. Lawrie, Delphine Brousse, Larysa Tryputen, Brian Paquelet Wuetz, Amir Sammak, Menno Veldhorst, Giordano Scappucci and Lieven M. K. Vandersypen, “Universal control of a six-qubit quantum processor in silicon,” Nature, vol. 609, no. 7929, pp. 919–924, Sep. 2022.
[27] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, “Quantized conductance of point contacts in a two-dimensional electron gas,” Physical Review Letters, vol. 60, no. 9, pp. 848–850, Feb. 1988.
[28] C. W. J. Beenakker and H. van Houten, “Quantum Transport in Semiconductor Nanostructures,” Semiconductor Heterostructures and Nanostructures, vol. 44, pp. 1–228, 1991.
[29] M. J. M. de Jong, “Transition from Sharvin to Drude resistance in high-mobility wires,” Physical Review B, vol. 49, no. 11, pp. 7778–7781, Mar. 1994.
[30] S. L. Wang, P. C. van Son, B. J. van Wees, and T. M. Klapwijk, “Quantum conductance of point contacts in Si inversion layers,” Physical Review B, vol. 46, no. 19, pp. 12873–12876, Nov. 1992.
[31] W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Incipient Formation of an Electron Lattice in a Weakly Confined Quantum Wire,” Physical Review Letters, vol. 102, no. 5, Feb. 2009.
[32] D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G. Clark, P. J. Stiles, A. R. Hamilton, J. L. O’Brien, N. E. Lumpkin, L. N. Pfeiffer, and K. W. West, “Many-body spin-related phenomena in ultra low-disorder quantum wires,” Physical Review B, vol. 63, no. 12, Mar. 2001.
[33] K. L. Hudson, A. Srinivasan, O. Goulko, J. Adam, Q. Wang, L. A. Yeoh, O. Klochan, I. Farrer, D. A. Ritchie, A. Ludwig, A. D. Wieck, J. von Delft and A. R. Hamilton, “New signatures of the spin gap in quantum point contacts,” Nature Communications, vol. 12, no. 1, Jan. 2021.
[34] D. Tobben, D. A. Wharam, G. Abstreiter, J. P. Kolthaus, and F. Schaffler, “Ballistic electron transport through a quantum point contact defined in a Si/Si0.7Ge0.3heterostructure,” Semiconductor Science and Technology, vol. 10, no. 5, pp. 711–714, May 1995.
[35] Y. Gul, S. N. Holmes, P. J. Newton, D. J. P. Ellis, C. Morrison, M. Pepper, C. H. W. Barnes, and M. Myronov, “Quantum ballistic transport in strained epitaxial germanium,” Applied Physics Letters, vol. 111, no. 23, p. 233512, Dec. 2017.
[36] B. J. van Wees, L. P. Kouwenhoven, H. van Houten, C. W. J. Beenakker, J. E. Mooij, C. T. Foxon, and J. J. Harris, “Quantized conductance of magnetoelectric subbands in ballistic point contacts,” Physical Review B, vol. 38, no. 5, pp. 3625–3627, Aug. 1988.
[37] A. C. Graham, K. J. Thomas, M. Pepper, N. R. Cooper, M. Y. Simmons, and D. A. Ritchie, “Interaction Effects at Crossings of Spin-Polarized One-Dimensional Subbands,” Physical Review Letters, vol. 91, no. 13, Sep. 2003.
[38] P. Debray, S. M. S. Rahman, J. Wan, R. S. Newrock, M. Cahay, A. T. Ngo, S. E. Ulloa, S. T. Herbert, M. Muhammad and M. Johnson, “All-electric quantum point contact spin-polarizer,” Nature Nanotechnology, vol. 4, no. 11, pp. 759–764, Sep. 2009.
[39] P. P. Das, Generation of Spin Polarization in Side-Gated Indium Arsenide Quantum Point Contact. University of Cincinnati ProQuest Dissertations Publishing, 2012.
[40] N. K. Bhandari, Tunable all electric spin polarizer. University of Cincinnati ProQuest Dissertations Publishing, 2014.
[41] K. Nishiguchi and S. Oda, “Conductance quantization in nanoscale vertical structure silicon field-effect transistors with a wrap gate,” Applied Physics Letters, vol. 76, no. 20, pp. 2922–2924, May 2000.
[42] K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, and Y. Hirayama, “Valley Polarization in Si(100) at Zero Magnetic Field,” Physical Review Letters, vol. 96, no. 23, Jun. 2006.
[43] G. Frucci, L. Di Gaspare, F. Evangelisti, E. Giovine, A. Notargiacomo, V. Piazza, and F. Beltram, “Conductance and valley splitting in etched Si/SiGe one-dimensional nanostructures,” Physical Review B, vol. 81, no. 19, May 2010.
[44] Srijit Goswami, K. A. Slinker, Mark Friesen, L. M. McGuire, J. L. Truitt, Charles Tahan, L. J. Klein, J. O. Chu, P. M. Mooney, D. W. van der Weide, Robert Joynt, S. N. Coppersmith and Mark A. Eriksson, “Controllable valley splitting in silicon quantum devices,” Nature Physics, vol. 3, no. 1, pp. 41–45, Dec. 2006.
[45] R. J. Brown, M. J. Kelly, R. Newbury, M. Pepper, B. Miller, H. Ahmed, D. G. Hasko, D. C. Peacock, D. A. Ritchie, J. E. F. Frost and G. A. C. Jones, “The one dimensional quantised ballistic resistance in GaAs/AlGaAs heterojunctions with varying experimental conditions,” Solid-State Electronics, vol. 32, no. 12, pp. 1179–1183, Dec. 1989.
[46] P. L. McEuen, B. W. Alphenaar, R. G. Wheeler, and R. N. Sacks, “Resonant transport effects due to an impurity in a narrow constriction,” Surface Science, vol. 229, no. 1–3, pp. 312–315, Apr. 1990.
[47] M. M. Fuechsle, Precision few-electron silicon quantum dots. Diss. UNSW Sydney, 2011.
[48] Stuart B. Field, M. A. Kastner, U. Meirav, J. H. F. Scott-Thomas, D. A. Antoniadis, Henry I. Smith, and S. J. Wind, “Conductance oscillations periodic in the density of one-dimensional electron gases,” Physical Review B, vol. 42, no. 6, pp. 3523–3536, Aug. 1990.
[49] A. A. M. Staring, H. van Houten, C. W. J. Beenakker, and C. T. Foxon, “Coulomb-blockade oscillations in disordered quantum wires,” Physical Review B, vol. 45, no. 16, pp. 9222–9236, Apr. 1992.
[50] M. Sanquer, M. Specht, L. Ghenim, S. Deleonibus, and G. Guegan, “Coulomb blockade in low-mobility nanometer size Si MOSFET’s,” Physical Review B, vol. 61, no. 11, pp. 7249–7252, Mar. 2000.
[51] Jan Heyder, Florian Bauer, Enrico Schubert, David Borowsky, Dieter Schuh, Werner Wegscheider, Jan von Delft, and Stefan Ludwig, “Relation between the 0.7 anomaly and the Kondo effect: Geometric crossover between a quantum point contact and a Kondo quantum dot,” Physical Review B, vol. 92, no. 19, Nov. 2015.
[52] S. M. Sze, Y. Li, and K. K. Ng, Physics of Semiconductor Devices. John Wiley & Sons, 2021.
[53] L. P. Kouwenhoven, B. J. van Wees, C. J. P. M. Harmans, J. G. Williamson, H. van Houten, C. W. J. Beenakker, C. T. Foxon, and J. J. Harris, “Nonlinear conductance of quantum point contacts,” Physical Review B, vol. 39, no. 11, pp. 8040–8043, Apr. 1989.
[54] K. Takeuchi and R. Newbury, “Periodic conductance fluctuations in quasi-one-dimensional metal-oxide-semiconductor field-effect transistors with shallow-trench isolations,” Physical Review B, vol. 43, no. 9, pp. 7324–7327, Mar. 1991.
[55] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Reviews of Modern Physics, vol. 79, no. 4, pp. 1217–1265, Oct. 2007.
[56] C. de Graaf, J. Caro, S. Radelaar, V. Lauer, and K. Heyers, “Coulomb-blockade oscillations in the conductance of a silicon metal-oxide-semiconductor field-effect-transistor point contact,” Physical Review B, vol. 44, no. 16, pp. 9072–9075, Oct. 1991.
[57] C. W. J. Beenakker, “Theory of Coulomb-blockade oscillations in the conductance of a quantum dot,” Physical Review B, vol. 44, no. 4, pp. 1646–1656, Jul. 1991.
[58] A. Baskaran and P. Smereka, “Mechanisms of Stranski-Krastanov growth,” Journal of Applied Physics, vol. 111, no. 4, p. 044321, Feb. 2012.
[59] Hsin-Chiao Luan, Desmond R. Lim, Kevin K. Lee, Kevin M. Chen, Jessica G. Sandland, Kazumi Wada, and Lionel C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Applied Physics Letters, vol. 75, no. 19, pp. 2909–2911, Nov. 1999.
[60] 戴嘉澤, 鍺錫/鍺異質結構二維電洞氣之Rashba自旋-軌域耦合效應與等效質量. 臺灣大學電子工程學研究所學位論文, 2021.
[61] H-S. Lan and C. W. Liu, “Band alignments at strained Ge1−x Sn x /relaxed Ge1−y Sn y heterointerfaces,” Journal of Physics D: Applied Physics, vol. 50, no. 13, p. 13LT02, Feb. 2017.
[62] Y.-H. Su, K.-Y. Chou, Y. Chuang, T.-M. Lu, and J.-Y. Li, “Electron mobility enhancement in an undoped Si/SiGe heterostructure by remote carrier screening,” Journal of Applied Physics, vol. 125, no. 23, p. 235705, Jun. 2019.
[63] Y.-H. Su, Y. Chuang, C.-Y. Liu, J.-Y. Li, and T.-M. Lu, “Effects of surface tunneling of two-dimensional hole gases in undoped Ge/GeSi heterostructures,” Physical Review Materials, vol. 1, no. 4, Sep. 2017.
[64] Kuan-Yu Chou, Nai-Wen Hsu, Yi-Hsin Su, Chung-Tao Chou, Po-Yuan Chiu, Yen Chuang, and Jiun-Yun Li, “Temperature dependence of DC transport characteristics for a two-dimensional electron gas in an undoped Si/SiGe heterostructure,” Applied Physics Letters, vol. 112, no. 8, p. 083502, Feb. 2018.
[65] D. Monroe, “Comparison of mobility-limiting mechanisms in high-mobility Si1−xGex heterostructures,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 11, no. 4, p. 1731, Jul. 1993.
[66] D. Laroche, S.-H. Huang, Y. Chuang, J.-Y. Li, C. W. Liu, and T. M. Lu, “Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure,” Applied Physics Letters, vol. 108, no. 23, p. 233504, Jun. 2016.
[67] 邱柏元, 鍺與鍺錫量子井二維電洞氣的磁導特性與等效質量. 臺灣大學電子工程學研究所學位論文, 2020.
[68] Y. S. Tang, G. Jin, J. H. Davies, J. G. Williamson, and C. D. W. Wilkinson, “Quantized conductance in a long silicon inversion wire,” Physical Review B, vol. 45, no. 23, pp. 13799–13802, Jun. 1992.
[69] N. K. Patel, L. Martin-Moreno, M. Pepper, R. Newbury, J. E. F. Frost, D. A. Ritchie, G. A. C. Jones, J. T. M. B. Janssen, J. Singleton and J. A. A. J. Perenboom, “Ballistic transport in one dimension: additional quantisation produced by an electric field,” Journal of Physics: Condensed Matter, vol. 2, no. 34, pp. 7247–7254, Aug. 1990.
[70] N. K. Patel, J. T. Nicholls, L. Martn-Moreno, M. Pepper, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones, “Evolution of half plateaus as a function of electric field in a ballistic quasi-one-dimensional constriction,” Physical Review B, vol. 44, no. 24, pp. 13549–13555, Dec. 1991.
[71] T.-M. . Chen, A. C. Graham, M. Pepper, I. Farrer, and D. A. Ritchie, “Bias-controlled spin polarization in quantum wires,” Applied Physics Letters, vol. 93, no. 3, p. 032102, Jul. 2008.
[72] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, “Possible Spin Polarization in a One-Dimensional Electron Gas,” Physical Review Letters, vol. 77, no. 1, pp. 135–138, Jul. 1996.
[73] K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y. Simmons, M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie, “Interaction effects in a one-dimensional constriction,” Physical Review B, vol. 58, no. 8, pp. 4846–4852, Aug. 1998.
[74] J. Wan, M. Cahay, P. Debray, and R. Newrock, “Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts,” Physical Review B, vol. 80, no. 15, Oct. 2009.
[75] C. Morrison, C. Casteleiro, D. R. Leadley, and M. Myronov, “Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas,” Applied Physics Letters, vol. 109, no. 10, p. 102103, Sep. 2016.
[76] T. M. Lu, C. T. Harris, S.-H. Huang, Y. Chuang, J.-Y. Li, and C. W. Liu, “Effective g factor of low-density two-dimensional holes in a Ge quantum well,” Applied Physics Letters, vol. 111, no. 10, p. 102108, Sep. 2017.
[77] C. H. W. Barnes, Quantum electronics in semiconductors. University of Cambridge, 2005.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83123-
dc.description.abstract本論文研究鍺錫/鍺異質結構之奈米尺度元件電導量子化效應,其可應用於量子與自旋電子元件,例如量子點接觸與量子點。在量子計算中,量子點是承載電子自旋的重要平台,而量子點接觸常用作自旋讀取。矽基材料為過去數十年超大規模積體電路的基幹材料。在四族材料中,鍺錫因為具強自旋軌域耦合作用而被視為極具發展潛力的材料,因為它可以實現對自旋的電控制以及高速操作的量子計算。
本論文首次展示鍺錫材料平台之量子點接觸元件,並以矽基量子點接觸元件作為基線。n型矽基量子點接觸元件被觀測到4e^2/h的電導量子化,這個量子化值對應到波谷簡併性數值2 (二維電子系統)與自旋簡併性數值2 (零磁場條件)。在矽基元件中亦觀察到量子點的特性,包含庫侖阻絕振盪以及電荷穩定圖菱形訊號。在元件中存在量子點結構的證據為週期性出現的電荷穩定圖菱形訊號以及庫侖阻絕振盪的峰值訊號間距符合電容分析。在量子點接觸通道中出現的雜質會形成位能壁壘,將通道與源極、汲極阻隔,雜質很可能會與量子點接觸的閘極共同形成量子點。然而,因為雜質是隨機分布且不可被操控,使得雜質輔助形成量子點不具有實用性。
對於鍺錫材料之量子點接觸元件,我們首先使用霍爾量測分析鍺錫/鍺異質材料之電性,並於大磁場下觀測到清晰的量子霍爾平台與Shubnikov-de Haas振盪。鍺錫/鍺異質磊晶材料量子點接觸元件在零磁場條件顯示e^2/h電導量子化訊號,且e^2/h電導量子化平台隨著磁場增大而變得明顯,這可能歸因於強自旋軌域耦合作用以及電子間交互作用(擴大自旋極化效果),但尚須更進一步的查證來支持這一論點。
zh_TW
dc.description.abstractThis thesis aims for quantized conductance nanoscale GeSn/Ge heterostructure nanoscale devices for quantum and spintronic applications, such as quantum point contacts (QPCs) quantum dots. Quantum dots are the important platform for quantum computing to host electron spins while quantum point contacts are commonly used for spin readout. Si-based materials are the backbone materials for VLSI technology in the past decades. Among group-IV materials, GeSn is promising due to its strong spin-orbit interaction (SOI), which enables electrical control of spins and quantum computing with fast operations.
In this thesis, GeSn QPCs are demonstrated for the first time and Si QPCs are served as a baseline. Clear quantized conductance of 4e^2/h are observed in n-type Si-based QPCs. The 4e^2/h quantization is corresponding to 2-fold valley degeneracy in two-dimensional electron system and 2-fold spin degeneracy under zero magnetic field Coulomb blockade and diamond-like charge stability diagrams, the characteristics of quantum dot (QD), are also observed. The diamond-like patterns appear periodically and the spacing of Coulomb blockade peaks is consistent with capacitance analysis. The impurities in QPCs channel act as energy barrier, which blockade the channel and source/drain, constitute with gates defined QPCs and form impurity assisted QD. However, impurity assisted QD is not good for utility because impurities are randomly distributed and uncontrollable.
For GeSn-based QPCs, we first characterize the GeSn/Ge heterostructure by performing Hall measurements with clear quantum Hall plateaus and Shubnikov-de Haas oscillations at large magnet fields. GeSn-based QPCs show quantized conductance of e^2/h under zero magnetic field. The e^2/h quantized plateaus become more apparent with a larger magnetic field, which could be attributed to strong spin-orbit interaction and electron-electron interactions (enlarge the spin polarization). Further investigation is required to support this argument.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T06:28:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-09T06:28:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xvi
第一章 引言 1
1.1 研究動機 1
1.2 自旋電晶體 2
1.3 量子計算 6
1.4 論文架構 9
第二章 量子點接觸與量子點元件物理 10
2.1 量子點接觸元件 11
2.1.1電導量子化效應與傳輸模型 11
2.1.2 自旋簡併性與波谷簡併性 19
2.1.3 雜質效應 26
2.2 量子點元件 27
2.2.1 庫侖阻絕振盪與電荷穩定圖 27
2.2.2 雜質輔助量子點元件 29
2.2.3 閘極定義量子點–量子點接觸轉換元件 32
2.3 結論 35
第三章 矽基量子點接觸與量子點元件 36
3.1 元件結構、製作流程與量測架構 36
3.1.1 量子點接觸元件結構設計與操作方式 36
3.1.2 矽基量子點接觸元件製程 38
3.1.3 鎖相量測技術之電導量測架構 40
3.2 矽基量子點接觸元件量測 42
3.2.1 n型矽基量子點接觸元件量測 42
3.2.2 p型矽基量子點接觸元件量測 47
3.3 矽基量子點元件量測 51
3.4 結論 57
第四章 鍺錫/鍺異質磊晶材料之量子點接觸與量子點元件 59
4.1 材料與電性分析 59
4.1.1鍺錫/鍺異質磊晶成長與材料分析 59
4.1.2 霍爾棒元件製作 62
4.1.3 霍爾量測與電性分析 64
4.2 元件結構、製作流程與量測架構 69
4.2.1 元件結構設計與操作方式 69
4.2.2 鍺錫/鍺異質磊晶材料量子點接觸與量子點–量子點接觸轉換元件製程 71
4.2.3 鎖相量測技術之電導量測架構 75
4.3 鍺錫/鍺異質磊晶材料量子點接觸元件量測 76
4.4 鍺錫/鍺異質磊晶材料量子點–量子點接觸轉換元件量測 87
4.5 結論 95
第五章 結論與未來工作 97
5.1 結論 97
5.2 未來工作 98
參考文獻 99
附錄 107
-
dc.language.isozh_TW-
dc.subject量子點接觸zh_TW
dc.subject量子穿隧zh_TW
dc.subject電荷穩定圖zh_TW
dc.subject庫侖阻絕zh_TW
dc.subject量子點zh_TW
dc.subject彈道傳輸zh_TW
dc.subject鍺錫/鍺異質結構zh_TW
dc.subjectquantum point contacten
dc.subjectGeSn/Ge heterostructureen
dc.subjectquantum tunnelingen
dc.subjectCoulomb blockadeen
dc.subjectcharge stability diagramen
dc.subjectquantum doten
dc.subjectballistic transporten
dc.title鍺錫/鍺異質結構奈米元件之電導量子化效應zh_TW
dc.titleQuantized conductance in GeSn/Ge heterostructures nanoscale devicesen
dc.title.alternativeQuantized conductance in GeSn/Ge heterostructures nanoscale devices-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁啟德;張書維;羅廣禮zh_TW
dc.contributor.oralexamcommitteeChi-Te Liang;Shu-Wei Chang;Guang-Li Luoen
dc.subject.keyword鍺錫/鍺異質結構,量子點接觸,彈道傳輸,量子點,庫侖阻絕,電荷穩定圖,量子穿隧,zh_TW
dc.subject.keywordGeSn/Ge heterostructure,quantum point contact,ballistic transport,quantum dot,Coulomb blockade,charge stability diagram,quantum tunneling,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202210051-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-11-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2023-03-16-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0953221114323075.pdf8.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved