請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8293完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞益(Ray-I Chang) | |
| dc.contributor.author | Hsuan-Yu Lin | en |
| dc.contributor.author | 林宣佑 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:51:29Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.available | 2021-05-20T00:51:29Z | - |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-07 | |
| dc.identifier.citation | 1. 行政院, 臺灣AI行動計畫核定本. 2018. Available from: https://digi.ey.gov.tw/File/4C622B6A10053DAD 2. 自由時報. 中研院士孔祥重:台灣AI人才遠不足需求. 2019 [cited 2020 4/2]; Available from: https://news.ltn.com.tw/news/life/paper/1341254. 3. Erl, T., Service-oriented architecture: concepts, technology, and design. Pearson Education India. 4. Fayyad, U., G. Piatetsky-Shapiro, and P.J.A.m. Smyth, From data mining to knowledge discovery in databases. 1996. 17(3): p. 37-37. 5. Fayyad, U., G. Piatetsky-Shapiro, and P.J.C.o.t.A. Smyth, The KDD process for extracting useful knowledge from volumes of data. 1996. 39(11): p. 27-34. 6. Frontender. Data Mining. 2020 [cited 2020 4/8]; Available from: http://frontender.com/blog/enablers/data-mining/. 7. García, S., J. Luengo, and F. Herrera, Data preprocessing in data mining. 2015: Springer. 8. 維基百科. 資料探勘. 2020 [cited 2020 4/8]; Available from: https://zh.wikipedia.org/wiki/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98. 9. Microsoft. What is Azure? 2020 [cited 2020 5/15]; Available from: https://azure.microsoft.com/en-us/overview/what-is-azure/. 10. Microsoft. What is Azure Machine Learning designer (preview)? 2019 [cited 2020 5/15]; Available from: https://docs.microsoft.com/en-us/azure/machine-learning/concept-designer. 11. DataRobot. How Do Model Blueprints Add Value to DataRobot? 2018 2018/1/9 [cited 2020 5/15]; Available from: https://blog.datarobot.com/data/model-blueprints-add-value-datarobot. 12. Google. AI and machine learning products. [cited 2020 4/8]; Available from: https://cloud.google.com/products/ai/. 13. 林佳穎, 利用機器學習方法預測織布製程參數於虛實整合系統, in 工程科學及海洋工程學研究所. 2018, 國立臺灣大學. Available from: https://hdl.handle.net/11296/8v6833 14. van der Aalst, W.M., M. Bichler, and A. Heinzl, Robotic process automation. 2018, Springer. 15. Timbadia, D.H., et al. Robotic Process Automation Through Advance Process Analysis Model. in 2020 International Conference on Inventive Computation Technologies (ICICT). 2020. IEEE. 16. Gao, J., et al. Automated robotic process automation: A self-learning approach. in OTM Confederated International Conferences' On the Move to Meaningful Internet Systems'. 2019. Springer. 17. Lacity, M., L.P. Willcocks, and A. Craig, Robotic process automation at Telefonica O2. 2015. 18. Chapter 1: Service Oriented Architecture (SOA). 2016 [cited 2020 4/4]; Available from: https://web.archive.org/web/20160206132542/https:/msdn.microsoft.com/en-us/library/bb833022.aspx. 19. Erl, T., Service-oriented architecture. 2005: Pearson Education Incorporated. 20. 曾保彰. 服務導向架構(Service-Oriented Architecture,SOA) 簡介. 2007 [cited 2020 4/4]; Available from: http://www.cc.ntu.edu.tw/chinese/epaper/20070620_1008.htm. 21. Elman, J.L.J.C.s., Finding structure in time. 1990. 14(2): p. 179-211. 22. Graves, A., N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition with deep bidirectional LSTM. in 2013 IEEE workshop on automatic speech recognition and understanding. 2013. IEEE. 23. Schuster, M. and K.K.J.I.t.o.S.P. Paliwal, Bidirectional recurrent neural networks. 1997. 45(11): p. 2673-2681. 24. Devlin, J., et al., Bert: Pre-training of deep bidirectional transformers for language understanding. 2018. 25. Mikolov, T., et al., Efficient estimation of word representations in vector space. 2013. 26. Google. Angular. 2020 [cited 2020 5/20]; Available from: https://angular.io/. 27. Facebook. React. 2020 [cited 2020 5/20]; Available from: https://reactjs.org/. 28. You, E. Vue.js. 2020 [cited 2020 5/20]; Available from: https://vuejs.org/. 29. Lin, H.-Y., et al. Service-Oriented Architecture for Intelligent Management with Data Analytics and Visualization. in 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA). 2019. IEEE. 30. Flask. [cited 2020 4/6]; Available from: https://palletsprojects.com/p/flask/. 31. Lee, C.-Y., J.-Y. Lin, and R.-I. Chang, Improve quality and efficiency of textile process using data-driven machine learning in industry 4.0. 32. 財團法人台灣網路資訊中心, 台灣網路報告. 2019. Available from:https://report.twnic.tw/2019/assets/download/TWNIC_TaiwanInternetReport_2019_CH.pdf 33. wikipedia. 超文本傳輸安全協定. 2020 [cited 2020 6/7]; Available from: https://zh.wikipedia.org/wiki/%E8%B6%85%E6%96%87%E6%9C%AC%E4%BC%A0%E8%BE%93%E5%AE%89%E5%85%A8%E5%8D%8F%E8%AE%AE. 34. Apache. APACHE HTTP SERVER PROJECT. 2020 [cited 2020 6/7]; Available from: https://httpd.apache.org/. 35. 廖偉傑, 使用深度學習與虛實整合系統之工業數據分析用例推薦, in 工程科學及海洋工程學研究所. 2020, 國立臺灣大學. p. 1-33. 36. Huang, Z., W. Xu, and K.J.a.p.a. Yu, Bidirectional LSTM-CRF models for sequence tagging. 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8293 | - |
| dc.description.abstract | 近年來人工智慧(Artificial Intelligence,AI)浪潮席捲全球,全球各行各業皆積極地引入AI技術以提升產業價值及推動產業轉型。隨著AI產業快速地發展,對相關人才的需求也更加強烈,出現以下問題:(一)目前AI開發的入門門檻高,人才稀缺,無法滿足日益增長的商業需求。(二)AI的知識發掘(Knowledge discovery in databases,KDD)與參數調整乃至執行過程都很冗長,需要背景執行的批次處理。(三)AI模型的開發及訓練流程難以複製,不易將成功的經驗應用於其他領域。針對以上問題,我們研究將機器人程序自動化(Robotic Process Automation,RPA)引入AI模型的開發及訓練流程。(一)新增圖型化使用者介面(Graphic User Interface,GUI),將模型開發過程中的各個步驟元件化,讓AI決策支援的流程得以通過拖曳及點擊方式完成,降低開發的入門門檻。(二)提供背景執行的批次處理功能,新增度量閘道元件,可依所設定的邏輯閘道完成決策流程分流。(三)新增決策規則管理系統,使用者可儲存決策流程,未來在面對新問題時可依其資訊(如名稱、描述、資料型態、任務類別等),以AI算法搜尋相似應用的決策流程,直接匯入調整對應參數,即可達到解決相關流程知識的再利用。本系統採用服務導向架構(Service-Oriented Architecture,SOA),未來若有其他應用需求,可優先重新組合所提供的服務即可,無須重新開發。 | zh_TW |
| dc.description.abstract | Artificial intelligence (AI) has been going viral during the last years. People from all walks of life are introducing AI to enhance industrial value and promote industrial transformation. As this industry develops rapidly, there is a dramatic increase in the demand for talents and the following problems occurred. First, the high entry barrier of developing the AI and the existing talents are unable to meet the growing needs. Second, the processes of knowledge discovery in databases (KDD) and parameter adjustment and even the execution may turn out to be a long period of time. Therefore, we need to provide the feature of batching processing in the background. Lastly, duplicating the processes of model developing and model training is too hard to apply successfully in other fields. Measures to solve the above-mentioned problems, this study proposes a method of introducing Robotic Process Automation (RPA) into the field of AI’s process of model developing and training. By componentizing each step in the process of model development, the decision-making process can be completed by dragging and clicking which avoid repeated steps of data pre-processing and model selection on the Graphic User Interface (GUI) we provided. Next, we provide the function of batch processing in the background and add the component of metrics gateway. Users can complete the route of decision-making process that based on the logical gateway that had set up. Finally, a new decision-making rule management system is added that users can store decision-making processes. When facing new problems, they can search for decision-making processes of similar applications with AI’s algorithms based on their information (such as name, description, data type, task category, etc.). At the same time, users can import the decision-making processes and adjust the corresponding parameters directly to achieve the reuse of the knowledge process. This system chooses to use Service-Oriented Architecture (SOA). If there is any demand for other applications in the future, all we need to do is reassemble the features we provided instead of redevelopment. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:51:29Z (GMT). No. of bitstreams: 1 U0001-0708202016534500.pdf: 1954797 bytes, checksum: d851806cb32fcf06f8ddb325d38636c3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 I ABSTRACT II 論文目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第二章 相關研究 4 2.1 知識發掘與人工智慧 4 2.2 相關人工智慧平台系統 6 2.3 機器人程序自動化 9 2.4 服務導向架構 11 2.5 長短期記憶模型 12 2.6 BERT 14 第三章 系統架構 15 3.1 系統設計 15 3.2 系統架構 15 3.2.1 資料蒐集模組 16 3.2.2 資料視覺化模組 17 3.2.3 資料分析模組 17 第四章 系統實作與實驗結果 19 4.1 系統實作 19 4.1.1 批次處理功能 19 4.1.2 機器人程序自動化 20 4.1.3 行動通訊系統 29 4.1.4 決策規則資訊系統 31 4.2 實驗流程 35 4.2.1 實驗設計 35 4.2.2 實驗結果與分析 36 第五章 結論與未來展望 39 5.1 結論 39 5.2 未來展望 39 參考文獻 41 | |
| dc.language.iso | zh-TW | |
| dc.title | 基於服務導向架構之人工智慧決策支援機器人程序自動化 | zh_TW |
| dc.title | Service-Oriented Architecture for Robotic Process Automation of Artificial Intelligence Decision-Support | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁肇隆(Chao-Lung Ting),張恆華(Herng-Hua Chang),王家輝(Chia-Hui Wang) | |
| dc.subject.keyword | 人工智慧,流程機器人,批次處理,服務導向架構, | zh_TW |
| dc.subject.keyword | Artificial Intelligence,Robotic Process Automation,Batch Processing,Service-oriented Architecture, | en |
| dc.relation.page | 43 | |
| dc.identifier.doi | 10.6342/NTU202002654 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0708202016534500.pdf | 1.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
