Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83098
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻zh_TW
dc.contributor.advisorChih-Hung Chenen
dc.contributor.author徐子桓zh_TW
dc.contributor.authorTzu-Huan Hsuen
dc.date.accessioned2023-01-08T17:03:54Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-11-10-
dc.identifier.citation[1] Evanthia T Roussos, John S Condeelis, and Antonia Patsialou. Chemotaxis in cancer. Nature Reviews Cancer, 11(8):573–587, 2011.
[2] Peter Friedl and Darren Gilmour. Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews Molecular cell biology, 10(7):445–457, 2009.
[3] Peter Friedl and Katarina Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature reviews cancer, 3(5):362–374, 2003.
[4] Petra Fey, Pascale Gaudet, Tomaz Curk, Blaz Zupan, Eric M Just, Siddhartha Basu, Sohel N Merchant, Yulia A Bushmanova, Gad Shaulsky, Warren A Kibbe, et al. dictybase—a dictyostelium bioinformatics resource update. Nucleic acids research, 37(suppl_1):D515–D519, 2009.
[5] Adrian Moure and Hector Gomez. Computational model for amoeboid motion: Coupling membrane and cytosol dynamics. Physical Review E, 94(4):042423, 2016.
[6] Robert H Insall. Understanding eukaryotic chemotaxis: a pseudopod-centred view. Nature reviews molecular cell biology, 11(6):453–458, 2010.
[7] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Molecular biology of the cell (garland science, new york, 2002). There is no corresponding record for this reference, 1997.
[8] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter, et al. Molecular biology of the cell. Scandinavian Journal of Rheumatology,
32(2):125–125, 2003.
[9] Adrian Moure and Hector Gomez. Phase-field modeling of individual and collective cell migration. Archives of Computational Methods in Engineering, 28(2):311–344, 2021.
[10] Inbal Hecht, Monica L Skoge, Pascale G Charest, Eshel Ben-Jacob, Richard A Firtel, William F Loomis, Herbert Levine, and Wouter-Jan Rappel. Activated membrane patches guide chemotactic cell motility. PLoS computational biology, 7(6):e1002044, 2011.
[11] FJ Vermolen and A Gefen. A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts. Biomechanics and modeling in mechanobiology, 12(2):301–323, 2013.
[12] Wanda Strychalski, Calina A Copos, Owen L Lewis, and Robert D Guy. A poroelastic immersed boundary method with applications to cell biology. Journal of Computational Physics, 282:77–97, 2015.
[13] Hugo Casquero, Carles Bona-Casas, and Hector Gomez. Nurbs-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Computer Methods in Applied Mechanics and Engineering, 316:646–667, 2017.
[14] Charles M Elliott, Björn Stinner, and Chandrasekhar Venkataraman. Modelling cell motility and chemotaxis with evolving surface finite elements. Journal of The Royal Society Interface, 9(76):3027–3044, 2012.
[15] G MacDonald, John A Mackenzie, M Nolan, and RH Insall. A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis. Journal of computational physics, 309:207–226, 2016.
[16] Matthew P Neilson, Douwe M Veltman, Peter JM van Haastert, Steven D Webb, John A Mackenzie, and Robert H Insall. Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS biology, 9(5):e1000618, 2011.
[17] Changji Shi, Chuan-Hsiang Huang, Peter N Devreotes, and Pablo A Iglesias. Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells. PLoS computational biology, 9(7):e1003122, 2013.
[18] Thierry Biben, Klaus Kassner, and Chaouqi Misbah. Phase-field approach to threedimensional vesicle dynamics. Physical Review E, 72(4):041921, 2005.
[19] Alexander Dreher, Igor S Aranson, and Karsten Kruse. Spiral actin-polymerization waves can generate amoeboidal cell crawling. New Journal of Physics, 16(5):055007, 2014.
[20] Danying Shao, Herbert Levine, and Wouter-Jan Rappel. Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proceedings of the National Academy of Sciences, 109(18):6851–6856, 2012.
[21] Dennis Bray. Cell movements: from molecules to motility. Garland Science, 2000.
[22] Tatyana M Svitkina, Alexander B Verkhovsky, Kyle M McQuade, and Gary G Borisy. Analysis of the actin–myosin ii system in fish epidermal keratocytes: mechanism of cell body translocation. The Journal of cell biology, 139(2):397–415, 1997.
[23] Mohammad Abu Hamed and Alexander A Nepomnyashchy. A simple model of keratocyte membrane dynamics: the case of motionless living cell. Physica D: Nonlinear Phenomena, 408:132465, 2020.
[24] Choo B Hong, Donna R Fontana, and Kenneth L Poff. Thermotaxis of dictyostelium discoideum amoebae and its possible role in pseudoplasmodial thermotaxis. Proceedings of the National Academy of Sciences, 80(18):5646–5649, 1983.
[25] Bruce D Whitaker and Kenneth L Poff. Thermal adaptation of thermosensing and negative thermotaxis in dictyostelium. Experimental cell research, 128(1):87–93, 1980.
[26] Athanasius FM Marée, Alexander V Panfilov, and Paulien Hogeweg. Migration and thermotaxis of dictyostelium discoideum slugs, a model study. Journal of theoretical biology, 199(3):297–309, 1999.
[27] Julien Kockelkoren, Herbert Levine, and Wouter-Jan Rappel. Computational approach for modeling intra-and extracellular dynamics. Physical Review E, 68(3):037702, 2003.
[28] Heike Emmerich. The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models, volume 73. Springer Science & Business Media, 2003.
[29] Danying Shao, Wouter-Jan Rappel, and Herbert Levine. Computational model for cell morphodynamics. Physical review letters, 105(10):108104, 2010.
[30] Brian A Camley, Yanxiang Zhao, Bo Li, Herbert Levine, and Wouter-Jan Rappel. Periodic migration in a physical model of cells on micropatterns. Physical review letters, 111(15):158102, 2013.
[31] Andreas R Bausch, Florian Ziemann, Alexei A Boulbitch, Ken Jacobson, and Erich Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical journal, 75(4):2038–2049, 1998.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83098-
dc.description.abstract細胞運動對生命而言是一個常見且不可或缺的機制,許多生物現象都以此為基礎,舉凡傷口癒合、免疫反應或是癌症轉移等。細胞運動主要由肌動蛋白(actin) 突出和肌球蛋白(myosin) 收縮引起,其中肌動蛋白聚集的位置由信號分子所決定。本研究提出了一個基於相場法的模型,並且聚焦在肌動蛋白、肌球蛋白以及信號分子對細胞運動的貢獻。本文的模型由若干方程式所構成,其中這幾個方程式分別描述這些物質在系統中的行為,分別是細胞位置ϕ、纖維狀肌動蛋白(F-actin) 密度ρf、肌球蛋白密度ρm 以及信號分子d 隨著時間迭代。ϕ 是細胞位置標記,其值介於0 到1 之間,其中0 被定義為細胞外部,相對地,1 被定義為細胞內部。在本研究的模型中,突出力以及收縮力的大小取決於纖維狀肌動蛋白以及肌球蛋白的密度,其中信號分子決定纖維狀肌動蛋白聚集的位置。
為了驗證模型,本研究選擇將盤基網柄菌(Dictyostelium discoideum) 這一模式生物(model organism) 的趨熱性作為研究對象,根據模式生物的科學研究結果,歸納出涵蓋諸多生物的模型,進而應用在各領域,為了確保孢子傳播的良好條件,該菌會根據環境而改變趨熱性。於本研究的模型中,細胞運動由趨熱性以及環境溫度梯度共同決定,透過定義細胞局部溫度與臨界溫度決定趨熱性是正或是負,當細胞局部溫度高於臨界溫度時,細胞呈現正趨熱性;反之,細胞則展示負趨熱性。同時,在一般情況下,環境溫度梯度越高,細胞的運動越快。本研究提出了
一個穩定的模型,並很好地實現了盤基網柄菌的細胞運動。期許能在未來加入隨機行走功能、趨食性或趨光性,使模型更加全面,從而更準確描述目標對象,進而應用於諸多領域中。
zh_TW
dc.description.abstractCell motility is mainly caused by actin protrusion and myosin contraction. Here, we propose a model based on the phase-field method and focus on F-actin and myosin dynamic. We use several equations to describe each contribution of these proteins respectively. Cell location ϕ, density of F-actin ρf , density of myosin ρm and signal molecular d are evolve with time. ϕ is a position marker which value between 0 to 1, 0 is defined as the outside of a cell, similarly, 1 is defined as inside of a cell. The magnitude of the protrusion and contraction force depends on the concentration of F-actin and myosin, where, signal molecular determine the position F-actin polymerization. To test our model, we apply it to thermotaxis of Dictyostelium discoideum. They live and grow in the mulch on the forest floor and feed on bacteria. At daytime, the soil surface is warmer than the subsurface mulch, and hence the Dictyostelium discoideum is directed by positive thermotaxis towards the surface. At night, the soil surface is cooler than the subsurface mulch, they still move upwards, this time due to negative thermotaxis. They always tend to migrate towards the soil surface, thus ensuring good conditions for spore dispersal. To decide thermotaxis is positive or negative, we define a cell local temperature and critical temperature.
When the cell local temperature is higher than the critical temperature, the cell displays positive thermotaxis. On the contrary, the cell shows negative thermotaxis. At the same time, our model is driven by temperature gradient, the higher the temperature gradient, the easier the polarization of F-actin. We propose a stable model and also well implement thermotaxis of Dictyostelium discoideum. Due to the stability, we could easily extend our model to more complex conditions in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-08T17:03:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-08T17:03:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 模型相關細胞構造回顧 . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 細胞遷移流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 從細胞現象到數值模型 . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 研究對象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
第二章 研究方法 12
2.1 模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 相場法 (phase-field method) . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 肌球蛋白 (myosin) 的機制 . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 肌動蛋白的機制 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 細胞受力平衡方程式 . . . . . . . . . . . . . . . . . . . . . . . . 18
第三章 模擬結果討論 20
3.1 模擬設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 模擬流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 系統環境設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 信號源設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 簡化系統可行性測試 . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.5 溫度梯度驅動 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.6 形態分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.7 驟停溫度場 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 複雜溫度場 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 時變溫度場 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 趨熱性質固定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 趨熱性質切換 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
第四章 結論與未來展望 47
4.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
參考文獻 50
附錄 A — 演化方程式離散化過程 55
A.1 相場演化方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 肌球蛋白 (myosin) 演化方程式 . . . . . . . . . . . . . . . . . . . . . 56
A.3 纖維狀肌動蛋白 (F-actin) 演化方程式 . . . . . . . . . . . . . . . . . 57
A.4 信號分子演化方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.5 力平衡方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
附錄 B — 參數表 63
-
dc.language.isozh_TW-
dc.subject細胞遷移zh_TW
dc.subject相場法zh_TW
dc.subject相場模型zh_TW
dc.subject細胞力學zh_TW
dc.subjectPhase-field modelen
dc.subjectCell migrationen
dc.subjectCell mechanicsen
dc.subjectPhase-field methoden
dc.title二維細胞運動的相場模型:以盤基網柄菌趨熱行為為例zh_TW
dc.titlePhase-Field Modeling of Two-Dimensional Cell Motility: an Example Study on Thermotactic Behavior of Dictyostelium discoideumen
dc.title.alternativePhase-Field Modeling of Two-Dimensional Cell Motility: an Example Study on Thermotactic Behavior of Dictyostelium discoideum-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee包淳偉;陳壁彰;江宏仁zh_TW
dc.contributor.oralexamcommitteeChun-Wei Pao;Bi-Chang Chen;Hong-Ren Jiangen
dc.subject.keyword相場法,相場模型,細胞遷移,細胞力學,zh_TW
dc.subject.keywordPhase-field method,Cell migration,Cell mechanics,Phase-field model,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202210025-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-11-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-0816221104213084.pdf5.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved