Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83070
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭皓中zh_TW
dc.contributor.advisorHao-Chung Chengen
dc.contributor.author蔡孟軒zh_TW
dc.contributor.authorMeng-Hsuan Tsaien
dc.date.accessioned2023-01-06T17:01:16Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-12-16-
dc.identifier.citationD. Deutsch and R. Jozsa, “Rapid Solution of Problems by Quantum Computation,” Proceedings of the Royal Society of London Series A, vol. 439, pp. 553–558, Dec. 1992.
L. K. Grover, “A fast quantum mechanical algorithm for database search,”in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, (New York, NY, USA), p. 212–219, Association for Computing Machinery, 1996.
P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, p. 1484–1509, oct 1997.
IBM, “Ibm quantum breaks the 100-qubits processor barrier.” https://research.ibm.com/blog/127-qubit-quantum-processor-eagle, 2021. Ac-cessed: 2022-08-12.
IBM, “Ibm’s target: a 4,000-qubit processor by 2025.” https://spectrum.ieee.org/ibm-quantum-computer, 2021. Accessed: 2022-08-12.
A. Kandala, K. Temme, A. D. C ́orcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, “Error mitigation extends the computational reach of a noisy quantum processor,” Nature, vol. 567, pp. 491–495, mar 2019.
K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth quantum circuits,” Physical Review Letters, vol. 119, nov 2017.
C. Piveteau, D. Sutter, S. Bravyi, J. M. Gambetta, and K. Temme, “Error mitigation for universal gates on encoded qubits,” Physical Review Letters, vol. 127, nov 2021.
A. Strikis, D. Qin, Y. Chen, S. C. Benjamin, and Y. Li, “Learning-based quantum error mitigation,” PRX Quantum, vol. 2, nov 2021.
H. Tezuka, K. Nakaji, T. Satoh, and N. Yamamoto, “Grover search revisited: Application to image pattern matching,” Physical Review A, vol. 105, mar 2022.
M. H. Mir and H. Singh, “Pixel identification in an image using grover search algorithm,” 2021.
J. Bausch, S. Subramanian, and S. Piddock, “A quantum search decoder for natural language processing,” Quantum Machine Intelligence, vol. 3, pp. 1–24, 2021.
A. D. Correia, M. Moortgat, and H. T. C. Stoof, “Grover’s algorithm for question answering,” 2021.
R. Guarasci, G. De Pietro, and M. Esposito, “Quantum natural language processing: Challenges and opportunities,” Applied Sciences, vol. 12, no. 11, 2022.
I. Chakrabarty, S. Khan, and V. Singh, “Dynamic grover search: applications in recommendation systems and optimization problems,” Quantum Information Processing, vol. 16, apr 2017.
M. Sawerwain and M. Wr ́oblewski, “Recommendation systems with the quantum k–NN and grover algorithms for data processing,” International Journal of Applied Mathematics and Computer Science, vol. 29, pp. 139–150, mar 2019.
P. Niroula and Y. Nam, “A quantum algorithm for string matching,” npj Quantum Information, vol. 7, p. 37, Jan. 2021.
A. Sarkar, Z. Al-Ars, C. G. Almudever, and K. Bertels, “An algorithm for DNA read alignment on quantum accelerators,” 2019.
Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, “A grover-search based quantum learning scheme for classification,” New Journal of Physics, vol. 23, p. 023020, feb 2021.
R. Preston, “Applying grover’s algorithm to hash functions: A software perspective,” 2022.
N. Kumar and D. Goswami, “Quantum algorithm to solve a maze: Converting the maze problem into a search problem,” 2013.
H. Amellal, A. Meslouhi, and A. El Allati, “Reduce data processing time in nosql databases based on grover’s algorithm,” in Proceedings of the 3rd International Conference on Smart City Applications, SCA ’18, (New York, NY,USA), Association for Computing Machinery, 2018.
T. Alam, S. Qamar, A. Dixit, and M. Benaida, “Genetic algorithm: Reviews, implementations, and applications,” 2020.
N. Choubey, “A-mazer with genetic algorithm,” International Journal of Computer Applications (0975 – 8887), vol. 58, pp. 48–54, 11 2012.
E. K. Susanto, R. Fachruddin, M. I. Diputra, D. Herumurti, and A. A. Yunanto,“Maze generation based on difficulty using genetic algorithm with gene pool,”in 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 554–559, 2020.
A. Sheta, M. S. Braik, and S. Aljahdali, “Genetic algorithms: A tool for image segmentation.”
G. Nagarajan, R. Minu, B. Muthukumar, V. Vedanarayanan, and S. Sundarsingh, “Hybrid genetic algorithm for medical image feature extraction and selection,”Procedia Computer Science, vol. 85, pp. 455–462, 2016. International Conference on Computational Modelling and Security (CMS 2016).
J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 1992.
S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: Past, present, and future,” Multimedia Tools Appl., vol. 80, p. 8091–8126, feb 2021.
H.-C. Cheng, “Slides: Quantum information and computation, amplitude amplification algorithm,” 2021.
C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses of quantum computing,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1510–1523, 1997.
M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of quantum states using uniformly controlled rotations,” 2004.
V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam,G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad,S. Banning, C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado,O. Di Matteo, A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain, E. Jiang, A.Khandelwal, K. Kottmann, R. A. Lang, C. Lee, T. Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A.Monta ̃nez-Barrera, R. Moyard, Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D. Polatajko, N. Quesada, C. Roberts, N. S ́a, I. Schoch,B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni, A. Sz ́ava, S. Thabet, R. A. Vargas-Hern ́andez, T. Vincent, N. Vitucci, M. Weber, D. Wierichs, R. Wiersema, M. Willmann, V. Wong, S. Zhang, and N. Killoran, “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” 2018.
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. delR ́ıo, M. Wiebe, P. Peterson, P. G ́erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–362, sep 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83070-
dc.description.abstract近年來,量子計算一直是個被人們廣泛討論的熱門話題。不論是學術界還是產業界大家都競相投入這個領域,大家相信在某些問題上量子計算會比古典計算更有優勢,最有名的兩個例子就是質因數分解和未排序資料庫搜索問題。在古典計算中,給定一個正整數N若想要找到他的質因數分解,至少也需要花費指數時間才行;然而若使用一個量子演算法--秀爾演算法,只要多項式時間就可以解決了。這也代表若存在一個量子位元數夠多、雜訊夠小的量子電腦,便可以破解現行的RSA加密演算法,因RSA加密演算法的基礎就是建構在古典計算無法輕易解開某數的質因數分解的前提下。格羅弗演算法則是一種量子搜尋演算法,透過多次Oracle和Diffusion Operator的接連作用,將共有N筆資料的資料庫裡我們所想要的那些資料的振幅不斷加大,並且減少其他我們不感興趣的資料的振幅,使最後做量測時可以高機率得到我們所想要的資料,相對於古典計算而言可以達到O(√N)級別的加速。

在此篇論文中,我們嘗試對格羅弗演算法做一些改進。雖然格羅弗演算法已經可以達到O(√N)加速,但隨著量子位元數增加,總資料量也會指數級別成長。就算有平方級別的加速,依然無法抑制因指數成長的搜索空間導致的複雜度上升。因此我們帶入動態規劃的技巧將搜索空間降成多項式級別成長,同時運用基因遺傳演算法增加額外探索性避免因分成好多段做格羅弗探索造成可能收斂到局部最佳解的情形,盡量搜索到全域最佳解。我們將這整個流程稱為量子基因遺傳演算法(QGA)。在之後的章節,我們會用一個自己定義的純量子遊戲環境來展示QGA整體的運算流程。
zh_TW
dc.description.abstractIn recent years, quantum computing has been a popular topic which always widely discussed by people. No matter academia or industry, they are all dedicated to this field. They believe quantum computing is more powerful than classical computing in some specific problems. The two most famous examples are Integer factorization and unsorted database search problems. In classical computing, it takes at least exponential time to factor an integer N. But, if we apply a quantum algorithm called Shor’s Algorithm in the Integer factorization, we can solve this problem in polynomial time. Therefore, if there exists a quantum computer with a sufficient number of qubits that could operate without succumbing to quantum noise and other quantum-decoherence phenomena exist, then Shor's algorithm could be used to break public-key cryptography schemes, such as the RSA encryption algorithm. Because the basics of the RSA encryption algorithm are based on the assumption that factoring large integers is computationally intractable. Grover’s algorithm is a quantum searching algorithm. After the oracle and diffusion operator acting multiple iterations on the input quantum state, it amplifies the amplitudes of the data we want in the database and reduce the amplitude of the data we don’t interested in. Finally, the outcome of the quantum circuit will be what we want with a very high probability. In addition, the most important is that it can solve this problem O(√N) faster than the classical method.

In this thesis, we apply Grover's Algorithm to solve maze problems and propose a hybrid algorithm called Quantum Genetic Algorithm(QGA). Grover's Algorithm is guaranteed to give us O(√N) speed-up compared to the classical try and error method when solving a maze problem. This is undoubtedly a quick way to solve maze problems, but as the game map gets linearly deeper, the total space that Grover's Algorithm has to search grows exponentially at the same time. Consequently, we still can’t efficiently reduce the rapidly rising complexity caused by exponentially rising search space. In order to deal with this serious problem, we first use dynamic programming to decrease the growth of the search space into O(N) order and apply the Genetic Algorithm to assist the whole algorithm in reaching the global minimum. We will show how QGA working on the maze problem in chapter 4.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-06T17:01:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-06T17:01:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments I
摘要 II
Abstract III
List of Figures VII

Chapter1 Introduction 1
Chapter2 Quantum Computation and Grover’s algorithm 4
2.1 Quantum computation 4
2.1.1 Closed Quantum System and States 4
2.1.2 Dirac Notation 4
2.1.3 Quantum State of Qubits 5
2.1.4 Quantum Circuit 7
2.1.5 Quantum Gate 8
2.2 Grover’s Algorithm 10
2.2.1 Amplitude Amplification 11
2.2.2 The Grover Diffusion Operator 11
2.2.3 Perspective from Amplitudes 14
2.2.4 Circuit Diagram 16
Chapter3 Genetic Algorithm 19
3.1 Basic Terminology and Concept 19
3.2 Genetic Operators 21
3.2.1 Crossover 21
3.2.2 Mutation 21
3.2.3 Selection and Fitness function 22
3.3 Workflow Diagram 25
3.4 Operators used in GA 26
Chapter4 Game Environment and Method 27
4.1 Game Environment 27
4.2 Method 1: Grover’s Algorithm 30
4.2.1 Action Table 30
4.2.2 State Encoding 31
4.2.3 Quantum Circuit Architecture 32
4.2.4 Summary 41
4.3 Method 2 : QGA(Grover’s Algorithm + GA) 41
4.3.1 QGA Workflow 41
4.3.2 Advantage of QGA 45
Chapter5 Result and Discussion 47
5.1 Numerical Simulation 47
5.1.1 Game Map 1 47
5.1.2 Game Map 2 51
5.1.3 More Bigger Game Map(Game Map 3)(Using Sliding Window Technique) 53
5.2 IBM Quantum System 61
Chapter6 Conclusion 65

Bibliography 66
-
dc.language.isoen-
dc.title運用量子基因遺傳演算法於搜尋迷宮問題的最佳解zh_TW
dc.titleEfficiently Finding Best Solutions in Maze Games with Quantum Genetic Algorithmen
dc.title.alternativeEfficiently Finding Best Solutions in Maze Games with Quantum Genetic Algorithm-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee管希聖;賴青沂zh_TW
dc.contributor.oralexamcommitteeHsi-Sheng Goan;Ching-Yi Laien
dc.subject.keyword量子計算,秀爾演算法,格羅弗演算法,基因遺傳演算法,zh_TW
dc.subject.keywordquantum computation,Shor's algorithm,Grover's algorithm,Genetic Algorithm,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202210135-
dc.rights.note未授權-
dc.date.accepted2022-12-16-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0424221214362120.pdf
  目前未授權公開取用
20.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved