請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83117完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭貽生 | zh_TW |
| dc.contributor.advisor | Yi-Sheng Cheng | en |
| dc.contributor.author | 彭正 | zh_TW |
| dc.contributor.author | Cheng Peng | en |
| dc.date.accessioned | 2023-01-09T06:25:37Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-10-28 | - |
| dc.identifier.citation | [1] G. Y. Liou, P. Storz, Reactive oxygen species in cancer, Free Radic. Res. 44(5) (2010) 479-496.
[2] G. Martemucci, C. Costagliola, M. Mariano, L. D’andrea, P. Napolitano, A. G. D’Alessandro, Free Radical Properties, Source and Targets, Antioxidant Consumption and Health, Oxygen 2(2) (2022) 48-78. [3] J. Zuo, Z. Zhang, M. Li, Y. Yang, B. Zheng, P. Wang, C. Huang, S. Zhou, The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role, Mol. Cancer 21(1) (2022) 1-17. [4] D. Yoshimura, K. Sakumi, M. Ohno, Y. Sakai, M. Furuichi, S. Iwai, Y. Nakabeppu, An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress, J. Biol. Chem. 278(39) (2003) 37965-37973. [5] D. Ziech, R. Franco, A. Pappa, M. I. Panayiotidis, Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis, Mutat. Res. Fundam. Mol. Mech. Mutagen. 711(1-2) (2011) 167-173. [6] H. K. Matthews, C. Bertoli, R. A. de Bruin, Cell cycle control in cancer, Nat. Rev. Mol. Cell Biol. 23(1) (2022) 74-88. [7] P. Rai, T. T. Onder, J. J. Young, J. L. McFaline, B. Pang, P. C. Dedon, R. A. Weinberg, Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence, Proc. Natl. Acad. Sci. U.S.A. 106(1) (2009) 169-174. [8] Y. Tu, Z. Wang, X. Wang, H. Yang, P. Zhang, M. Johnson, N. Liu, H. Liu, W. Jin, Y. Zhang, D. Cui, Birth of MTH1 as a therapeutic target for glioblastoma: MTH1 is indispensable for gliomatumorigenesis, Am. J. Transl. Res. 8(6) (2016) 2803. [9] S. Akiyama, H. Saeki, Y. Nakashima, M. Iimori, H. Kitao, E. Oki, Y. Oda, Y. Nakabeppu, Y. Kakeji, Y. Maehara, Prognostic impact of MutT homolog-1 expression on esophageal squamous cell carcinoma, Cancer Med. 6(1) (2017) 258-266. [10] Y. Kumagae, M. Hirahashi, K. Takizawa, H. Yamamoto, M. Gushima, M. Esaki, T. Matsumoto, M. Nakamura, T. Kitazono, Y. Oda, Overexpression of MTH1 and OGG1 proteins in ulcerative colitis-associated carcinogenesis, Oncol. Lett. 16(2) (2018) 1765-1776. [11] J. Xu, Z. Y. Yang, X. Chen, X. Liu, HMTH1 induces the metastasis and recurrence of the parotid adenoma by repairing DNA damage, Eur. Rev. Med. Pharmacol. Sci. 22(13) (2018) 4363-4370. [12] T. Tsuzuki, A. Egashira, H. Igarashi, T. Iwakuma, Y. Nakatsuru, Y. Tominaga, H. Kawate, K. Nakao, K. Nakamura, F. Ide, S. Kura, Y. Nakabeppu, M. Katsuki, T. Ishikawa, M. Sekiguchi, Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase, Proc. Natl. Acad. Sci. U.S.A. 98(20) (2001) 11456-11461. [13] L. M. Svensson, A. S. Jemth, M. Desroses, O. Loseva, T. Helleday, M. Högbom, P. Stenmark, Crystal structure of human MTH1 and the 8-oxo-dGMP product complex, FEBS letters 585(16) (2011) 2617-2621. [14] H. Gad, T. Koolmeister, A. S. Jemth, S. Eshtad, S. A. Jacques, C. E. Ström, L. M. Svensson, N. Schultz, T. Lundbäck, B. O. Einarsdottir, A. Saleh, C. Göktürk, P. Baranczewski, R. Svensson, R. P. A. Berntsson, R. Gustafsson, K. Strömberg, K. Sanjiv, M. C. J. Cordonnier, M. Desroses, A. L. Gustavsson, R. Olofsson, F. Johansson, E. J. Homan, O. Loseva, L. Bräutigam, L. Johansson, A. Höglund, A. Hagenkort, T. Pham, M. Altun, F. Z. Gaugaz, S. Vikingsson, B. Evers, M. Henriksson, K. S. A. Vallin, O. A. Wallner, L. G. J. Hammarström, E. Wiita, I. Almlöf, C. Kalderén, H. Axelsson, T. Djureinovic, J. C. Puigvert, M. Häggblad, F. Jeppsson, U. Martens, C. Lundin, B. Lundgren, I. Granelli, A. J. Jensen, P. Artursson, J. A. Nilsson, P. Stenmark, M. Scobie, U. W. Berglund, T. Helleday, MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool, Nature 508(7495) (2014) 215-221. [15] T. Helleday, S. G. Rudd, Targeting the DNA damage response and repair in cancer through nucleotide metabolism, Mol. Oncol. (2022) 1-19. [16] C. Gorrini, I. S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy, Nat. Rev. Drug Discov. 12(12) (2013) 931-47. [17] K. D. Carlson, M. T. Washington, Mechanism of efficient and accurate nucleotide incorporation opposite 7, 8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase η, Mol. Cell. Biol. 25(6) (2005) 2169-2176. [18] T. Hirano, K. Tamae, Differentiation of embryonic stem cells and oxidative DNA damage, DNA repair systems. J. Stem. Cell Res. Ther. S 10 (2012) 1-5. [19] K. Fujikawa, H. Kamiya, H. Yakushiji, Y. Nakabeppu, H. Kasai, Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP, Nucleic Acids Res. 29(2) (2001) 449-454. [20] K. Sakumi, M. Furuichi, T. Tsuzuki, T. Kakuma, S. Kawabata, H. Maki, M. Sekiguchi, Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis, J. Biol. Chem. 268(31) (1993) 23524-23530. [21] M. Furuichi, M. C. Yoshida, H. Oda, T. Tajiri, Y. Nakabeppu, T. Tsuzuki, M. Sekiguchi, Genomic structure and chromosome location of the human mutT homologue gene MTH1 encoding 8-oxo-dGTPase for prevention of A: T to C: G transversion, Genomics 24(3) (1994) 485-490. [22] M. J. Bessman, D. N. Frick, S. F. O'Handley, The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed,“housecleaning” enzymes, J. Biol. Chem. 271(41) (1996) 25059-25062. [23] D. Kang, J. I. Nishida, A. Iyama, Y. Nakabeppu, M. Furuichi, T. Fujiwara, M. Sekiguchi, K. Takeshige, Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria, J. Biol. Chem. 270(24) (1995) 14659-14665. [24] Y. Sakai, M. Furuichi, M. Takahashi, M. Mishima, S. Iwai, M. Shirakawa, Y. Nakabeppu, A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1, J. Biol. Chem. 277(10) (2002) 8579-8587. [25] H. Hayakawa, A. Taketomi, K. Sakumi, M. Kuwano, M. Sekiguchi, Generation and elimination of 8-oxo-7, 8-dihydro-2'-deoxyguanosine 5'-triphosphate, a mutagenic substrate for DNA synthesis, in human cells, Biochemistry 34(1) (1995) 89-95. [26] E. R. Scaletti, K. S. Vallin, L. Bräutigam, A. Sarno, U. W. Berglund, T. Helleday, P. Stenmark, A. S. Jemth, MutT homologue 1 (MTH1) removes N6-methyl-dATP from the dNTP pool, J. Biol. Chem. 295(15) (2020) 4761-4772. [27] M. Carter, A. S. Jemth, A. Hagenkort, B. D. Page, R. Gustafsson, J. J. Griese, H. Gad, N. C. Valerie, M. Desroses, J. Boström, U. W. Berglund, T. Helleday, P. Stenmark, Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2, Nat. Commun. 6(1) (2015) 1-10. [28] Y. Takagi, D. Setoyama, R. Ito, H. Kamiya, Y. Yamagata, M. Sekiguchi, Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2, J. Biol. Chem. 287(25) (2012) 21541-21549. [29] E. Coskun, P. Jaruga, A. S. Jemth, O. Loseva, L. D. Scanlan, A. Tona, M.S. Lowenthal, T. Helleday, M. Dizdaroglu, Addiction to MTH1 protein results in intense expression in human breast cancer tissue as measured by liquid chromatography-isotope-dilution tandem mass spectrometry, DNA Repair 33 (2015) 101-110. [30] S. Borrego, A. Vazquez, F. Dasi, C. Cerda, A. Iradi, C. Tormos, J.M. Sanchez, L. Bagan, J. Boix, C. Zaragoza, J. Camps, G. Saez, Oxidative stress and DNA damage in human gastric carcinoma: 8-oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a possible tumor marker, Int. J. Mol. Sci. 14(2) (2013) 3467-3486. [31] W. J. Song, P. Jiang, J. P. Cai, Z. Q. Zheng, Expression of cytoplasmic 8-oxo-Gsn and MTH1 correlates with pathological grading in human gastric cancer, Asian Pac. J. Cancer Prev. 16(15) (2015) 6335-6338. [32] K. Bialkowski, A. Szpila, Specific 8-oxo-dGTPase activity of MTH1 (NUDT1) protein as a quantitative marker and prognostic factor in human colorectal cancer, Free Radic. Biol. Med. 176 (2021) 257-264. [33] B. Bhavya, H. Easwer, G. Vilanilam, C. Anand, K. Sreelakshmi, M. Urulangodi, P. Rajalakshmi, I. Neena, C. Padmakrishnan, G.R. Menon, K. Krishnakumar, A.N. Deepti, S. Gopala, MutT Homolog1 has multifaceted role in glioma and is under the apparent orchestration by Hypoxia Inducible factor1 alpha, Life Sci. 264 (2021) 118673. [34] M. P. Oksvold, U. W. Berglund, H. Gad, B. Bai, T. Stokke, I. D. Rein, T. Pham, K. Sanjiv, G. F. Øy, J. H. Norum, E. B. Smeland, J. H. Myklebust, T. Helleday, T. K. Våtsveen, Karonudib has potent anti-tumor effects in preclinical models of B-cell lymphoma, Sci. Rep. 11(1) (2021) 1-13. [35] D. N. Li, C. C. Yang, J. Li, Q. G. O. Yang, L. T. Zeng, G. Q. Fan, T. H. Liu, X. Y. Tian, J. J. Wang, H. Zhang, D. P. Dai, J. Cui, J. P. Cai, The high expression of MTH1 and NUDT5 promotes tumor metastasis and indicates a poor prognosis in patients with non-small-cell lung cancer, Biochim Biophys Acta Mol Cell Res. 1868(1) (2021) 118895. [36] K. Sanjiv, J. M. Calderón-Montaño, T. M. Pham, T. Erkers, V. Tsuber, I. Almlöf, A. Höglund, Y. Heshmati, B. Seashore-Ludlow, A.N. Danda, H. Gad, E. Wiita, C. Gokturk, A. Rasti, S. Friedrich, A. Centio, M. Estruch, T. K. Vatsveen, N. Struyf, T. Visnes, M. Scobie, T. Koolmeister, M. Henriksson, O. Wallner, T. Sandvall, S. Lehmann, K. Theilgaard-Monch, M. J. Garnett, P. Ostling, J. Walfridsson, T. Helleday, U. W. Berglund, MTH1 inhibitor TH1579 induces oxidative DNA damage and mitotic arrest in acute myeloid leukemia, Cancer Res. 81(22) (2021) 5733-5744. [37] A. Patel, D. G. Burton, K. Halvorsen, W. Balkan, T. Reiner, C. Perez-Stable, A. Cohen, A. Munoz, M. G. Giribaldi, S. Singh, D. J. Robbins, D. M. Nguyen, P. Rai, MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways, Oncogene 34(20) (2015) 2586-2596. [38] P. Rai, J. J. Young, D. G. Burton, M. G. Giribaldi, T. T. Onder, R. A. Weinberg, Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence, Oncogene 30(12) (2011) 1489-1496. [39] M. G. Giribaldi, A. Munoz, K. Halvorsen, A. Patel, P. Rai, MTH1 expression is required for effective transformation by oncogenic HRAS, Oncotarget 6(13) (2015) 11519-11529. [40] P. Rai, Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS, Small GTPases 3(2) (2012) 120-125. [41] T. Tsuzuki, A. Egashira, S. Kura, Analysis of MTH1 gene function in mice with targeted mutagenesis, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 477(1) (2001) 71-78. [42] M. L. van den Boogaard, R. Oka, A. Hakkert, L. Schild, M. E. Ebus, M. R. van Gerven, D. A. Zwijnenburg, P. Molenaar, L. L. Hoyng, M. E. M. Dolman, A. H. W. Essinga, B. Koopmans, T. Helleday, J. Drostb, R. van Boxtelb, R. Versteegc, J. Kosterc, J. J. Molenaara, Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma, Proc. Natl. Acad. Sci. U.S.A. 118(36) (2021) e2007898118. [43] K. Sakumi, Y. Tominaga, M. Furuichi, P. Xu, T. Tsuzuki, M. Sekiguchi, Y. Nakabeppu, Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption, Cancer Res. 63(5) (2003) 902-905. [44] G. J. Samaranayake, M. Huynh, P. Rai, MTH1 as a chemotherapeutic target: The Elephant in the Room, Cancers 9(5) (2017) 47-62. [45] X. Zhang, W. Song, Y. Zhou, F. Mao, Y. Lin, J. Guan, Q. Sun, Expression and function of MutT homolog 1 in distinct subtypes of breast cancer, Oncol. Lett. 13(4) (2017) 2161-2168. [46] Z. Versano, E. Shany, S. Freedman, L. Tuval-Kochen, M. Leitner, S. Paglin, A. Toren, M. Yalon, MutT homolog 1 counteracts the effect of anti-neoplastic treatments in adult and pediatric glioblastoma cells, Oncotarget 9(44) (2018) 27547-27563. [47] X. L. Shi, Y. Li, L. M. Zhao, L. W. Su, G. Ding, Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment, Colloids and surfaces. B, Biointerfaces 173 (2019) 599-606. [48] A. Petrocchi, E. Leo, N. J. Reyna, M. M. Hamilton, X. Shi, C.A. Parker, F. Mseeh, J.P. Bardenhagen, P. Leonard, J.B. Cross, S. Huang, Y. Jiang, M. Cardozo, G. Draetta, J. R. Marszalek, C. Toniatti, P. Jones, R. T. Lewis, Identification of potent and selective MTH1 inhibitors, Bioorg. Med. Chem. 26(6) (2016) 1503-1507. [49] T. Kawamura, M. Kawatani, M. Muroi, Y. Kondoh, Y. Futamura, H. Aono, M. Tanaka, K. Honda, H. Osada, Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival, Sci. Rep. 6 (2016) 26521-26530. [50] H. Gad, O. Mortusewicz, S. G. Rudd, A. Stolz, N. Amaral, L. Brautigham, L. Pudelko, K. Sanjiv, C. Kaldéren, A. S. Jemth, I. Almlöf, T. Visnes, N. Schultz, J. Boström, J. M. Calderon Montano, A. Hagenkort, P. Groth, O. Loseva, C. Gokturk, T. Koolmeister, P. Wakchaure, E. Homan, C.E. Ström, M. Scobie, H. Bastians, U.W. Berglund, T. Helleday, MTH1 promotes mitotic progression to avoid oxidative DNA damage in cancer cells, bioRxiv (2019) 575290-575318. [51] J. C. Patterson, B. A. Joughin, A. E. Prota, T. Mühlethaler, O. H. Jonas, M. A. Whitman, S. Varmeh, S. Chen, S. P. Balk, M. O. Steinmetz, D. A. Lauffenburger, M. B. Yaffe, VISAGE reveals a targetable mitotic spindle vulnerability in cancer cells, Cell Syst. 9(1) (2019) 74-92. [52] A. Centio, M. Estruch, K. Reckzeh, K. Sanjiv, C. Vittori, S. Engelhard, U. Warpman Berglund, T. Helleday, K. Theilgaard-Mönch, Inhibition of oxidized nucleotide sanitation by TH1579 and conventional chemotherapy cooperatively enhance oxidative DNA Damage and Survival in AML, Mol. Cancer Ther. 21(5) (2022) 703-714. [53] K. V. Huber, E. Salah, B. Radic, M. Gridling, J. M. Elkins, A. Stukalov, A. S. Jemth, C. Gokturk, K. Sanjiv, K. Strömberg, T. Pham, U. W. Berglund, J. Colinge, K. L. Bennett, J. I. Loizou1, T. Helleday, S. Knapp, G. Superti-Furga, Stereospecific targeting of MTH1 by (S)-crizotinib as anticancer strategy, Nature 508(7495) (2014) 222-239. [54] X. Qing, Z. Shao, X. Lv, F. Pu, F. Gao, L. Liu, D. Shi, Anticancer effect of (S)-crizotinib on osteosarcoma cells by targeting MTH1 and activating reactive oxygen species, Anticancer Drugs 29(4) (2018) 341-352. [55] J. G. Kettle, H. Alwan, M. Bista, J. Breed, N. L. Davies, K. Eckersley, S. Fillery, K. M. Foote, L. Goodwin, D. R. Jones, H. Käck, A. Lau, J. W. M. Nissink, J. Read, J. S. Scott, B. Taylor, G. Walker, L. Wissler, M. Wylot, Potent and selective inhibitors of MTH1 probe its role in cancer cell survival, J. Med. Chem. 59(6) (2016) 2346-2361. [56] F. Rahm, J. Viklund, L. Tresaugues, M. Ellermann, A. Giese, U. Ericsson, R. Forsblom, T. Ginman, J. Gunther, K. Hallberg, J. Lindstrom, L. B. Persson, C. Silvander, A. Talagas, L. Diaz-Saez, O. Fedorov, K. V. M. Huber, I. Panagakou, P. Siejka, M. Gorjanacz, M. Bauser, M. Andersson, Creation of a novel class of potent and selective MutT Homologue 1 (MTH1) inhibitors using fragment-based screening and structure-based drug design, J. Med. Chem. 61(6) (2018) 2533-2551. [57] T. Yokoyama, R. Kitakami, M. Mizuguchi, Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening, Eur. J. Med. Chem. 167 (2019) 153-160. [58] W. Zhou, L. Ma, J. Yang, H. Qiao, L. Li, Q. Guo, J. Ma, L. Zhao, J. Wang, G. Jiang, X. Wan, M. A. Goscinski, L. Ding, Y. Zheng, W. Li, H. Liu, Z. Suo, W. Zhao, Potent and specific MTH1 inhibitors targeting gastric cancer, Cell Death Dis. 10(6) (2019) 1-19. [59] D. Wahi, D. Soni, A. Grover, A Double-Edged Sword: The anti-Cancer effects of emodin by inhibiting the redox-protective protein MTH1 and augmenting ROS in NSCLC, J. Cancer 12(3) (2021) 652-681. [60] H. Shi, R. Ishikawa, C. H. Heh, S. Sasaki, Y. Taniguchi, Development of MTH1-binding nucleotide analogs based on 7, 8-dihalogenated 7-Deaza-dG derivatives, Int. J. Mol. Sci. 22(3) (2021) 1274-1286. [61] B. Nagar, W. G. Bornmann, P. Pellicena, T. Schindler, D. R. Veach, W. T. Miller, B. Clarkson, J. Kuriyan, Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571), Cancer Res. 62(15) (2002) 4236-4243. [62] D. S. Dwyer, E. Aamodt, B. Cohen, E. A. Buttner, Drug elucidation: invertebrate genetics sheds new light on the molecular targets of CNS drugs, Front. Pharmacol. 5 (2014) 177. [63] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P.J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltisa, P. Kuhn, Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines, J. Synchrotron Radiat. 9(6) (2002) 401-406. [64] Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol. 276 (1997) 307-326. [65] A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Phaser crystallographic software, J. Appl. Crystallogr. 40(4) (2007) 658-674. [66] A. W. SchuÈttelkopf, D. M. F. Van Aalten, PRODRG: a tool for high-throughput crystallography of protein–ligand complexes, Acta Crystallogr. D 60 (2004) 1355-1363. [67] P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D 66 (2010) 213-221. [68] P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D 60 (2004) 2126-2132. [69] P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, J. J. Headd, N. W. Moriarty, M. Mustyakimov, T. C. Terwilliger, A. Urzhumtsev, P. H. Zwart, P. D. Adams, Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallogr. D, 68 (2012) 352-367. [70] W. DeLano, The PyMOL Molecular Graphics System (Palo Alto, CA: DeLano Scientific LLC), 2008. [71] S. Unni, Y. Huang, R. M. Hanson, M. Tobias, S. Krishnan, W. W. Li, J. E. Nielsen, N. A. Baker, Web servers and services for electrostatics calculations with APBS and PDB2PQR, J. Comput. Chem. 32(7) (2011) 1488-1491. [72] T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen, G. Klebe, N. A. Baker, PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations, Nucleic Acids Res. 35(Web Server issue) (2007) 522-525. [73] T. A. Binkowski, S. Naghibzadeh, J. Liang, CASTp: computed atlas of surface topography of proteins, Nucleic Acids Res. 31(13) (2003) 3352-3355. [74] A. L. Hopkins, C. R. Groom, A. Alex, Ligand efficiency: a useful metric for lead selection, Drug Discov. Today 9(10) (2004) 430-431. [75] C. H. Ho, J. L. Hsu, S. P. Liu, L. C. Hsu, W. L. Chang, C. C. K. Chao, J. H. Guh, Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: A central role on microtubule stabilization and mitochondrial apoptosis pathway, Prostate. 75 (2015) 1454-1466. [76] M. C. Lin, J. J. Lin, C. L. Hsu, H. F. Juan, P. J. Lou, M. C. Huang, GATA3 interacts with and stabilizes HIF-1α to enhance cancer cell invasiveness, Oncogene 36(30) (2017) 4243-4252. [77] M. M. El-Gendy, M. Shaaban, K. A. Shaaban, A. M. El-Bondkly, H. Laatsch, Essramycin: a first triazolopyrimidine antibiotic isolated from nature, J. Antibiot. 61(3) (2008) 149-157. [78] D. R. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey, A. M. Chinnaiyan, ONCOMINE: a cancer microarray database and integrated data-mining platform, Neoplasia 6(1) (2004) 1-6. [79] S. Geschwindner, J. Ulander, P. Johansson, Ligand binding thermodynamics in drug discovery: still a hot tip?, J. Med. Chem. 58(16) (2015) 6321-6335. [80] X. Liu, D. C. Speckhard, T. R. Shepherd, Y. J. Sun, S. R. Hengel, L. Yu, C. A. Fowler, L. Gakhar, E. J. Fuentes, Distinct roles for conformational dynamics in protein-ligand interactions, Structure 24(12) (2016) 2053-2066. [81] M. Schauperl, P. Czodrowski, J. E. Fuchs, R. G. Huber, B. J. Waldner, M. Podewitz, C. Kramer, K. R. Liedl, Binding pose flip explained via enthalpic and entropic contributions, J. Chem. Inf. Model. 57(2) (2017) 345-354. [82] A. I. Dragan, C. M. Read, C. Crane-Robinson, Enthalpy-entropy compensation: the role of solvation, Eur. Biophys. J. 46(4) (2017) 301-308. [83] T. T. Talele, The "Cyclopropyl fragment" is a versatile player that frequently appears in preclinical/clinical drug molecules, J. Med. Chem. 59(19) (2016) 8712-8756. [84] F. Lovering, J. Bikker, C. Humblet, Escape from flatland: increasing saturation as an approach to improving clinical success, J. Med. Chem. 52(21) (2009) 6752-6756. [85] T. Fujishita, T. Okamoto, T. Akamine, S. Takamori, K. Takada, M. Katsura, G. Toyokawa, F. Shoji, M. Shimokawa, Y. Oda, Y. Nakabeppub, Y. Maehara, Association of MTH1 expression with the tumor malignant potential and poor prognosis in patients with resected lung cancer, Lung Cancer 109 (2017) 52-57. [86] C. Jüngst, B. Cheng, R. Gehrke, V. Schmitz, H. D. Nischalke, J. Ramakers, P. Schramel, P. Schirmacher, T. Sauerbruch, W. H. Caselmann, Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma, Hepatology 39(6) (2004) 1663-1672. [87] Z. Liu, L. E. Wang, S. S. Strom, M. R. Spitz, R. J. Babaian, J. DiGiovanni, Q. Wei, Overexpression of hMTH in peripheral lymphocytes and risk of prostate cancer: a case‐control analysis, Mol. Carcinog. 36(3) (2003) 123-129. [88] C. H. Kennedy, H. I. Pass, J. B. Mitchell, Expression of human MutT homologue (hMTH1) protein in primary non-small-cell lung carcinomas and histologically normal surrounding tissue, Free Radic. Biol. Med. 34(11) (2003) 1447-1457. [89] P. Liu, L. W. Zhao, J. Pol, S. Levesque, A. Petrazzuolo, C. Pfirschke, C. Engblom, S. Rickelt, T. Yamazaki, K. Iribarren, L. Senovilla, L. Bezu, E. Vacchelli, V. Sica, A. Melis, T. Martin, X. Lin, H. Yang, Q. Q. Li, J. F. Chen, S. Durand, F. Aprahamian, D. Lefevre, S. Broutin, A. Paci, A. Bongers, V. Minard-Colin, E. Tartour, L. Zitvogel, L. Apetoh, Y. T. Ma, M. J. Pittet, O. Kepp, G. Kroemer, Crizotinib-induced immunogenic cell death in non-small cell lung cancer, Nat. Commun. 10 (2019) 1486-1502. [90] X. Hua, K. Sanjiv, H. Gad, T. Pham, C. Gokturk, A. Rasti, Z. Zhao, K. He, M. Feng, Y. Zang, J. Zhang, Q. Xia, T. Helleday, U. W. Berglund, Karonudib is a promising anticancer therapy in hepatocellular carcinoma, Ther. Adv. Med. Oncol. 11 (2019) 1-13. [91] C. Peng, Y. H. Li, C. W. Yu, Z. H. Cheng, J. R. Liu, J. L. Hsu, L. W. Hsin, C. T. Huang, H. F. Juan, J. W. Chern, Y. S. Cheng, Inhibitor development of MTH1 via high-throughput screening with fragment based library and MTH1 substrate binding cavity, Bioorg. Chem. 110 (2021) 104813. [92] Z. H. Cheng, Design, synthesis and biological evaluation of MTH1 inhibitors as potential anti-cancer agents, National Taiwan University Master Thesis, (2017). [93] Y. H. Lee, Investigation of interaction between MTH1 and synthesized inhibitors based on substrate binding site, National Taiwan University Master Thesis, (2019). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83117 | - |
| dc.description.abstract | 過量的活性氧會導致DNA 複製過程中鹼基配對錯誤與DNA 毀損。由活性氧造成的氧化dNTP (oxidized dNTP) 可由細胞中DNA 修復機制中的MutT Homolog 1 (MTH1) 將其水解。MTH1 可以抑制氧化dNTP 在DNA 複製過程中插入。此功能也可以避免觸發細胞凋亡。MTH1 已經被認為可以作為癌細胞清除氧化dNTP 而避免進入細胞凋亡。因此,抑制MTH1 被認為當作一種癌症治療策略。本研究藉由高通量篩選技術,從含有2,313 種化合物之資料庫中篩選出潛在具有抑制MTH1 的化合物。本研究發現化合物MI0320,MI0639,MI0652 和 MI0861 具潛在抑制 MTH1 之能力,他們的IC50 分別為1.2、1.5、7.2、14 μM。利用細胞生長抑制實驗,發現化合物MI0639 具有抑制效果而其IC50 為 6.5 μM。本研究成功解析出MTH1-MI0639,MTH1-MI0320 和MTH1-MI0861 的共結晶結
構,其解析度為1.8 to 2.2 Å。結構資訊顯示MI0639 的氮原子會與MTH1的Asp119、Asp120 和Asn33 形成氫鍵。以及MTH1 的Phe27、Phe72、Phe74 和Trp117 會與MI0639 的methyl 和ethyl substituent 周邊形成疏水性作用。為了改良MTH1 抑制物的選擇性和專一性,本研究基於共結晶結構分析合成出一系列的衍生化合物。在焦磷酸鹽分析試劑量測MTH1 的活性抑制實驗,其結果顯示未有乙基修飾的scaffold 2 系列其IC50 優於 scaffold 1 系列衍生化合物。這結果是由於scaffold 1系列衍生化合物的N-methyl、N-cyclopropyl substituent 會與ethyl substituent 產生空間阻礙導致N-methyl、N-cyclopropyl substituent 在空間中不穩定。在等溫滴定微量熱儀實驗,其結果顯示scaffold 2 系列衍生化合物的焓會大幅提高。這結果是由於N-methyl、N-cyclopropyl substituent 與MTH1 的Asp119 形成穩定氫鍵。在scaffold 2 系列發現兩種化合物具nM 等級的IC50 抑制能力和Kd 值,MI1024與MI1020。其IC50 為 6 nM 和10 nM。基於共結晶結構資訊,本研究可提供選擇性和專一性優化的MTH1 抑制劑發展策略。 | zh_TW |
| dc.description.abstract | The excessive reactive oxygen species can result in base mispairing and DNA
damage in DNA replication. MutT Homolog 1 (MTH1) can catalyze the hydrolysis of oxidized nucleoside triphosphates induced by reactive oxygen species from cellular DNA repairing. MTH1 can restrain oxidized nucleoside triphosphates from incorporation into DNA replication. This function also prevents from the triggering of apoptosis. The MTH1 has been recognized to remove oxidized nucleoside triphosphates and prevent apoptosis. Therefore, MTH1 inhibition is regarded as an anti-cancer therapeutic strategy. In this study, the 2,313 compounds from the database were screened and discovered the potential compounds of MTH1 inhibition by ultra high throughput screening. This research found the potential MTH1 inhibitory compounds MI0639, MI0320, MI0652 and MI0861, their IC50 values were 1.2, 1.5, 7.2 and 14 μM. In the cell growth inhibition experiment, the compound MI0639 possessed the effective inhibitory effect and the IC50 was 6.5 μM. This research successfully resolved the co-crystal structures of MTH1-MI0639, MTH1-MI0320 and MTH1-MI0861 by resolution of 1.8 to 2.2 Å . The structural information revealed the nitrogen atom of MI0639 formed hydrogen bonds with the residues Asp119, Asp120, and Asn33 of MTH1 and hydrophobic effects around the methyl and ethyl substituent of MI0639 by interacting with Phe27, Phe72, Phe74, and Trp117 of MTH1. To improve selectivity and specificity, a series of derivatives were synthesized based on the analysis of the co-crystal structures. In pyrophosphate assay of MTH1 inhibition experiments, the IC50 values of scaffold 2 derivatives without ethyl substituent were better than scaffold 1 derivatives. The result was because of the N-methyl, N-cyclopropyl substituent and ethyl substituent of scaffold 1 compounds made steric hindrance and lead N-methyl and N-cyclopropyl substituent to be unstable in space. In isothermal titration calorimeter experiments, the results revealed the enthalpy of scaffold 2 derivatives were significantly increased. This result was due to stable hydrogen bond formation between N-methyl, N-cyclopropyl substituent and the residue Asp119 of MTH1. In scaffold 2 derivatives, that found two compounds possessed nM-level IC50 inhibitory ability and Kd values, MI1024 and MI1020, their IC50 values were 6 nM and 10 nM. Based on co-crystal structure analysis, this study can provide strategies for the development of MTH1 inhibitors with selectivity and specificity optimization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T06:25:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-09T06:25:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II Contents III List of figures V List of tables VI 中文摘要 VII Abstract VIII List of abbreviations X Chapter 1 Introduction 1 1-1 Excess reactive oxygen species (ROS) lead to programmed cell death in cancer cellular metabolism. 1 1-2 MutT homologue 1 (MTH1) function and anti-cancer inhibitor development potential. 3 1-3 MTH1 and inhibitor co-crystal structure review. 5 1-4 Research motivations, purposes and experiments. 8 Chapter 2 Material and methods 10 2-1 Material 10 2-2 MTH1 in-frame gene vector 10 2-3 E.coli competent cell preparation 10 2-4 Transformation procedures 11 2-5 Plasmid extraction 11 2-6 Construct MTH1 overexpression plasmid 12 2-7 Recombinant protein overexpression 12 2-8 Affinity chromatography purification of MTH1 13 2-9 Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE 13 2-10 Protein quantitative analysis 14 2-11 Thrombin protease digestion 14 2-12 Size-exclusion chromatography 15 2-13 Ultra high throughput screening 15 2-14 The MTH1 of PPiLight Assay 16 2-15 Crystallization 17 2-16 X-ray diffraction collection 17 2-17 Structure determination 18 2-18 Measurement binding affinity by ITC 18 2-19 Cell survival assay 19 2-20 The cell cycle analysis 20 2-21 Statistics 20 Chapter 3 Results and discussion 21 3-1 MTH1 overexpression and affinity purification 21 3-2 MTH1 size exclusion chromatography 21 3-3 A compound library via uHTS 22 3-4 The overview of selected compounds 24 3-5 MTH1 gene expression study 28 3-6 Cell survival assay and flow cytometric assay 29 3-7 Compounds optimization and kinetic inhibition 30 3-8 ITC analysis 32 3-9 Structure analysis 34 Conclusions 38 References 41 Figures 50 Tables 64 Appendices 73 | - |
| dc.language.iso | en | - |
| dc.subject | 氧化dNTP | zh_TW |
| dc.subject | 高通量篩選技術 | zh_TW |
| dc.subject | 共結晶結構 | zh_TW |
| dc.subject | MTH1 抑制劑 | zh_TW |
| dc.subject | 結構分析 | zh_TW |
| dc.subject | Structure analysis | en |
| dc.subject | Oxidized dNTP | en |
| dc.subject | Ultra high throughput screening | en |
| dc.subject | Co-crystal structures | en |
| dc.subject | MTH1 inhibitors | en |
| dc.title | 以 MutT Homolog 1 結構為基礎且具抗癌可能性之抑 制物開發研究 | zh_TW |
| dc.title | Development of structure-based inhibitors of MutT Homolog 1 as potential anti-cancer drug | en |
| dc.title.alternative | Development of structure-based inhibitors of MutT Homolog 1 as potential anti-cancer drug | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 楊健志;徐駿森;忻凌偉;余兆武 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chih Yang;Chun-Hua Hsu;Ling-Wei Hsin;Chao-Wu Yu | en |
| dc.subject.keyword | 氧化dNTP,高通量篩選技術,共結晶結構,MTH1 抑制劑,結構分析, | zh_TW |
| dc.subject.keyword | Oxidized dNTP,Ultra high throughput screening,Co-crystal structures,MTH1 inhibitors,Structure analysis, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202210003 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-10-31 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 19.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
