Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorGuan-Lun Fongen
dc.contributor.author馮冠綸zh_TW
dc.date.accessioned2022-11-25T08:02:35Z-
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-08-04
dc.identifier.citation1. Lampert, C. M., Electrochromic materials and devices for energy efficient windows. Solar Energy Materials 1984, 11 (1), 1-27. 2. Niklasson, G. A.; Granqvist, C. G., Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. Journal of Materials Chemistry 2007, 17 (2), 127-156. 3. Araki, S.; Nakamura, K.; Kobayashi, K.; Tsuboi, A.; Kobayashi, N., Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Advanced Materials 2012, 24 (23), OP122-OP126. 4. Deb, S. K., A novel electrophotographic system. Applied Optics 1969, 8 (S1), 192-195. 5. Mortimer, R. J., Organic electrochromic materials. Electrochimica Acta 1999, 44 (18), 2971-2981. 6. Byker, H. J., Electrochromics and polymers. Electrochimica Acta 2001, 46 (13), 2015-2022. 7. Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K.-C., Viologen-based electrochromic materials and devices. Journal of Materials Chemistry C 2019, 7 (16), 4622-4637. 8. Gillaspie, D. T.; Tenent, R. C.; Dillon, A. C., Metal-oxide films for electrochromic applications: Present technology and future directions. Journal of Materials Chemistry 2010, 20 (43), 9585-9592. 9. Moulki, H.; Park, D. H.; Min, B.-K.; Kwon, H.; Hwang, S.-J.; Choy, J.-H.; Toupance, T.; Campet, G.; Rougier, A., Improved electrochromic performances of NiO based thin films by lithium addition: From single layers to devices. Electrochimica Acta 2012, 74, 46-52. 10. Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F. S., Performance, materials and coating technologies of thermochromic thin films on smart windows. Renewable and Sustainable Energy Reviews 2013, 26, 353-364. 11. Kalyanasundaram, K.; Grätzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews 1998, 177 (1), 347-414. 12. DeLongchamp, D. M.; Hammond, P. T., High-Contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials 2004, 14 (3), 224-232. 13. Wei, P.; Yan, X.; Huang, F., Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chemical Society Reviews 2015, 44 (3), 815-832. 14. Thompson, B. C.; Kim, Y.-G.; McCarley, T. D.; Reynolds, J. R., Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. Journal of the American Chemical Society 2006, 128 (39), 12714-12725. 15. Long, Y.-Z.; Li, M.-M.; Gu, C.; Wan, M.; Duvail, J.-L.; Liu, Z.; Fan, Z., Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Progress in Polymer Science 2011, 36 (10), 1415-1442. 16. Dyer, A. L.; Thompson, E. J.; Reynolds, J. R., Completing the color palette with spray-processable polymer electrochromics. ACS Applied Materials Interfaces 2011, 3 (6), 1787-1795. 17. Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R., Electrochromic organic and polymeric materials for display applications. Displays 2006, 27 (1), 2-18. 18. Mortimer, R. J., Electrochromic materials. Annual Review of Materials Research 2011, 41 (1), 241-268. 19. Sydam, R.; Deepa, M.; Joshi, A. G., A novel 1,1′-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl)butyl]-4,4′-bipyridinium dibromide (viologen) for a high contrast electrochromic device. Organic Electronics 2013, 14 (4), 1027-1036. 20. Han, F. S.; Higuchi, M.; Kurth, D. G., Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions:  Photophysical, electrochemical, and electrochromic properties. Journal of the American Chemical Society 2008, 130 (6), 2073-2081. 21. Motiei, L.; Lahav, M.; Freeman, D.; van der Boom, M. E., Electrochromic behavior of a self-propagating molecular-based assembly. Journal of the American Chemical Society 2009, 131 (10), 3468-3469. 22. Gasnier, A.; Royal, G.; Terech, P., Metallo-supramolecular gels based on a multitopic cyclam bis-terpyridine platform. Langmuir 2009, 25 (15), 8751-8762. 23. Higuchi, M., Stimuli-responsive metallo-supramolecular polymer films: Design, synthesis and device fabrication. Journal of Materials Chemistry C 2014, 2 (44), 9331-9341. 24. Chen, B.-H.; Kao, S.-Y.; Hu, C.-W.; Higuchi, M.; Ho, K.-C.; Liao, Y.-C., Printed multicolor high-contrast electrochromic devices. ACS Applied Materials Interfaces 2015, 7 (45), 25069-25076. 25. Baucke, F. G. K., Electrochromic applications. Materials Science and Engineering: B 1991, 10 (4), 285-292. 26. Baetens, R.; Jelle, B. P.; Gustavsen, A., Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells 2010, 94 (2), 87-105. 27. Lee, E. S.; DiBartolomeo, D. L., Application issues for large-area electrochromic windows in commercial buildings. Solar Energy Materials and Solar Cells 2002, 71 (4), 465-491. 28. Beverina, L.; Pagani, G. A.; Sassi, M., Multichromophoric electrochromic polymers: Colour tuning of conjugated polymers through the side chain functionalization approach. Chemical Communications 2014, 50 (41), 5413-5430. 29. Cai, G.; Wang, J.; Lee, P. S., Next-generation multifunctional electrochromic devices. Accounts of Chemical Research 2016, 49 (8), 1469-1476. 30. Kobayashi, T.; Yoneyama, H.; Tamura, H., Polyaniline film-coated electrodes as electrochromic display devices. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 161 (2), 419-423. 31. Sheng, L.; Li, M.; Zhu, S.; Li, H.; Xi, G.; Li, Y.-G.; Wang, Y.; Li, Q.; Liang, S.; Zhong, K.; Zhang, S. X.-A., Hydrochromic molecular switches for water-jet rewritable paper. Nature Communications 2014, 5, 3044. 32. Bulloch, R. H.; Kerszulis, J. A.; Dyer, A. L.; Reynolds, J. R., An electrochromic painter's palette: Color mixing via solution co-processing. ACS Applied Materials Interfaces 2015, 7 (3), 1406-1412. 33. Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R., The donor–acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nature Materials 2008, 7 (10), 795-799. 34. Lampert, C. M., Large-area smart glass and integrated photovoltaics. Solar Energy Materials and Solar Cells 2003, 76 (4), 489-499. 35. Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R., Multicolored electrochromism in polymers: Structures and devices. Chemistry of Materials 2004, 16 (23), 4401-4412. 36. Mortimer, R. J.; Rosseinsky, D. R.; Monk, P. M. S., Electrochromic materials and devices. Wiley 2015. 37. Kurth, D. G.; Pitarch López, J.; Dong, W.-F., A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films. Chemical Communications 2005, (16), 2119-2121. 38. Han, F. S.; Higuchi, M.; Kurth, D. G., Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials. Advanced Materials 2007, 19 (22), 3928-3931. 39. Schott, M.; Lorrmann, H.; Szczerba, W.; Beck, M.; Kurth, D. G., State-of-the-art electrochromic materials based on metallo-supramolecular polymers. Solar Energy Materials and Solar Cells 2014, 126, 68-73. 40. Hsu, C.-Y.; Zhang, J.; Sato, T.; Moriyama, S.; Higuchi, M., Black-to-transmissive electrochromism with visible-to-near-infrared switching of a Co(II)-based metallo-supramolecular polymer for smart window and digital signage applications. ACS Applied Materials Interfaces 2015, 7 (33), 18266-18272. 41. Trefonas Iii, P.; West, R., Organosilane high polymers: Oxidation of polycyclohexylmethylsilylene. Journal of Polymer Science: Polymer Letters Edition 1985, 23 (9), 469-473. 42. Zhang, J.; Hsu, C.-Y.; Higuchi, M., Anion effects to electrochromic properties of ru-based metallo-supramolecular polymers. Journal of Photopolymer Science and Technology 2014, 27 (3), 297-300. 43. Osada, M.; Sasaki, T., Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Advanced Materials 2012, 24 (2), 210-228. 44. Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X., Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology 2016, 11 (3), 218-230. 45. Guo, S.; Dong, S., Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews 2011, 40 (5), 2644-2672. 46. Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F., 2D materials: To graphene and beyond. Nanoscale 2011, 3 (1), 20-30. 47. Su, Y.; Li, S.; Wu, D.; Zhang, F.; Liang, H.; Gao, P.; Cheng, C.; Feng, X., Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6 (9), 8349-8356. 48. Mendoza-Sánchez, B.; Gogotsi, Y., Synthesis of two-dimensional materials for capacitive energy storage. Advanced Materials 2016, 28 (29), 6104-6135. 49. Sakamoto, R.; Takada, K.; Sun, X.; Pal, T.; Tsukamoto, T.; Phua, E. J. H.; Rapakousiou, A.; Hoshiko, K.; Nishihara, H., The coordination nanosheet (CONASH). Coordination Chemistry Reviews 2016, 320-321, 118-128. 50. Sakamoto, R.; Takada, K.; Pal, T.; Maeda, H.; Kambe, T.; Nishihara, H., Coordination nanosheets (CONASHs): Strategies, structures and functions. Chemical Communications 2017, 53 (43), 5781-5801. 51. Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H., Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: A potential organic two-dimensional topological insulator. Journal of the American Chemical Society 2014, 136 (41), 14357-14360. 52. Sakamoto, R.; Hoshiko, K.; Liu, Q.; Yagi, T.; Nagayama, T.; Kusaka, S.; Tsuchiya, M.; Kitagawa, Y.; Wong, W.-Y.; Nishihara, H., A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nature Communications 2015, 6 (1), 6713. 53. Kuai, Y.; Li, W.; Dong, Y.; Wong, W.-Y.; Yan, S.; Dai, Y.; Zhang, C., Multi-color electrochromism from coordination nanosheets based on a terpyridine-Fe(II) complex. Dalton Transactions 2019, 48 (40), 15121-15126. 54. Bera, M. K.; Mori, T.; Yoshida, T.; Ariga, K.; Higuchi, M., Construction of coordination nanosheets based on tris(2,2′-bipyridine)–iron (Fe2+) complexes as potential electrochromic materials. ACS Applied Materials Interfaces 2019, 11 (12), 11893-11903. 55. Jelle, B. P.; Hagen, G., Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Journal of The Electrochemical Society 1993, 140 (12), 3560-3564. 56. de Tacconi, N. R.; Rajeshwar, K.; Lezna, R. O., Metal hexacyanoferrates:  Electrosynthesis, in situ characterization, and applications. Chemistry of Materials 2003, 15 (16), 3046-3062. 57. Husmann, S.; Zarbin, A. J. G., Multifunctional carbon nanotubes/ruthenium purple thin films: Preparation, characterization and study of application as sensors and electrochromic materials. Dalton Transactions 2015, 44 (13), 5985-5995. 58. Paolella, A.; Faure, C.; Timoshevskii, V.; Marras, S.; Bertoni, G.; Guerfi, A.; Vijh, A.; Armand, M.; Zaghib, K., A review on hexacyanoferrate-based materials for energy storage and smart windows: Challenges and perspectives. Journal of Materials Chemistry A 2017, 5 (36), 18919-18932. 59. Liao, T.-C.; Chen, W.-H.; Liao, H.-Y.; Chen, L.-C., Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles. Solar Energy Materials and Solar Cells 2016, 145, 26-34. 60. Hu, L.; Zhang, P.; Chen, Q.; Zhong, H.; Hu, X.; Zheng, X.; Wang, Y.; Yan, N., Morphology-controllable synthesis of metal organic framework Cd3[Co(CN)6]2·nH2O nanostructures for hydrogen storage applications. Crystal Growth Design 2012, 12 (5), 2257-2264. 61. Xu, L.; Zhang, G.; Chen, J.; Zhou, Y.; Yuan, G. e.; Yang, F., Spontaneous redox synthesis of Prussian blue/graphene nanocomposite as a non-precious metal catalyst for efficient four-electron oxygen reduction in acidic medium. Journal of Power Sources 2013, 240, 101-108. 62. Ahn, W.; Park, M. G.; Lee, D. U.; Seo, M. H.; Jiang, G.; Cano, Z. P.; Hassan, F. M.; Chen, Z., Hollow multivoid nanocuboids derived from ternary Ni–Co–Fe Prussian blue analog for dual-electrocatalysis of oxygen and hydrogen evolution reactions. Advanced Functional Materials 2018, 28 (28), 1802129. 63. Guo, Y.; Tang, J.; Wang, Z.; Kang, Y.-M.; Bando, Y.; Yamauchi, Y., Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494-502. 64. Yi, H.; Qin, R.; Ding, S.; Wang, Y.; Li, S.; Zhao, Q.; Pan, F., Structure and properties of Prussian blue analogues in energy storage and conversion applications. Advanced Functional Materials 2021, 31 (6), 2006970. 65. Yasuda, A.; Mori, H.; Takehana, Y.; Ohkoshi, A.; Kamiya, N., Electrochromic properties of the n-heptyl viologen-ferrocyanide system. Journal of Applied Electrochemistry 1984, 14 (3), 323-327. 66. Wadhwa, K.; Nuryyeva, S.; Fahrenbach, A. C.; Elhabiri, M.; Platas-Iglesias, C.; Trabolsi, A., Intramolecular redox-induced dimerization in a viologen dendrimer. Journal of Materials Chemistry C 2013, 1 (12), 2302-2307. 67. Jordão, N.; Cruz, H.; Branco, A.; Pinheiro, C.; Pina, F.; Branco, L. C., Switchable electrochromic devices based on disubstituted bipyridinium derivatives. RSC Advances 2015, 5 (35), 27867-27873. 68. Gélinas, B.; Das, D.; Rochefort, D., Air-Stable, Self-bleaching electrochromic device based on viologen- and ferrocene-containing triflimide redox ionic liquids. ACS Applied Materials Interfaces 2017, 9 (34), 28726-28736. 69. Mortimer, R. J.; Varley, T. S., In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen. Solar Energy Materials and Solar Cells 2012, 99, 213-220. 70. Li, M.; Wei, Y.; Zheng, J.; Zhu, D.; Xu, C., Highly contrasted and stable electrochromic device based on well-matched viologen and triphenylamine. Organic Electronics 2014, 15 (2), 428-434. 71. Sydam, R.; Ghosh, A.; Deepa, M., Enhanced electrochromic write–erase efficiency of a device with a novel viologen: 1,1′-Bis(2-(1H-indol-3-yl)ethyl)-4,4′-bipyridinium diperchlorate. Organic Electronics 2015, 17, 33-43. 72. Michaelis, L., Semiquinones, The intermediate steps of reversible organic oxidation-reduction. Chemical Reviews 1935, 16 (2), 243-286. 73. Bird, C. L.; Kuhn, A. T., Electrochemistry of the viologens. Chemical Society Reviews 1981, 10 (1), 49-82. 74. Ho, K. C.; Rukavina, T. G.; Greenberg, C. B., Tungsten oxide‐Prussian blue electrochromic system based on a proton‐conducting polymer electrolyte. Journal of The Electrochemical Society 1994, 141 (8), 2061-2067. 75. Kao, S.-Y.; Lin, Y.-S.; Chin, K.; Hu, C.-W.; Leung, M.-k.; Ho, K.-C., High contrast and low-driving voltage electrochromic device containing triphenylamine dendritic polymer and zinc hexacyanoferrate. Solar Energy Materials and Solar Cells 2014, 125, 261-267. 76. Layani, M.; Kamyshny, A.; Magdassi, S., Transparent conductors composed of nanomaterials. Nanoscale 2014, 6 (11), 5581-5591. 77. Kobayashi, N.; Hirohashi, R.; Ohno, H.; Tsuchida, E., Electrochromic characteristics for all solid state ECD composed of polymer electrolytes. Solid State Ionics 1990, 40-41, 491-494. 78. Fletcher, S.; Duff, L.; Barradas, R. G., Nucleation and charge-transfer kinetics at the viologen/SnO2 interface in electrochromic device applications. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979, 100 (1), 759-770. 79. Lin, C.-F.; Hsu, C.-Y.; Lo, H.-C.; Lin, C.-L.; Chen, L.-C.; Ho, K.-C., A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Solar Energy Materials and Solar Cells 2011, 95 (11), 3074-3080. 80. Fan, M.-S.; Kao, S.-Y.; Chang, T.-H.; Vittal, R.; Ho, K.-C., A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films. Solar Energy Materials and Solar Cells 2016, 145, 35-41. 81. Suzuki, A., Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry 1999, 576 (1), 147-168. 82. Cheng, W.-C.; Kurth, M. J., The zincke reaction. A review. Organic Preparations and Procedures International 2002, 34 (6), 585-608. 83. Yao, C.-J.; Zhong, Y.-W.; Yao, J., Five-Stage near-infrared electrochromism in electropolymerized films composed of alternating cyclometalated bisruthenium and bis-triarylamine segments. Inorganic Chemistry 2013, 52 (17), 10000-10008. 84. Yao, C.-J.; Zhong, Y.-W.; Nie, H.-J.; Abruña, H. D.; Yao, J., Near-IR electrochromism in electropolymerized films of a biscyclometalated ruthenium complex bridged by 1,2,4,5-tetra(2-pyridyl)benzene. Journal of the American Chemical Society 2011, 133 (51), 20720-20723. 85. Tsukamoto, T.; Takada, K.; Sakamoto, R.; Matsuoka, R.; Toyoda, R.; Maeda, H.; Yagi, T.; Nishikawa, M.; Shinjo, N.; Amano, S.; Iokawa, T.; Ishibashi, N.; Oi, T.; Kanayama, K.; Kinugawa, R.; Koda, Y.; Komura, T.; Nakajima, S.; Fukuyama, R.; Fuse, N.; Mizui, M.; Miyasaki, M.; Yamashita, Y.; Yamada, K.; Zhang, W.; Han, R.; Liu, W.; Tsubomura, T.; Nishihara, H., Coordination nanosheets based on terpyridine–Zinc(II) complexes: As photoactive host materials. Journal of the American Chemical Society 2017, 139 (15), 5359-5366. 86. Dong, Y.-B.; Wang, P.; Huang, R.-Q.; Smith, M. D., Syntheses and structures of Ag(I)-containing coordination polymers and Co(II)-containing supramolecular complex based on novel fulvene ligands. Inorganic Chemistry 2004, 43 (15), 4727-4739. 87. Hu, C.-W.; Sato, T.; Zhang, J.; Moriyama, S.; Higuchi, M., Multi-colour electrochromic properties of Fe/Ru-based bimetallo-supramolecular polymers. Journal of Materials Chemistry C 2013, 1 (21), 3408-3413. 88. Somani, P. R.; Radhakrishnan, S., Electrochromic materials and devices: Present and future. Materials Chemistry and Physics 2003, 77 (1), 117-133. 89. Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R., Spectral engineering in π-conjugated polymers with intramolecular donor−acceptor interactions. Accounts of Chemical Research 2010, 43 (11), 1396-1407. 90. Lakatos, A. I., Introduction. Journal of the Society for Information Display 2000, 8 (1), 1-1. 91. Fang, Q.; Chen, B., Adsorption of perchlorate onto raw and oxidized carbon nanotubes in aqueous solution. Carbon 2012, 50 (6), 2209-2219. 92. Lakshmi, J.; Vasudevan, S., Graphene—a promising material for removal of perchlorate (ClO4−) from water. Environmental Science and Pollution Research 2013, 20 (8), 5114-5124. 93. Byrne, T. M.; Gu, X.; Hou, P.; Cannon, F. S.; Brown, N. R.; Nieto-Delgado, C., Quaternary nitrogen activated carbons for removal of perchlorate with electrochemical regeneration. Carbon 2014, 73, 1-12. 94. Sauerbrey, G., Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Zeitschrift für Physik 1959, 155 (2), 206-222. 95. Hsu, C.-Y.; Liao, C.-H.;Ho, K.-C.; The roles of anion and solvent transport during the redox switching process at a poly(butyl viologen) film studied by an EQCM. Solar Energy Materials and Solar Cells 2008, 92, 194-202. 96. Schott, M.; Szczerba, W.; Posset, U.; Šurca Vuk, A.; Beck, M.; Riesemeier, H.; Thünemann, A. F.; Kurth, D. G., In operando XAFS experiments on flexible electrochromic devices based on Fe(II)-metallo-supramolecular polyelectrolytes and vanadium oxide. Solar Energy Materials and Solar Cells 2016, 147, 61-67. 97. Roy, S.; Chakraborty, C., Sub-second electrochromic switching and ultra-high coloration efficiency in halloysite nanoclay incorporated metallo-supramolecular polymer nano-hybrid based electrochromic device. Solar Energy Materials and Solar Cells 2020, 208, 110392. 98. Chen, W.-H.; Chang, T.-H.; Hu, C.-W.; Ting, K.-M.; Liao, Y.-C.; Ho, K.-C., An electrochromic device composed of metallo-supramolecular polyelectrolyte containing Cu(I) and polyaniline-carbon nanotube. Solar Energy Materials and Solar Cells 2014, 126, 219-226. 99. Wang, Y.-C.; Lu, H.-C.; Hsiao, L.-Y.; Lu, Y.-A.; Ho, K.-C., A complementary electrochromic device composed of nanoparticulated ruthenium purple and Fe(II)-based metallo-supramolecular polymer. Solar Energy Materials and Solar Cells 2019, 200, 109929. 100. Bera, M. K.; Ninomiya, Y.; Higuchi, M., Constructing alternated heterobimetallic [Fe(II)/Os(II)] supramolecular polymers with diverse solubility for facile fabrication of voltage-tunable multicolor electrochromic devices. ACS Applied Materials Interfaces 2020, 12 (12), 14376-14385. 101. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666. 102. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C., Graphene photonics and optoelectronics. Nature Photonics 2010, 4 (9), 611-622. 103. Maassen, J.; Ji, W.; Guo, H., Graphene Spintronics: The role of ferromagnetic electrodes. Nano Letters 2011, 11 (1), 151-155. 104. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 2012, 134 (42), 17396-17399. 105. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331 (6017), 568. 106. Okamoto, H.; Kumai, Y.; Sugiyama, Y.; Mitsuoka, T.; Nakanishi, K.; Ohta, T.; Nozaki, H.; Yamaguchi, S.; Shirai, S.; Nakano, H., Silicon nanosheets and their self-assembled regular stacking structure. Journal of the American Chemical Society 2010, 132 (8), 2710-2718. 107. Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T., Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. Journal of the American Chemical Society 2004, 126 (18), 5851-5858. 108. Li, H.; Wu, J.; Yin, Z.; Zhang, H., Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of Chemical Research 2014, 47 (4), 1067-1075. 109. Guo, S.; Dong, S.; Wang, E., Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4 (1), 547-555. 110. Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H., 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution Reactions. Advanced Materials 2016, 28 (10), 1917-1933. 111. Bauer, T.; Zheng, Z.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D., Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angewandte Chemie International Edition 2011, 50 (34), 7879-7884. 112. Dong, R.; Zhang, T.; Feng, X., Interface-assisted synthesis of 2D materials: Trend and challenges. Chemical Reviews 2018, 118 (13), 6189-6235. 113. Rubio-Giménez, V.; Galbiati, M.; Castells-Gil, J.; Almora-Barrios, N.; Navarro-Sánchez, J.; Escorcia-Ariza, G.; Mattera, M.; Arnold, T.; Rawle, J.; Tatay, S.; Coronado, E.; Martí-Gastaldo, C., Bottom-up fabrication of semiconductive metal–organic framework ultrathin films. Advanced Materials 2018, 30 (10), 1704291. 114. Ko, M.; Mendecki, L.; Mirica, K. A., Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chemical Communications 2018, 54 (57), 7873-7891. 115. Huang, X.; Zhang, S.; Liu, L.; Yu, L.; Chen, G.; Xu, W.; Zhu, D., Superconductivity in a Copper(II)-based coordination polymer with perfect Kagome structure. Angewandte Chemie International Edition 2018, 57 (1), 146-150. 116. Xue, Y.; Zheng, S.; Xue, H.; Pang, H., Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A 2019, 7 (13), 7301-7327. 117. Pal, T.; Kambe, T.; Kusamoto, T.; Foo, M. L.; Matsuoka, R.; Sakamoto, R.; Nishihara, H., Interfacial synthesis of electrically conducting palladium bis(dithiolene) complex nanosheet. ChemPlusChem 2015, 80 (8), 1255-1258. 118. Matsuoka, R.; Toyoda, R.; Sakamoto, R.; Tsuchiya, M.; Hoshiko, K.; Nagayama, T.; Nonoguchi, Y.; Sugimoto, K.; Nishibori, E.; Kawai, T.; Nishihara, H., Bis(dipyrrinato)metal(II) coordination polymers: Crystallization, exfoliation into single wires, and electric conversion ability. Chemical Science 2015, 6 (5), 2853-2858. 119. Hu, C.-W.; Lee, K.-M.; Chen, K.-C.; Chang, L.-C.; Shen, K.-Y.; Lai, S.-C.; Kuo, T.-H.; Hsu, C.-Y.; Huang, L.-M.; Vittal, R.; Ho, K.-C., High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen, and succinonitrile. Solar Energy Materials and Solar Cells 2012, 99, 135-140. 120. Eberhard Engel, R. M. D., Density functional theory. Springer 2011. 121. Beneto, A. J.; Jeong, J. Y.; Park, J. S., Sub-phthalocyanine-incorporated Fe(II) metallo-supramolecular polymer exhibiting blue-to-transmissive electrochromic transition with high transmittance and coloration efficiency. Dalton Transactions 2018, 47 (45), 16036-16039. 122. Hu, C.-W.; Sato, T.; Zhang, J.; Moriyama, S.; Higuchi, M., Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency. ACS Applied Materials Interfaces 2014, 6 (12), 9118-9125. 123. Arockiam, J. B.; Son, H.; Han, S. H.; Balamurugan, G.; Kim, Y.-H.; Park, J. S., Iron phthalocyanine incorporated metallo-supramolecular polymer for superior electrochromic performance with high coloration efficiency and switching stability. ACS Applied Energy Materials 2019, 2 (12), 8416-8424. 124. Roy, S.; Chakraborty, C., Metallo-macrocycle camouflages: Multicolored Electrochromism in a Fe(II) based metallo-supramolecular macrocycle utilizing the redox of metal centers and carbazole containing ligand. ACS Applied Electronic Materials 2019, 1 (12), 2531-2540. 125. Malik, N.; Elool Dov, N.; de Ruiter, G.; Lahav, M.; van der Boom, M. E., On-surface self-assembly of stimuli-responsive metallo-organic films: Automated ultrasonic spray-coating and electrochromic devices. ACS Applied Materials Interfaces 2019, 11 (25), 22858-22868. 126. Bera, M. K.; Ninomiya, Y.; Higuchi, M., Stepwise introduction of three different transition metals in metallo-supramolecular polymer for quad-color electrochromism. Communications Chemistry 2021, 4 (1), 56. 127. Vitvarová, T.; Zedník, J.; Bláha, M.; Vohlídal, J.; Svoboda, J., Effect of ethynyl and 2-thienyl substituents on the complexation of 4'-substituted 2,2':6',2''-terpyridines with Zn2+ and Fe2+ ions, and the spectroscopic properties of the ligands and formed complex species. European Journal of Inorganic Chemistry 2012, 2012 (24), 3866-3874. 128. Pai, S.; Moos, M.; Schreck, M. H.; Lambert, C.; Kurth, D. G., Green-to-red electrochromic Fe(II) metallo-supramolecular polyelectrolytes self-assembled from fluorescent 2,6-bis(2-pyridyl)pyrimidine bithiophene. Inorganic Chemistry 2017, 56 (3), 1418-1432. 129. Pai, S.; Schott, M.; Niklaus, L.; Posset, U.; Kurth, D. G., A study of the effect of pyridine linkers on the viscosity and electrochromic properties of metallo-supramolecular coordination polymers. Journal of Materials Chemistry C 2018, 6 (13), 3310-3321. 130. Liang, Y.; Strohecker, D.; Lynch, V.; Holliday, B. J.; Jones, R. A., A thiophene-containing conductive metallopolymer using an Fe(II) bis(terpyridine) core for electrochromic materials. ACS Applied Materials Interfaces 2016, 8 (50), 34568-34580. 131. Striepe, L.; Baumgartner, T., Viologens and their application as functional materials. Chemistry – A European Journal 2017, 23 (67), 16924-16940. 132. Kao, S.-Y.; Lu, H.-C.; Kung, C.-W.; Chen, H.-W.; Chang, T.-H.; Ho, K.-C., Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation. ACS Applied Materials Interfaces 2016, 8 (6), 4175-4184. 133. Lu, H.-C.; Kao, S.-Y.; Yu, H.-F.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C., Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids. ACS Applied Materials Interfaces 2016, 8 (44), 30351-30361. 134. Chang, T.-H.; Lu, H.-C.; Lee, M.-H.; Kao, S.-Y.; Ho, K.-C., Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte. Solar Energy Materials and Solar Cells 2018, 177, 75-81. 135. Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Hu, C.-W.; Ho, K.-C., An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization. Solar Energy Materials and Solar Cells 2016, 145, 61-68. 136. Bera, M. K.; Ninomiya, Y.; Yoshida, T.; Higuchi, M., Precise synthesis of alternate Fe(II)/Os(II)-based bimetallic metallo-supramolecular polymer. Macromolecular Rapid Communications 2020, 41 (1), 1900384. 137. Yang, D.; Li, Z.; He, L.; Deng, Y.; Wang, Y., Solvent free mechanochemical synthesis of Eu3+ complex and its luminescent sensing of trace water and temperature. RSC Advances 2017, 7 (24), 14314-14320. 138. Chen, G.; Huang, X.; Zhang, Y.; Sun, M.; Shen, J.; Huang, R.; Tong, M.; Long, Z.; Wang, X., Constructing POSS and viologen-linked porous cationic frameworks induced by the Zincke reaction for efficient CO2 capture and conversion. Chemical Communications 2018, 54 (86), 12174-12177."………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82918-
dc.description.abstract" 近年來,越來越多關於金屬超分子高分子材料的電致色變應用的研究出現,主要是因為其具有非常鮮明之顏色變化以及良好的電致色變性質,使得此類材料的應用潛能充足。 本研究第三章以釕金屬超分子高分子作為電致色變材料,利用酸化修飾過之碳材,可藉由此添加之碳材可幫助,達到便利之改善方法。與未經過添加的釕金屬超分子高分子對比後,可以發現前者在不影響電化學及光學的情況下,記憶效應之表現上均具有明顯的改善。為了將此經添加碳材的釕金屬超分子高分子應用於電致色變元件上,一種普魯士藍類似物材料奈米六氰鐵化鎳被選用於搭配製備出電致色變元件。釕金屬超分子高分子在作為電致色變材料時,其操作電壓較其他金屬超分子高分子大,因此選用此對電極可有效降低其操作電位窗。此元件在二極式系統0 V與 1.3 V的操作下具有57.0%之光學穿透度變化、快速的著去色響應時間( < 1s),並在具有高穩定性(5,000圈操作後仍保持其最初94.9%之光學度穿透度變化)。 本研究的第四章,近年來二維奈米片狀材料逐漸吸引注意,其規整的結構及良好的表現在各領域都有顯著的結果。其中,非共軛奈米片狀結構亦在此基礎上發展出新的方向,憑藉金屬超分子高分子本身隨著有機配體及金屬的種類不同而改變之特性,其易於修飾之分子結構及具有良好之電化學表現受矚目。本章利用2,2'-聯吡啶為配位基,合成出三向之有機配體並與鐵離子反應形成奈米片狀鐵金屬超分子高分子。在研究過程中發現其較其他鐵金屬超分子高分子有著截然不同之光學表現(粉紅色↔淡綠色),且其規整之結構與不溶於絕大多數溶液之特性大大提升其穩定性及利用條件。此材料作為電致色變材料表現出優秀的光學表現(40.4%之穿透度變化)、高著色效率(201.5 cm2/C)以及作為全固態電致色變元件保有高穩定性( 3,000圈後仍保有其最初91.6%之穿透度變化)。 本研究的第五章中,基於第三章對於金屬超分子高分子及第四章對於有機合成反應之基礎,為了彌補其在其他波段的光學吸收,增加其吸收區間,利用有機合成方式將紫精作為中間連接物,以此合成嶄新的金屬超分子高分子配體。紫精被選用為中間連接物因其與金屬超分子高分子的吸收區段不同且皆為還原著色之材料,此外,藉由將紫精作為中間連接物可使其作為薄膜態電致色變材料於應用上。在研究過程中利用苯基紫精作為中間連接物觀察其對於鐵金屬超分子高分子之影響。經過實驗的設計發現其所出現的特別的電化學現象及陰離子之影響,並思考出改進的方式,最終確定其所適合之操作條件。在三極式操作下,此電致色變材料展現全波段的吸收外,還同時具備紫精以及金屬超分子高分子的電變色表現,使其擁有多種的顏色變化(淡灰色↔紫色↔紅棕色)。此外,其在各個吸收波長上(λmax = 451, 578, 703 nm),皆具有高穿透度變化以及優秀的著色效率。在組成元件部分,乙二醇電解質限制了對電極的選擇。本研究中改以水相電解質嘗試解決此問題,然而過高的操作電位會導致副反應發生而降低穩定性。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T08:02:35Z (GMT). No. of bitstreams: 1
U0001-2807202114364800.pdf: 14301619 bytes, checksum: d63cd9ef6221cc392a9b80e14047fa80 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 I 中文摘要 II Abstract IV Table of Contents VI List of Tables XI List of Figures XII Nomenclatures XVIII Chapter 1 Introduction 1 1.1 Introduction of electrochromism 1 1.1.1 Optical contrast 1 1.1.2 Switching time 2 1.1.3 Coloration efficiency 3 1.1.4 Long-term stability 3 1.2 Introduction of electrochromic materials 4 1.2.1 Metallo-supramolecular polymers (MEPEs) 4 1.2.2 Coordination nanosheets (CONASHs) 7 1.2.3 Prussian blue and its analogues (PB PBAs) 9 1.2.4 Viologens 11 1.3 Electrochromic devices (ECDs) 12 1.3.1 Thin-film type ECDs 13 1.3.2 Solution type ECDs 14 1.3.3 Hybrid type ECDs 15 1.4 Scope of this thesis 16 Chapter 2 Experimental Procedure 19 2.1 General experimental details 19 2.1.1 Materials 19 2.1.2 Apparatus 20 2.2 Experimental detail related to Chapter 3 22 2.2.1 Preparation of Ru-MEPE thin films 22 2.2.2 Synthesis of nickel hexacyanoferrate nanoparticles (NiHCF) and preparation of NiHCF thin film 22 2.2.3 Synthesis of acid-treated DWCNT (DW), acid-treated MWCNT (MW) and preparation of different carbon addition Ru-MEPE thin film 23 2.2.4 Cell assembly 23 2.3 Experimental detail related to Chapter 4 24 2.3.1 Synthesis route of BiP and LBiP 24 2.3.2 Synthesis route of P-BiP and LP-BiP 25 2.3.3 Preparation of CONASHs by liquid-liquid interfacial technique 26 2.3.4 Cell assembly 27 2.4 Experimental detail related to Chapter 5 28 2.4.1 Synthesis route of tPyAn 28 2.4.2 Synthesis route of 1,1'-bis(4'-phenyl-2,2':6',2''-terpyridine)-4,4'-bipyridinium dichloride (tPyPV) 28 2.4.3 Synthesis route of FeV-MEPE and preparation of FeV-MEPE thin film 29 2.4.4 Cell assembly 30 Chapter 3 Improving the Memory Effect and Long-term Stability of Ru(II)-based Metallo-supramolecular by Carbon Addition 31 3.1 Introduction 31 3.2 Results and discussion 33 3.2.1 Electrochemical characterization of Ru-MEPE thin film carbon addition Ru-MEPE thin film in a three-electrode system 33 3.2.1.1 CV of Ru-MEPE thin film in a three-electrode system 33 3.2.1.2 UV-vis spectra of Ru-MEPE thin film in a three-electrode system 35 3.2.1.3 Memory effect of Ru-MEPE and carbon addition Ru-MEPE 36 3.2.1.4 Dynamic transmittance response of Ru-MEPE, Ru-MEPE-DW, and Ru-MEPE-GO 38 3.2.1.5 EQCM analysis and ion transport behavior of Ru-MEPE thin film 40 3.2.1.6 Morphology characterization of Ru-MEPE 43 3.2.1.7 EQCM analysis of Ru-MEPE, Ru-MEPE-DW and Ru-MEPE-GO 45 3.2.1.8 QCM analysis of memory effect at OCV 46 3.2.2 Electrochemical analysis of NiHCF thin film in a three-electrode system 47 3.2.2.1 CV of NiHCF thin film in a three-electrode system 47 3.2.2.2 UV-vis absorbance spectra of NiHCF thin film in a three-electrode system 48 3.2.3 Electrochemical characterization of Ru-MEPE/NiHCF ECD 48 3.2.3.1 CV of Ru-MEPE/NiHCF ECD 48 3.2.3.2 Dynamic transmittance response and long-term stability of Ru-MEPE/NiHCF ECD 49 3.3 Conclusions 52 Chapter 4 Liquid-liquid Interfacial Technique Synthesis of Fe(II)-based 1,3,5- tri(bipyridines) Coordination Nanosheets in an All-solid-state Electrochromic Device 53 4.1 Introduction 53 4.2 Compound analysis 55 4.2.1 Characterization of BiP by 1H-NMR, 13C-NMR and ESI-MS 55 4.2.2 Characterization of LBiP by 1H-NMR, 13C-NMR and ESI-MS 57 4.2.3 Characterization of P-BiP by 1H-NMR, 13C-NMR and ESI-MS 59 4.2.4 Characterization of LP-BiP by 1H-NMR, 13C-NMR and ESI-MS 61 4.3 Result and discussion 63 4.3.1 Characterizations of FeL CONASHs thin film 63 4.3.1.1 Complexation behavior between Fe2+ and organic ligands 63 4.3.1.2 Liquid-liquid interfacial technique and morphology of CONASHs 66 4.3.1.3 Morphology of FeL CONASHs deposited on ITO glass 68 4.3.1.4 Elemental compositions of FeL CONASHs 69 4.3.2 Electrochromism of FeL CONASHs thin film 71 4.3.2.1 Electrochemical analysis of FeL thin film 71 4.3.2.2 UV-vis absorbance spectra and images of FeL thin film 73 4.3.2.3 Dynamic transmittance spectra of FeL thin film 74 4.3.2.4 Coloration efficiency of FeL thin film 76 4.3.3 Electrochromism of FeL/SN/NiHCF ECD 77 4.3.3.1 Electrochromic properties of FeL/SN/NiHCF ECD 77 4.3.3.2 Long-term stability of FeL/SN/NiHCF ECD 78 4.4 Conclusions 80 Chapter 5 Fe(II)-based Metallo-supramolecular Incorporated with Aryl-viologen Spacer as Multi-color Change Electrochromic Material 81 5.1 Introduction 81 5.2 Compound analysis 83 5.2.1 Characterization of tPyAn by 1H-NMR, 13C-NMR and ESI-MS 83 5.2.2 Characterization of tPyPV by 1H-NMR and MALDI-TOF 85 5.3 Result and discuss 87 5.3.1 Electrochromic characterizations of tPyPV based ECD. 87 5.3.1.1 CV of tPyPV based ECD 87 5.3.1.2 UV-vis spectra of tPyPV based ECD 88 5.3.2 Characterizations of FeV-MEPE 88 5.3.2.1 Anion composition analysis of FeV-MEPE 88 5.3.2.2 Elemental compositions of FeV-MEPE thin film 90 5.3.2.3 Chemical structure simulation 92 5.3.2.4 Solubility and morphology of FeV-MEPE thin film 92 5.3.3 Electrochromism of FeV-MEPE thin film 94 5.3.3.1 Electrochemical analysis of FeV-MEPE thin film 94 5.3.3.2 EQCM analysis of FeV-MEPE 97 5.3.3.3 UV-vis absorbance spectra of FeV-MEPE thin film 99 5.3.3.4 CIE L*a*b* measurement and photo of FeV-MEPE thin film 100 5.3.3.5 Dynamic transmittance spectra of FeV-MEPE thin film 101 5.3.3.6 Coloration efficiency of FeV-MEPE thin film 103 5.3.4 Electrochromism of FeV-MEPE/NiHCF ECD 104 5.3.4.1 CV of FeV-MEPE/NiHCF ECD 104 5.3.4.2 UV-Vis absorbance spectra of FeV-MEPE/NiHCF ECD 105 5.4 Conclusions 107 Chapter 6 Conclusions and Suggestions 108 6.1 General conclusions 108 6.2 Suggestions 109 6.2.1 Suggestions for Chapter 3 109 6.2.2 Suggestions for Chapter 4 109 6.2.3 Suggestions for Chapter 5 110 References 111 Appendix 126"
dc.language.isoen
dc.subject金屬超分子高分子zh_TW
dc.subject電致色變元件zh_TW
dc.subject多段變色材料zh_TW
dc.subject紫精zh_TW
dc.subject非共軛奈米片狀結構zh_TW
dc.subject普魯士藍類似物zh_TW
dc.subject全波段吸收zh_TW
dc.subjectElectrochromic deviceen
dc.subjectMulti-color changeen
dc.subjectPanchromaticen
dc.subjectCoordination nanosheetsen
dc.subjectPrussian blue analogueen
dc.subjectViologenen
dc.subjectMetallo-supramolecular polymersen
dc.title以金屬超分子高分子及非共軛奈米片狀結構製備電致色變元件zh_TW
dc.titleFabrication of Electrochromic Devices based on Metallo-supramolecular Polymers and Coordination Nanosheetsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳林祈(Hsin-Tsai Liu),林正嵐(Chih-Yang Tseng)
dc.subject.keyword電致色變元件,金屬超分子高分子,紫精,普魯士藍類似物,非共軛奈米片狀結構,全波段吸收,多段變色材料,zh_TW
dc.subject.keywordElectrochromic device,Metallo-supramolecular polymers,Viologen,Prussian blue analogue,Coordination nanosheets,Panchromatic,Multi-color change,en
dc.relation.page128
dc.identifier.doi10.6342/NTU202101852
dc.rights.note未授權
dc.date.accepted2021-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2025-07-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2807202114364800.pdf
  未授權公開取用
13.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved