Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83086
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世銘zh_TW
dc.contributor.advisorSuming Chenen
dc.contributor.author童國枝zh_TW
dc.contributor.authorKuo-Chih Tungen
dc.date.accessioned2023-01-06T17:07:41Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-12-18-
dc.identifier.citation林哲緯。2021。以高光譜影像智慧辨識番茄葉片之研究。碩士論文。台北:國立台灣大學生物機電工程學系。
林聖詠。2020。線掃描式高光譜影像系統之開發 -- 以葉菜硝酸鹽分布分析之應用為例。碩士論文。台北:國立台灣大學生物機電工程學系。
施俊林,彭軍。2020。植物葉片可視化研究綜述。農業與技術 2020(15): 1-3。
徐祥瀚、藍玉屏、賴傑宏。2007。高光譜影像儀在LED 背光亮度及色彩量測上的應用。AOI Forum & Show, A-27-1。
徐善德、廖玉琬 譯。2006。植物生理學。3版,221-230。台北:偉明圖書有限公司。
浦瑞良、宮鵬。2002。高光譜遙測與應用Hyperspectral Remote Sensing and Its Applications。初版。台北:五南。
童國枝、陳世銘、蔡兆胤、方品智、張詠惠。2020。番茄葉片水潛勢的檢測探討。農機與生機學術研討會。嘉義:國立嘉義大學。
童國枝、顏炳郎、蔡兆胤、林聖詠、陳世銘。2021。高光譜影像技術應用於葉片水潛勢量測及可視化之研究。農業機械學刊 30(4): 51-70。
廖玉琬、徐善德 編審。1999。植物生理學。初版,27- 47。台北:啟英文化事業有限公司。
蔡兆胤。2007。近紅外線連續式線上水果檢測系統之開發研究。博士論文。台中:國立中興大學生物產業機電工程學系。doi:10.6845/NCHU.2007.00789
蕭逸偉。2015。電容感測技術應用於植物葉片含水率量測之研究。碩士論文。台中:國立中興大學生物產業機電工程學系。
Allen, M., P. Prusinkiewicz, and T. M. Dejong. 2005. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model. The New phytologist 166(3): 869-880.
Altman, E. I., G. Marco, and F. Varetto. 1994. Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). J. Banking Finance, 18(3): 505-529. https://doi.org/10.1016/0378-4266(94)90007-8
Barnes, R. J., M. S. Dhanoa, and S. Lister. 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc., 43(5): 772-777. https://doi.org/10.1366/0003702894202201
Barrs, H. D. 1965. Comparison of water potentials in leaves as measured by two types of thermocouple psychrometer. Australian J. Biol. Sci., 18(1): 36-52. https://doi.org/ 10.1071/BI9650036
Behmann, J., J. Steinrücken, and L. Plümer. 2014. Detection of early plant stress responses in hyperspectral images. Isprs Journal of Photogrammetry and Remote Sensing, 93: 98-111.
Bertran, E., H. Iturriaga, S. Maspoch, and I. Montoliu. 2001. Effect of orthogonal signal correction on the determination of compounds with very similar near infrared spectra. Anal. Chim. Acta, 431(2): 303-311. https://doi.org/10.1016/S0003-2670(00)01328-3
Bittman, S., and G. M. Simpson. 1989. Drought Effect on Leaf Conductance and Leaf Rolling in Forage Grasses. Crop Sci. 29(2): 338-344. https://doi.org/10.2135/cropsci 1989.0011183X002900020022x.
Boyer, J. S., and E. B. Knipling. 1965. Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Proc. Natl. Academy Sci., 54(4): 1044-1051.
Bria, A., H. Djahi, and D. Pollo. 2018. Automatic watering device for tomato using soil moisture sensor. Proc. Conf. ICEST Faculty of Science and Engineering UNDANA.
Brown, P. W., and C. B. Tanner. 1981. Alfalfa water potential measurement: A comparison of the pressure chamber and leaf dew-point hygrometers. Crop Sci., 21(2): 240-244. https://doi.org/10.2135/cropsci1981.0011183X002100020009x
Burger, J. 2006. Hyperspectral NIR image analysis volume 2006.
Buttaro, D., P. Santamaria, A. Signore, V. Cantore, F. Boari, F. F. Montesano, and A. Parente. 2015. Irrigation management of greenhouse tomato and cucumber using tensiometer: Effects on yield, quality and water use. Agric. Agric. Sci. Procedia, 4: 440-444. https://doi.org/10.1016/j.aaspro.2015.03.050
Carson, E. W. (Ed.). 1974. The plant root and its environment. Charlottesville: University Press of Virginia.
Cen, H., R. Lu, D. P. Ariana, and F. Mendoza. 2014. Hyperspectral imaging-based classification and wavebands selection for internal defect detection of pickling cucumbers. Food Bioprocess Technol., 7(6): 1689-1700. https://doi.org/10.1007/s11947-013-1177-6
Cen, H., R. Lu, F. A. Mendoza, and D. P. Ariana. 2012. Assessing multiple quality attributes of peaches using optical absorption and scattering properties. Trans. ASABE, 55(2): 647-657. https://doi.org/10.13031/2013.41366
Cen, H., R. Lu, F. Mendoza, and R. M. Beaudry. 2013. Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue. Postharvest Biol. Technol., 85: 30-38. https://doi.org/10.1016/j.postharvbio. 2013. 04.014
Champagne, C., E. Pattey, A. Bannari, and I. B. Stratchan, 2001. Mapping crop water status: issues of scale in the detection of crop water stress using hyperspectral indices. In: Proceedings of the 8th International Symposium on Physical Measurements and Signatures in Remote Sensing. Aussois, France., 79-84.
Chartzoulakis, K., A. Patakas, G. Kofidis, A. Bosabalidis, and A. Nastou. 2002. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulturae 95: 39-50.
Chen, J., S. Kang, T. Du, R. Qiu, P. Guo, and R. Chen. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric. Water Manag. 129: 152-162. https://doi.org/10.1016/j.agwat.2013.07.011
Chia, A., M. Leung, H. Eng, and S. Rahardja. 2007. Ellipse Detection with Hough Transform in One Dimensional Parametric Space. IEEE International Conference on Image Processing 5: 333-336.
Coyago-Cruz, E., M. Corell, C. M. Stinco, D. Hernanz, A. Moriana, and A. Melendez-Martinez. 2017. Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Res. Int., 96: 72-83. https://doi.org/10.1016/j.foodres.2017.03.026
Cuartero, J., and F M. Rafael. 1999. Tomato and salinity. Scientia Horticulturae, 78(1): 83-125. https://doi.org/10.1016/S0304-4238(98)00191-5
Dahm, D. J. 2013. Explaining some light scattering properties of milk using representative layer theory. J. Near Infrared Spectros, 21(5): 323-339. https:// doi.org/10.1255/ jnirs.1071
Dixon, H. H. 1914. Transpiration and the ascent of sap in plants. Macmillan & Co. London. Ⅰ-Ⅺ: 1-216.
Fernandez-Cabanas, V. M., A. Garrido-Varo, J. G. Olmo, E. D. Pedro, and P. Dardenne. 2007. Optimisation of the spectral pre-treatments used for Iberian pig fat NIR calibrations. Chemometrics Intelligent Lab. Syst., 87(1): 104-112. https://doi.org/10.1016/j.chemolab. 2006.10.005
Gabrielli, M., V. Lancon-Verdier, P. Picouet, and C. Maury. 2021. Hyperspectral imaging to characterize table grapes. Chemosensors, 9(4): 71. https://doi.org/10.3390/ chemosensors9040071
Gao, L., R. T. Kester, N. Hagen, and T. S. Tkaczyk. 2010. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy. Opt. Express 18(14): 14330-14344.
Geladi, P., D. MacDougall, and H. Martens. 1985. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc., 39: 491-500. https://doi.org/10.1366/0003702854248656
Gosselin, R., D. Rodrigue, and C. Duchesne. 2008. On-Line prediction of crystallinity spatial distribution across polymer films using NIR spectral imaging and chemometrics methods. The Canadian J. of Chemical Engineering 86: 869-878.
Gowen, A. A., Y. Feng, E. Gaston, and V. Valdramidis. 2015. Recent applications of hyperspectral imaging in microbiology. Talanta 137: 43-54.
Harris, D. C. 2007. Quantitative chemical analysis.(7th ed, pp. 381-382). New York, NY: W. H. Freeman and Co.
Hsiao, S. C., S. Chen, I. C. Yang, C. T. Chen, C. Y. Tsai, Y. K. Chuang, F. J. Wang, Y. L. Chen, T. S. Lin and Y. M. Lo. 2010. Evaluation of plant seedling water stress using dynamic fluorescence index with blue LED-based fluorescence imaging. Computers and Electronics in Agriculture 72(2):127-133.
Hu, D., X. Fu, A. Wang, and Y. Ying. 2015. Measurement methods for optical absorption and scattering properties of fruits and vegetables. Trans. ASABE, 58(5): 1387-1401. https://doi.org/10.13031/trans.58.11103
Hunt, R. 1990. Basic Growth Analysis. Unwin Haman Inc. 112. UK: London.
Izenman, A. J. 2013. Linear discriminant analysis. In Modern multivariate statistical techniques :237-280. New York, NY: Springer. https://doi.org/10.1007/978-0-387-78189-1_8
Joey, W., H. B. James, P. K. Anthony, and K. Marjan. 2020. Tomato diseases & disorders-HGIC 2217. Clemson Cooperative Ext. Retrieved from https://hgic.clemson.edu/ factsheet/tomato-diseases-disorders/
Jones, C. L., P. R. Weckler, N. O. Maness, M. L. Stone, and R. Jayasekara. 2004. Estimating Water Stress in Plants Using Hyperspectral Sensing. ASAE/CSAE Annual International Meeting. Paper No: 043065.
Jones, J. B. 1999. Tomato plant culture: In the field, greenhouse, and home garden. Boca Raton, FL: CRC Press.
Jones, M. M., and N. C. Turner. 1980. Osmotic adjustment in expanding and fully expanded leaves of sunflower in response to water deficits. Functional Plant Biol., 7(2): 181-192. https://doi.org/10.1071/PP9800181
Kadioglu, A., and R. Terzi . 2007. A Dehydration Avoidance Mechanism: Leaf Rolling. Botanical Review 73(4): 290-302.
Kim, D. M., H. Zhang, H. Zhou, T. Du, Q. Wu, T. C. Mockler, and M. Y. Berezin. 2015. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Scientific Reports 5:15919. https://doi.org/ 10.1038/ srep15919.
Kim, M. S., Y. R. Chen, and P. M. Mehl. 2001. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans. ASAE, 44(3): 721-729. https://doi.org/10.13031/2013.6099
Kim, M., K. Chao, D. Chan, W. Jun, A. Lefcourt, S. Delwiche, S. Kang, and K. Lee. 2011. Line-Scan Hyperspectral Imaging Platform for Agro-Food Safety and Quality Evaluation: System Enhancement and Characterization. Transactions of the ASABE. 54: 703-711. https://doi.org/10.13031/2013.36473.
Kim, Y., D. M. Glenn, J. Park, H. K. Ngugi, and B. L. Lehman. 2010. Hyperspectral image analysis for plant stress detection. ASABE Paper No. 1009114. St. Joseph, MI: ASABE. https://doi.org/10.13031/2013.29814
Kokaly, R. F., and R. N. Clark. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67: 267-287.
Lang, A. R. G. 1967. Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40°C. Aust. J. Chem. 20(9): 2017–2023.
Leach, J. E., T. Woodhead, and W. Day. 1982. Bias in pressure chamber measurements of leaf water potential. Agric. Meteorol., 27(3): 257-263. https://doi.org/10.1016/0002-1571(82)90010-3
Liao, T. S., J. H. Weng, and R. J. Liu. 2002. Effects of leaf water potential on photosynthesis and seasonal variation in leaf water potential of six subalpine plants in tatachia area. Quarterly Journal of Chinese Forestry 35(2): 163-170.
Lim, H. T., and V. M. Murukeshan. 2016. A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications. Sci. Rep. 6(1): 24044.
Liu, C., P. S. Sun, and S. R. Liu. 2016. A review of plant spectral reflectance response to water physiological changes. Chinese J. Plant Ecol., 40(1): 80-91. https://doi.org/ 10.17521/cjpe.2015.0267
Lu, Y., and R. Lu. 2017. Non-destructive defect detection of apples by spectroscopic and imaging technologies: A review. Trans. ASABE, 60(5): 1765-1790. https://doi.org/ 10.13031/trans.12431
Marcar, N. E. 1993. Waterlogging modifies growth, water use and ion concentrations in seedlings of salt-treated Eucalyptus camaldulensis, E. tereticornis, E. robusta and E. globulus. Functional Plant Biol., 20(1): 1-13. https://doi.org/10.1071/PP9930001
Martens, H., and T. Naes. 1989. Multivariate calibration(4th ed.). Hoboken, NJ: John Wiley & Sons.
Matsuda, O., A. Tanaka, T. Fujita, and K. Iba. 2012. Hyperspectral imaging techniques for rapid identification of arabidopsis mutants with altered leaf pigment status. Plant and Cell Physiology, 53: 1154-1170.
Mishra, P., G. Polder, A. Gowen, D. N. Rutledge, and J. M. Roger. 2020b. Utilising variable sorting for normalisation to correct illumination effects in close-range spectral images of potato plants. Biosyst. Eng., 197: 318-323. https://doi.org/10.1016/ j.biosystemseng.2020.07.010
Mishra, P., M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders. 2017. Close range hyperspectral imaging of plants: A review. Biosyst. Eng., 164: 49-67. https://doi.org/10.1016/j.biosystemseng.2017.09.009
Mishra, P., S. Lohumi, H. Ahmad-Khan, and A. Nordon. 2020a. Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Comput. Electron. Agric., 178: 105780. https:// doi.org/10.1016/j.compag.2020.105780
Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment 16: 15-24.
Munns, R., D. P. Schachtman, and A. G. Condon. 1995. The significance of the two phase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology 22: 561-569.
Ong, P., S. Chen, C. Y. Tsai, and Y. K. Chuang. 2021. Optimal combination of band-pass filters for theanine content prediction using near-infrared spectroscopy. Infrared Physics and Technology 115: 103701.
Otto T., R. Saupe, A. Weiss, V. Stock, K. Wiesner, U. Lampe, M. Fleischer, and T. Gessner. 2008. Dual-detector optical MEMS spectrum analyzer: advances, applications, and prospects. In: MOEMS and Miniaturized Systems VII, Proc. of SPIE, 6887: 68870D. https://doi.org/10.1117/12.768356
Pen, C. L., W. K. Bilanski, and D. R. Fuzzen. 1987. Classification analysis of good and bruised peeled apple tissue using optical reflectance. Trans. ASAE, 28(1): 326-330. https://doi.org/10.13031/2013.32251
Penuelas, J., I. Filella, C. Biel, L. Serrano, and R. Save. 1995. The reflectance at the 950– 970 region as an indicator of plant water status. International Journal of Remote Sensing 14 (10): 1887–1905.
Rorres, C., and A. Howard. 1984. Applications of linear algebra (3rd ed.). Hoboken, NJ: John Wiley & Sons.
Rosenow, D. T., J. E. Quisenberry, C. W. Wendt, and L. E. Clark. 1983. Drought tolerant sorghum and cotton germplasm. Agricultural Water Management 7(1-3): 207-222. https://doi.org/10.1016/0378-3774(83)90084-7.
Rudich, J., E. Rendon-Poblete, M. A. Stevens, and A. I .Ambri. 1981. Use of Leaf water potential to determine water stress in field grown tomato plants. J. Am. Soc. Hort. Sci. 106: 732-36.
Sack L., and C. Scoffoni. 2013. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198: 983-1000.
Sack L., C. Scoffoni, G.P. John, H. Poorter, C.M. Mason, R. Mendez-Alonzo, and L. A. Donovan. 2013. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany 64: 4053-4080.
Shock, C. C., and F. X. Wang. 2011. Soil water tension, a powerful measurement for productivity and stewardship. HortSci., 46(2): 178-185. https://doi.org/10.21273/ hortsci.46.2.178
Slatyer, R. O., and S. A. Taylor. 1960. Terminology in plant-soil-water relations. Nature. 187: 922-924. https://doi.org/10.1038/187922a0
Socias, F. X., F. Pol, F. Aguilo, J. Vadell, and H. Medrano. 1997. Effects of rapidly and gradually induced water stress on plant response in subterranean clover leaves. Journal of Plant Physiology 150: 212-219.
Syvertsen, J. P. 1982. Minimum leaf water potential and stomatal closure in citrus leaves of different ages. Ann. Botany, 49(6): 827-834. https://doi.org/10.1093/ oxfordjournals. aob.a086309
Tung, K. C., C. Y. Tsai, H. C. Hsu, Y. H. Chang, C. H. Chang, and S. Chen. 2018. Evaluation of water potentials of leafy vegetables using hyperspectral imaging. IFAC-Papers OnLine, 51(17): 5-9. https://doi.org/10.1016/j.ifacol.2018.08.052
Tung, K. C., P. L. Yen, C. Y. Tsai, P. Ong, J. W. Lin, Y. H. Chang and S. Chen. 2022. Nondestructive quantitative analysis of water potential of tomato leaves using online hyperspectral imaging system. Applied Engineering in Agriculture 38(2): 273-282.
Tung, K. C., P. L. Yen, C. Y. Tsai, S. Y. Lin and S. Chen. 2021. Application of hyperspectral imaging technology to the measurement and visualization of leaf water potential. Journal of Agricultural Machinery 30(4): 51-70.
Upchurch, B. L., H. A. Affeldt, W. R. Hruschka, K. H. Nonis, and J. A. Throop. 1990. Spectrophotometric study of bruises on whole, ‘red delicious’ apples. Trans. ASAE, 33(2): 585-589. https://doi.org/10.13031/2013.31370
Uto, K., & Y. Kosugi. 2012. Hyperspectral Manipulation for the Water Stress Evaluation of Plants. Contemporary materials, 1: 18-25.
Vigneau, N., M. Ecarnot, G. Rabatel, and P. Roumet. 2011. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crops Res., 122(1): 25-31. https://doi.org/10.1016/j.fcr.2011.02.003
Wang, I. R., J. W. L. Wan, and G. V. G. Baranoski. 2004. Physically - based simulation of plant leaf growth. Comp. Anim. Virtual Worlds 15: 237-244.
Wold, J. P., I. Johansen, K. H. Haugholt, J. Tschudi, J. T. Thielemann, V. H Segtnan, ,... E. Wold. 2006. Non-contact transflectance near infrared imaging for representative on-line sampling of dried salted coalfish (bacalao). J. Near Infrared Spectrosc., 14(1): 59-66. https://doi.org/10.1255/jnirs.587
Wold, S., H. Antti, F. Lindgren, and J. Ohman., 1998. Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst., 44(1): 175-185. https://doi.org/ 10.1016/S0169-7439(98)00109-9
Wold, S., M. Sjostrom, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst., 58(2): 109-130. https://doi.org/ 10.1016/S0169-7439(01)00155-1
Xie, C. Q., X. L. Li, P. C. Nie, and Y. He. 2013. Application of time series hyperspectral imaging (TS-HSI) for determining water content within tea leaves during drying. Transactions of the ASABE. 56: 1431-1440. https://doi.org/10.13031/trans.56.10243.
Yu, K. Q., Y. R. Zhao, X. L. Li, Y. N. Shao, F. Liu, and Y. He. 2014. Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant. PLoS One, 9: e116205.
Zhou, Y., H. Mao, and X. Zhang. 2011. Hyperspectral imaging technology for detection of moisture content of tomato leaves. Proc. 4th Int. Congress on Image and Signal Processing, : 167-171. https://doi.org/10.1109/CISP.2011.6099906
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83086-
dc.description.abstract高光譜影像技術屬於非破壞性檢測技術,已被廣泛使用在各產業領域,農業上之應用包括精準農業、作物栽培管理、農產品品質檢測等。番茄在每個生長期對水分的需求是不同的,供水過多或不足都會影響番茄植株的生長和產量。因此,在種植過程中必須進行精確的灌溉,以提高作物產量與品質。傳統上,土壤水分含量或葉片水潛勢被用來觀察植物水分狀況的指標。然而,這些方法準確性有限且耗時長,而且土壤水分屬於間接量測,現行葉片水潛勢屬於破壞性量測,難以在番茄生產中實施。因此有必要開發非破壞性且直接對植株本體的感測技術,本研究自行開發的移動式台車線上型高光譜影像檢測系統,使用了銦鎵砷(InGaAs)材質的高光譜影像相機,檢測波段範圍為900 - 1700 nm,並利用LabVIEW與MATLAB兩套程式進行系統軟硬體的整合。系統應用了波長、平場、空間等校正技術進行校準,確保系統穩定運作。利用線性判別分析,自動快速提取葉片圖像,識別準確率達到94.68%。標準常態變量(SNV)散射校正的數學處理用於消除散射失焦圖像引起的光譜變異。系統放置於台車上,在番茄作物的實際栽培場域,以線上水平方向移動並擷取光譜及影像的資訊,進行葉片本體水潛勢的檢測。水潛勢的量測實驗,採用露點微伏水潛勢測定儀(HR-33T),並使用了10個樣本室進行分時檢測,以NaCl標準檢測液建立0 ~ -2.971 MPa 範圍的水潛勢標準檢量線,作為樣本檢測計算葉片水潛勢的標準依據。兩批番茄葉片各169個及199個樣本進行水潛勢量測,其結果介於 -0.446 ~ -1.911 MPa,標準差為0.284 MPa,均落在標準檢量線可檢測的範圍內。葉片水潛勢的預測模型採用修正部分最小平方迴歸法(MPLSR)來建立,其分析結果分別為:169個樣本校正組標準誤差SEC = 0.129、校正組決定係數rc2 = 0.779、交叉驗證組標準誤差SECV = 0.171、交叉驗證組決定係數rcv2 = 0.610;199個樣本校正組標準誤差SEC = 0.201、校正組決定係數RSQ = 0.814、交叉驗證標準誤差SECV = 0.230、交叉驗證組決定係數1-VR = 0.755,這兩批樣本模型證實了非常好的預測能力結果。本研究亦經由所建立的MPLSR葉片水潛勢預測模型,計算出所拍攝的葉片影像各像素點上的水潛勢值,以假彩色方式呈現葉片的水潛勢分布圖,透過清晰易懂的可視化方式提供葉片水潛勢分布的直觀判別。本研究建立快速、簡易、非破壞性的葉片水潛勢量測系統及技術,有助於將智慧農業技術具體應用於農業生產技術之提升。zh_TW
dc.description.abstractHyper-spectral imaging technology is a non-destructive detection technology, and it has been widely used in various industrial fields. Agricultural applications include precision agriculture, crop cultivation management and quality evaluation of agricultural products. Tomatoes have different water requirements in each growing period. Excessive water use or insufficient water supply will affect the growth and yield of tomato plants. Therefore, precise irrigation control is required in the cultivation process to improve crop yield and quality. Traditionally, the soil moisture content or leaf water potential has been used as an indicator of plant water status. These methods, however, have limited accuracy and are time-consuming, soil moisture is an indirect measurement, and the current leaf water potential is a destructive measurement, which is difficult to implement in tomato production. Therefore, it is necessary to develop non-destructive and living body plant sensing technology. This study developed a mobile-carrier online type hyper-spectral imaging system, in which a hyper-spectral imaging camera made of indium gallium arsenide (InGaAs) with a detection wavelength range of 900 - 1700 nm was used, and programs using LabVIEW and MATLAB were adopted to integrate the systems. System pre-calibrations including wavelength correction, flat field correction and spatial correction are applied to ensure the stable operation of the system. Linear Discriminant Analysis was utilized to automatically and quickly extract the leaf images, with the recognition accuracy of 94.68% was achieved. The mathematical processing of Standard Normal Variate scattering correction was used to remove the spectral variations caused by the defocused leave images. The system can be easily installed on a carrier and moved to the actual cultivation field of the tomato crops. The spectra and image information are captured by horizontally online shooting of images of tomato crops, and the water potentials of the living body of leaves can be directly measured. Regarding the water potential experiments, DewPoint Microvoltmeter HR-33T was used and 10 sample chambers were also used for time-sharing purpose. NaCl standard test solution was used to establish a water potential standard calibration equations in the range of 0 ~ -2.971 MPa as the reference basis for calculating leaf water potentials. The water potential was measured on 169 and 199 samples of two batches of tomato leaves, and the results ranged from -0.446 to -1.911 MPa with a standard deviation of 0.284 MPa, both falling within the detectable range of the standard calibration line. The MPLSR (Modified Partial Least Square Regression) prediction model for tomato water potential was established, and the two regression results were : 169 samples calibration group SEC (Standard Error of Calibration) = 0.129, rc2 (coefficient of determination of calibration) = 0.779, cross-validation group SECV (Standard Error of cross-validation) = 0.171, rcv2 (coefficient of determination of cross-validation) = 0.610 ; 199 samples calibration group SEC (Standard Error of Calibration) = 0.201 , RSQ (coefficient of determination of calibration, R-square) = 0.814, cross-validation group SECV(Standard Error of cross-validation) = 0.230, 1-VR (coefficient of determination of cross-validation, one minus the variance ratio) = 0.755, these two batch sample models confirmed very good predictive power results. The water potential values at each pixel of the leaf images can be calculated through MPLSR model. The distribution of the water potential over the entire leaf area could be presented in a pseudo-color graph, in which intuitive judgment of leaf water potential distribution through clear and easy-to-understand visualization can be provided. In this research, a fast, easy and non-destructive leaf water potential measurement system and techniques have been developed, contribute to the specific application of smart agricultural technology to the improvement of agricultural production technology.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-06T17:07:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-06T17:07:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌 謝 ii
摘 要 iv
Abstract vi
目 錄 ix
圖目錄 xii
表目錄 xiv
第一章 緒 論 1
1.1 前 言 1
1.1.1 植物水分代謝作用 1
1.1.2 目前葉片水分量測 2
1.1.3 植物組織內部水潛勢原理 3
1.1.4 組織介質內部成分與光譜的關係 6
1.1.5 光譜成分的處理模式 7
1.2 研究目的 7
1.3 論文架構 8
第二章 番茄葉片水潛勢及可視化之高光譜影像檢測分析 10
2.1 前 言 10
2.2 材料與方法 13
2.2.1 開發高光譜影像系統 13
2.2.1.1 設計的硬體及軟體 13
2.2.1.2 波長、平場、空間系統之校正 14
2.2.1.3 處理光譜訊號及數學前處理 15
2.2.2 建立高光譜影像預測模型及葉片水潛勢可視化的影像 16
2.2.2.1 量測葉片水潛勢 16
2.2.2.2 量測高光譜影像 18
2.2.2.3 建立預測模型 19
2.2.2.4 建立葉片水潛勢可視化之影像 20
2.3 結果與討論 20
2.3.1 高光譜影像系統 20
2.3.1.1 系統之硬體 20
2.3.1.2 系統之軟體與操作介面呈現 22
2.3.1.3 校正系統之結果 23
2.3.2 高光譜影像之預測模型及葉片可視化之水潛勢影像 26
2.3.2.1 量測葉片水潛勢之結果 26
2.3.2.2 量測葉片高光譜影像之結果 28
2.3.2.3 建立高光譜影像預測模型之結果 29
2.3.2.4 建立葉片水潛勢可視化影像 31
2.4 結 論 33
第三章 使用線上型高光譜影像系統進行番茄葉片非破壞性的水潛勢定量分析 35
3.1 前 言 35
3.2 材料與方法 37
3.2.1 樣本準備 37
3.2.2 線上型高光譜影像系統 37
3.2.3 建模資料收集 38
3.2.4 資料處理 39
3.2.4.1 標準常態變量(SNV) 39
3.2.4.2 去趨勢(Detrend) 40
3.2.4.3 乘法散射校正(MSC) 40
3.2.4.4 N點平滑化 40
3.2.4.5 一次微分 41
3.2.4.6 修正部分最小平方廻歸 41
3.2.4.7 模式評估 41
3.2.5 影像分割 42
3.3 結果與討論 43
3.3.1 高光譜影像 43
3.3.2 番茄葉片的辨識 44
3.3.3 對焦不準產生的光譜變異 46
3.3.4 光譜分析 48
3.3.4.1 樣本量測值分布 48
3.3.4.2 校正模式的建立 48
3.3.4.3 校正模式的應用 49
3.4 結論 51
第四章 總結與建議 52
4.1 總結 52
4.2 建議 53
參考文獻 54
附 錄 63
-
dc.language.isozh_TW-
dc.title應用高光譜影像檢測番茄水潛勢之研究zh_TW
dc.titleEvaluation of Water Potential in Tomato Using Hyper-Spectral Imagingen
dc.title.alternativeEvaluation of Water Potential in Tomato Using Hyper-Spectral Imaging-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.coadvisor顏炳郎zh_TW
dc.contributor.coadvisorPing-Lang Yenen
dc.contributor.oralexamcommittee盛中德;謝廣文;洪滉祐;林連雄;王寶琳zh_TW
dc.contributor.oralexamcommitteeChung-Teh Sheng;Kuang-Wen Hsieh;Huaang-Youh Hurng;Lian-hsiung Lin;Pauline Ongen
dc.subject.keyword非破壞檢測,高光譜影像,番茄,葉片水潛勢,可視化,zh_TW
dc.subject.keywordNon-destructive,Hyper-spectral imaging,Tomato,Leaf water potential,Visualization,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202210138-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-12-20-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0702221130091006.pdf3.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved