Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82907Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 侯欣翰(Hsin-Han Hou) | |
| dc.contributor.author | Guan-Hua Wu | en |
| dc.contributor.author | 吳冠樺 | zh_TW |
| dc.date.accessioned | 2022-11-25T08:02:19Z | - |
| dc.date.copyright | 2021-08-31 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-09 | |
| dc.identifier.citation | [1] Janakiram, C., Dye, B. A. (2020). A public health approach for prevention of periodontal disease. Periodontol 2000, 84(1), 202-214. doi:10.1111/prd.12337 [2] Oz, H. S., Puleo, D. A. (2011). Animal models for periodontal disease. J Biomed Biotechnol, 2011, 754857. doi:10.1155/2011/754857 [3] Larvin, H., Kang, J., Aggarwal, V. R., Pavitt, S., Wu, J. (2021). Risk of incident cardiovascular disease in people with periodontal disease: A systematic review and meta-analysis. Clin Exp Dent Res, 7(1), 109-122. doi:10.1002/cre2.336 [4] Liccardo, D., Cannavo, A., Spagnuolo, G., Ferrara, N., Cittadini, A., Rengo, C., Rengo, G. (2019). Periodontal disease: A risk factor for diabetes and cardiovascular disease. Int J Mol Sci, 20(6). doi:10.3390/ijms20061414 [5] Munoz Aguilera, E., Suvan, J., Buti, J., Czesnikiewicz-Guzik, M., Barbosa Ribeiro, A., Orlandi, M., . . . D'Aiuto, F. (2020). Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc Res, 116(1), 28-39. doi:10.1093/cvr/cvz201 [6] Borgnakke, W. S., Ylostalo, P. V., Taylor, G. W., Genco, R. J. (2013). Effect of periodontal disease on diabetes: Systematic review of epidemiologic observational evidence. J Periodontol, 84(4 Suppl), S135-152. doi:10.1902/jop.2013.1340013 [7] Islam, S. A., Seo, M., Lee, Y.-S., Moon, S.-S. (2015). Association of periodontitis with insulin resistance, β-cell function, and impaired fasting glucose before onset of diabetes. Endocrine Journal, 62(11), 981-989. doi: 10.1507/endocrj.EJ15-0350 [8] Tzeng, N.-S., Chung, C.-H., Yeh, C.-B., Huang, R.-Y., Yuh, D.-Y., Huang, S.-Y., . . . Chien, W.-C. (2016). Are chronic periodontitis and gingivitis associated with dementia? A nationwide, retrospective, matched-cohort study in Taiwan. Neuroepidemiology, 47, 82-93. doi: 10.1159/000449166 [9] Michaud, D. S., Liu, Y., Meyer, M., Giovannucci, E., Joshipura, K. (2008). Periodontal disease, tooth loss, and cancer risk in male health professionals: A prospective cohort study. Lancet Oncol, 9(6), 550-558. doi:10.1016/s1470-2045(08)70106-2 [10] Nwizu, N., Wactawski-Wende, J., Genco, R. J. (2020). Periodontal disease and cancer: Epidemiologic studies and possible mechanisms. Periodontol 2000, 83(1), 213-233. doi:10.1111/prd.12329 [11] Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerg Infect Dis, 8(9), 881-890. doi: 10.3201/eid0809.020063 [12] Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., Elinav, E. (2017). Dysbiosis and the immune system. Nat Rev Immunol, 17(4), 219-232. doi:10.1038/nri.2017.7 [13] Lu, M., Xuan, S., Wang, Z. (2019). Oral microbiota: A new view of body health. Food Sci Hum Wellness, 8(1), 8-15. doi:10.1016/j.fshw.2018.12.001 [14] Deo, P. N., Deshmukh, R. (2019). Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol, 23(1), 122-128. doi: 10.4103/jomfp.JOMFP_304_18 [15] Curtis, M. A., Diaz, P. I., Van Dyke, T. E. (2020). The role of the microbiota in periodontal disease. Periodontol 2000, 83(1), 14-25. doi:10.1111/prd.12296 [16] Valm, A. M. (2019). The Structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol, 431(16), 2957-2969. doi:10.1016/j.jmb.2019.05.016 [17] Tam, J., Hoffmann, T., Fischer, S., Bornstein, S., Grassler, J., Noack, B. (2018). Obesity alters composition and diversity of the oral microbiota in patients with type 2 diabetes mellitus independently of glycemic control. PLoS One, 13(10), e0204724. doi:10.1371/journal.pone.0204724 [18] Chen, B., Zhao, Y., Li, S., Yang, L., Wang, H., Wang, T., . . . Zhang, L. (2018). Variations in oral microbiome profiles in rheumatoid arthritis and osteoarthritis with potential biomarkers for arthritis screening. Sci Rep, 8(1), 17126. doi:10.1038/s41598-018-35473-6 [19] Pretorius, E., Akeredolu, O. O., Soma, P., Kell, D. B. (2017). Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Exp Biol Med (Maywood), 242(4), 355-373. doi:10.1177/1535370216681549 [20] Fak, F., Tremaroli, V., Bergstrom, G., Backhed, F. (2015). Oral microbiota in patients with atherosclerosis. Atherosclerosis, 243(2), 573-578. doi:10.1016/j.atherosclerosis.2015.10.097 [21] Jia, G., Zhi, A., Lai, P. F. H., Wang, G., Xia, Y., Xiong, Z., . . . Ai, L. (2018). The oral microbiota - a mechanistic role for systemic diseases. Br Dent J, 224(6), 447-455. doi:10.1038/sj.bdj.2018.217 [22] Xiao, E., Mattos, M., Vieira, G. H. A., Chen, S., Correa, J. D., Wu, Y., . . . Graves, D. T. (2017). Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe, 22(1), 120-128 e124. doi:10.1016/j.chom.2017.06.014 [23] Ebersole, J. L., Holt, S. C., Hansard, R., Novak, M. J. (2008). Microbiologic and immunologic characteristics of periodontal disease in Hispanic americans with type 2 diabetes. J Periodontol, 79(4), 637-646. doi:10.1902/jop.2008.070455 [24] Bajaj, J. S., Betrapally, N. S., Hylemon, P. B., Heuman, D. M., Daita, K., White, M. B., . . . Gillevet, P. M. (2015). Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology, 62(4), 1260-1271. doi:10.1002/hep.27819 [25] Huffnagle, G. B., Dickson, R. P., Lukacs, N. W. (2017). The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol, 10(2), 299-306. doi:10.1038/mi.2016.108 [26] Pu, C. Y., Seshadri, M., Manuballa, S., Yendamuri, S. (2020). The oral microbiome and lung diseases. Curr Oral Health Rep, 7(1), 79-86. doi:10.1007/s40496-020-00259-1 [27] Karbalaei, M., Keikha, M., Yousefi, B., Ali-Hassanzadeh, M., Eslami, M. (2021). Contribution of aging oral microbiota in getting neurodegenerative diseases. Rev Med Microbiol, 32(2), 90-94. doi:10.1097/mrm.0000000000000245 [28] Shoemark, D. K., Allen, S. J. (2015). The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer's disease. J Alzheimers Dis, 43(3), 725-738. doi:10.3233/JAD-141170 [29] Gavrilova, N., Gladyshev, N., Kotrova, A., Morozova, A., Soprun, L., Volovnikova, V., Shishkin, A. (2020). Role of the oral microbiota in the development of Alzheimer’s disease. Medicine, 15(4), 231-238. doi:10.21638/spbu11.2020.401 [30] Nosho, K., Sukawa, Y., Adachi, Y., Ito, M., Mitsuhashi, K., Kurihara, H., . . . Shinomura, Y. (2016). Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol, 22(2), 557-566. doi:10.3748/wjg.v22.i2.557 [31] Fan, X., Alekseyenko, A. V., Wu, J., Peters, B. A., Jacobs, E. J., Gapstur, S. M., . . . Ahn, J. (2018). Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 67(1), 120-127. doi:10.1136/gutjnl-2016-312580 [32] Duncan, L., Yoshioka, M., Chandad, F., Grenier, D. (2004). Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog, 36(6), 319-325. doi:10.1016/j.micpath.2004.02.004 [33] Zambirinis, C. P., Levie, E., Nguy, S., Avanzi, A., Barilla, R., Xu, Y., . . . Miller, G. (2015). TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med, 212(12), 2077-2094. doi:10.1084/jem.20142162 [34] Karpinski, T. M. (2019). Role of oral microbiota in cancer development. Microorganisms, 7(1). doi:10.3390/microorganisms7010020 [35] Zhang, Y., Wang, X., Li, H., Ni, C., Du, Z., Yan, F. (2018). Human oral microbiota and its modulation for oral health. Biomed Pharmacother, 99, 883-893. doi:10.1016/j.biopha.2018.01.146 [36] Jain, M., Olsen, H. E., Paten, B., Akeson, M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol, 17(1), 239. doi:10.1186/s13059-016-1103-0 [37] Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., . . . Schloss, J. A. (2008). The potential and challenges of nanopore sequencing. Nat Biotechnol, 26(10), 1146-1153. doi:10.1038/nbt.1495 [38] Venkatesan, B. M., Bashir, R. (2011). Nanopore sensors for nucleic acid analysis. Nat Nanotechnol, 6(10), 615-624. doi:10.1038/nnano.2011.129 [39] Pendleton, M., Sebra, R., Pang, A. W., Ummat, A., Franzen, O., Rausch, T., . . . Bashir, A. (2015). Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods, 12(8), 780-786. doi:10.1038/nmeth.3454 [40] Moss, E. L., Maghini, D. G., Bhatt, A. S. (2020). Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol, 38(6), 701-707. doi:10.1038/s41587-020-0422-6 [41] Ashton, P. M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S., . . . O'Grady, J. (2015). MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol, 33(3), 296-300. doi:10.1038/nbt.3103 [42] Bolisetty, M. T., Rajadinakaran, G., Graveley, B. R. (2015). Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol, 16, 204. doi:10.1186/s13059-015-0777-z [43] Hoenen, T., Groseth, A., Rosenke, K., Fischer, R. J., Hoenen, A., Judson, S. D., . . . Feldmann, H. (2016). Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerg Infect Dis, 22(2), 331-334. doi:10.3201/eid2202.151796 [44] Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., . . . Carroll, M. W. (2016). Real-time, portable genome sequencing for Ebola surveillance. Nature, 530(7589), 228-232. doi:10.1038/nature16996 [45] Faria, N. R., Sabino, E. C., Nunes, M. R., Alcantara, L. C., Loman, N. J., Pybus, O. G. (2016). Mobile real-time surveillance of Zika virus in Brazil. Genome Med, 8(1), 97. doi:10.1186/s13073-016-0356-2 [46] Downes, J., Mantzourani, M., Beighton, D., Hooper, S., Wilson, M. J., Nicholson, A., Wade, W. G. (2011). Scardovia wiggsiae sp. nov., isolated from the human oral cavity and clinical material, and emended descriptions of the genus Scardovia and Scardovia inopinata. Int J Syst Evol Microbiol, 61(Pt 1), 25-29. doi:10.1099/ijs.0.019752-0 [47] Vacharaksa, A., Suvansopee, P., Opaswanich, N., Sukarawan, W. (2015). PCR detection of Scardovia wiggsiae in combination with Streptococcus mutans for early childhood caries-risk prediction. Eur J Oral Sci, 123(5), 312-318. doi:10.1111/eos.12208 [48] Colombo, N. H., Kreling, P. F., Ribas, L. F. F., Pereira, J. A., Kressirer, C. A., Klein, M. I., . . . Duque, C. (2017). Quantitative assessment of salivary oral bacteria according to the severity of dental caries in childhood. Arch Oral Biol, 83, 282-288. doi:10.1016/j.archoralbio.2017.08.006 [49] Richards, V. P., Alvarez, A. J., Luce, A. R., Bedenbaugh, M., Mitchell, M. L., Burne, R. A., Nascimento, M. M. (2017). Microbiomes of site-specific dental plaques from children with different caries status. Infect Immun, 85(8). doi:10.1128/IAI.00106-17 [50] Tanner, A. C. R., Kressirer, C. A., Rothmiller, S., Johansson, I., Chalmers, N. I. (2018). The caries microbiome: implications for reversing dysbiosis. J Adv Dent Res, 29(1), 78-85. doi: 10.1177/0022034517736496 [51] Tanner, A. C., Sonis, A. L., Lif Holgerson, P., Starr, J. R., Nunez, Y., Kressirer, C. A., . . . Johansson, I. (2012). White-spot lesions and gingivitis microbiotas in orthodontic patients. J Dent Res, 91(9), 853-858. doi:10.1177/0022034512455031 [52] Kameda, M., Abiko, Y., Washio, J., Tanner, A. C. R., Kressirer, C. A., Mizoguchi, I., Takahashi, N. (2020). Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Front Microbiol, 11, 479. doi:10.3389/fmicb.2020.00479 [53] Balhaddad, A. A., Ayoub, H. M., Gregory, R. L. (2020). In-vitro model of Scardovia wiggsiae biofilm formation and effect of nicotine. Braz Dent J, 31(5), 471-476. doi:10.1590/0103-6440202003207 [54] Xiong, Y. Q., Bensing, B. A., Bayer, A. S., Chambers, H. F., Sullam, P. M. (2008). Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microb Pathog, 45(4), 297-301. doi:10.1016/j.micpath.2008.06.004 [55] Cahill, T. J., Prendergast, B. D. (2016). Infective endocarditis. Lancet, 387(10021), 882-893. doi:10.1016/s0140-6736(15)00067-7 [56] Mosailova, N., Truong, J., Dietrich, T., Ashurst, J. (2019). Streptococcus gordonii: a rare cause of infective endocarditis. Case Rep Infect Dis, 2019, 7127848. doi:10.1155/2019/7127848 [57] C. Y. LOO, D. A. C., GANESHKUMAR, N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol, 182(5), 1374-1382. doi: 10.1128/JB.182.5.1374-1382.2000 [58] Park, O. J., Kwon, Y., Park, C., So, Y. J., Park, T. H., Jeong, S., . . . Han, S. H. (2020). Streptococcus gordonii: pathogenesis and host response to its cell wall components. Microorganisms, 8(12). doi:10.3390/microorganisms8121852 [59] Pasupuleti, M. K., Molahally, S. S., Salwaji, S. (2016). Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives. J Indian Soc Periodontol, 20(4), 360-368. doi:10.4103/0972-124X.186931 [60] Wang, S., Liu, Y., Fang, D., Shi, S. (2007). The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis, 13(6), 530-537. doi:10.1111/j.1601-0825.2006.01337.x [61] Abe, T., Hajishengallis, G. (2013). Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods, 394(1-2), 49-54. doi:10.1016/j.jim.2013.05.002 [62] Struillou, X., Boutigny, H., Soueidan, A., Layrolle, P. (2010). Experimental animal models in periodontology: A review. The Open Dentistry Journal, 4, 37-47. doi:10.2174/1874210601004010037 [63] Marchesan, J., Girnary, M. S., Jing, L., Miao, M. Z., Zhang, S., Sun, L., . . . Jiao, Y. (2018). An experimental murine model to study periodontitis. Nat Protoc, 13(10), 2247-2267. doi:10.1038/s41596-018-0035-4 [64] Chadwick, J. W., Glogauer, M. (2020). Robust ligature-induced model of murine periodontitis for the evaluation of oral neutrophils. J Vis Exp(155). doi:10.3791/59667 [65] De Molon, R. S., De Avila, E. D., Boas Nogueira, A. V., Chaves De Souza, J. A., Avila-Campos, M. J., De Andrade, C. R., Cirelli, J. A. (2014). Evaluation of the host response in various models of induced periodontal disease in mice. J Periodontol, 85(3), 465-477. doi:10.1902/jop.2013.130225 [66] Schwartjzos, Z., Goultschin, J., Dean, D. D., Boyan, B. D. (1997). Mechanisms of alveolar bone destruction in periodontitis. Periodontol 2000, 4, 158-172. doi: 10.1111/j.1600-0757.1997.tb00196.x [67] Queiroz-Junior, C. M., Pacheco, C. M., Fonseca, A. H., Klein, A., Caliari, M. V., de Francischi, J. N. (2009). Myeloperoxidase content is a marker of systemic inflammation in a chronic condition: the example given by the periodontal disease in rats. Mediators Inflamm, 2009, 760837. doi:10.1155/2009/760837 [68] Strzepa, A., Pritchard, K. A., Dittel, B. N. (2017). Myeloperoxidase: A new player in autoimmunity. Cell Immunol, 317, 1-8. doi:10.1016/j.cellimm.2017.05.002 [69] Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys, 640, 47-52. doi:10.1016/j.abb.2018.01.004 [70] Davies, M. J., Hawkins, C. L. (2020). The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid Redox Signal, 32(13), 957-981. doi:10.1089/ars.2020.8030 [71] Khan, A. A., Alsahli, M. A., Rahmani, A. H. (2018). Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel), 6(2). doi:10.3390/medsci6020033 [72] MIYASAKI, K. T., ZAMBO, J. J., JONES, C. A., WILSON, M. E. (1987). Role of high-avidity binding of human neutrophil myeloperoxidase in the killing of Actinobacillus actinomycetemcomitans. Infect Immun, 55(5), 1029-1036 [73] Oddie, G. W., Schenk, G., Angel, N. Z., Walsh, N., Guddat, L. W., Jersey, J. D., . . . Hume, D. A. (2000). Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone, 27(5), 575-584 [74] Hayman, A. R. (2008). Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity, 41(3), 218-223. doi:10.1080/08916930701694667 [75] Ek-Rylander, B., Andersson, G. (2010). Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase. Exp Cell Res, 316(3), 443-451. doi:10.1016/j.yexcr.2009.10.019 [76] Boorsma, C. E., van der Veen, T. A., Putri, K. S. S., de Almeida, A., Draijer, C., Mauad, T., . . . Melgert, B. N. (2017). A potent tartrate resistant acid phosphatase inhibitor to study the function of TRAP in alveolar macrophages. Sci Rep, 7(1), 12570. doi:10.1038/s41598-017-12623-w [77] Hayman, A. R., Cox, T. M. (2003). Tartrate-resistant acid phosphatase knockout mice. J Bone Miner Res, 18, 1905-1907. doi: 10.1359/jbmr.2003.18.10.1905 [78] Roberts, H. C., Knott, L., Avery, N. C., Cox, T. M., Evans, M. J., Hayman, A. R. (2007). Altered collagen in tartrate-resistant acid phosphatase (TRAP)-deficient mice: A role for TRAP in bone collagen metabolism. Calcif Tissue Int, 80(6), 400-410. doi:10.1007/s00223-007-9032-2 [79] Hollberg, K., Nordahl, J., Hultenby, K., Mengarelli-Widholm, S., Andersson, G., Reinholt, F. P. (2005). Polarization and secretion of cathepsin K precede tartrate-resistant acid phosphatase secretion to the ruffled border area during the activation of matrix-resorbing clasts. J Bone Miner Metab, 23(6), 441-449. doi:10.1007/s00774-005-0626-3 [80] Bune, A. J., Hayman, A. R., Evans, M. J., Cox, T. M. (2001). Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage infammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology, 102, 102-113. [81] Mihara, M., Hashizume, M., Yoshida, H., Suzuki, M., Shiina, M. (2012). IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond), 122(4), 143-159. doi:10.1042/CS20110340 [82] Rose-John, S. (2012). IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci, 8(9), 1237-1247. doi:10.7150/ijbs.4989 [83] Tanaka, T., Narazaki, M., Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 6(10), a016295. doi:10.1101/cshperspect.a016295 [84] Deshmane, S. L., Kremlev, S., Amini, S., Sawaya, B. E. (2009). Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res, 29, 313-326. doi:10.1089/jir.2008.0027 [85] Yadav, A., Saini, V., Arora, S. (2010). MCP-1: Chemoattractant with a role beyond immunity: A review. Clinica Chimica Acta, 411, 1570-1579. doi:10.1016/j.cca.2010.07.006 [86] Gu, L., Tseng, S., Horner, R. M., Tam, C., Loda, M., Rollins, B. J. (2000). Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature, 404, 407-411. doi: 10.1038/35006097 [87] Driscoll, K. E. (2000). TNFa and MIP-2: role in particle-induced inflammation and regulation by oxidative stress. Toxicol Lett, 112-113, 177-184. doi: 10.1016/s0378-4274(99)00282-9 [88] Palladino, M. A., Bahjat, F. R., Theodorakis, E. A., Moldawer, L. L. (2003). Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov, 2(9), 736-746. doi:10.1038/nrd1175 [89] Horssen, R. v., Hagen, T. L. M. t., Eggermont, A. M. M. (2006). TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist, 11, 397-408. doi: 10.1634/theoncologist.11-4-397 [90] Mukhopadhyay, S., Hoidal, J. R., Mukherjee, T. K. (2006). Role of TNFalpha in pulmonary pathophysiology. Respir Res, 7, 125. doi:10.1186/1465-9921-7-125 [91] Young, H. A., Hodge, D. L. (2003). Interferon-γ. Encyclopedia of Hormones, 391-397. [92] Lopez-Castejon, G., Brough, D. (2011). Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev, 22(4), 189-195. doi:10.1016/j.cytogfr.2011.10.001 [93] Weber, A., Wasiliew, P., Kracht, M. (2010). Interleukin-1β (IL-1β ) processing pathway. Sci Signal, 3(105), cm2. doi: 10.1126/scisignal.3105cm2 [94] Netea, M. G., Simon, A., van de Veerdonk, F., Kullberg, B. J., Van der Meer, J. W., Joosten, L. A. (2010). IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog, 6(2), e1000661. doi:10.1371/journal.ppat.1000661 [95] Qin, C. C., Liu, Y. N., Hu, Y., Yang, Y., Chen, Z. (2017). Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol, 23(17), 3043-3052. doi:10.3748/wjg.v23.i17.3043 [96] De Filippo, K., Henderson, R. B., Laschinger, M., Hogg, N. (2008). Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol, 180(6), 4308-4315. doi:10.4049/jimmunol.180.6.4308 [97] De Filippo, K., Dudeck, A., Hasenberg, M., Nye, E., van Rooijen, N., Hartmann, K., . . . Hogg, N. (2013). Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood, 121(24), 4930-4937. doi:10.1182/blood-2013-02-486217 [98] Bossu, M., Selan, L., Artini, M., Relucenti, M., Familiari, G., Papa, R., . . . Polimeni, A. (2020). Characterization of Scardovia wiggsiae biofilm by original scanning electron microscopy protocol. Microorganisms, 8(6). doi:10.3390/microorganisms8060807 [99] Gatej, S. M., Marino, V., Bright, R., Fitzsimmons, T. R., Gully, N., Zilm, P., . . . Bartold, P. M. (2018). Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol, 45(2), 204-212. doi:10.1111/jcpe.12838 [100] Matsuda, S., Movila, A., Suzuki, M., Kajiya, M., Wisitrasameewong, W., Kayal, R., . . . Kawai, T. (2016). A novel method of sampling gingival crevicular fluid from a mouse model of periodontitis. J Immunol Methods, 438, 21-25. doi:10.1016/j.jim.2016.08.008 [101] Jakubovics, N. S., Gill, S. R., Vickerman, M. M., Kolenbrander, P. E. (2008). Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol, 66(3), 637-644. doi:10.1111/j.1574-6941.2008.00585.x [102] Boström, E. A., Kindstedt, E., Sulniute, R., Palmqvist, P., Majster, M., Holm, C. K., . . . Lundberg, P. (2015). Increased eotaxin and MCP-1 levels in serum from individuals with periodontitis and in human gingival fibroblasts exposed to pro- inflammatory cytokines. PLoS One, 10(8), e0134608. doi:10.1371/journal.pone.0134608 [103] Nisha, K. J., Suresh, A., Anilkumar, A., Padmanabhan, S. (2018). MIP-1a and MCP-1 as salivary biomarkers in periodontal disease. Saudi Dental Journal, 30, 292-298. doi:10.1016/j.sdentj.2018.07.002 [104] Huang, R., Li, M., Gregory, R. L. (2015). Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity. Arch Oral Biol, 60(8), 1083-1090. doi:10.1016/j.archoralbio.2015.04.011 [105] Wagenknecht, D. R., BalHaddad, A. A., Gregory, R. L. (2018). Effects of nicotine on oral microorganisms, human tissues, and the interactions between them. Curr Oral Health Rep, 5(1), 78-87. doi:10.1007/s40496-018-0173-3 [106] Baek, O., Zhu, W., Kim, H. C., Lee, S. W. (2012). Effects of nicotine on the growth and protein expression of Porphyromonas gingivalis. J Microbiol, 50(1), 143-148. doi:10.1007/s12275-012-1212-8 [107] Bagaitkar, J., Demuth, D. R., Daep, C. A., Renaud, D. E., Pierce, D. L., Scott, D. A. (2010). Tobacco upregulates P. gingivalis fimbrial proteins which induce TLR2 hyposensitivity. PLoS One, 5(5), e9323. doi:10.1371/journal.pone.0009323 [108] Bagaitkar, J., Daep, C. A., Patel, C. K., Renaud, D. E., Demuth, D. R., Scott, D. A. (2011). Tobacco smoke augments Porphyromonas gingivalis-Streptococcus gordonii biofilm formation. PLoS One, 6(11), e27386. doi:10.1371/journal.pone.0027386 [109] Buduneli, N. (2021). Environmental factors and periodontal microbiome. Periodontol 2000, 85(1), 112-125. doi:10.1111/prd.12355 [110] Nauciel, C. L. A. C. (1998). Production of interleukin-12 by murine macrophages in response to bacterial peptidoglycan. Infect Immun, 66(10), 4947-4949. doi: 10.1128/IAI.66.10.4947-4949.1998 [111] J. E. Wang, P. F. Jørgensen, M. Almlöf, C. Thiemermann, S. J. Foster, A. O. Aasen, and R. Solberg. (2000). Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect Immun, 68(7), 3965-3970. doi: 10.1128/IAI.68.7.3965-3970.2000 [112] Anitha Balaji, V. S., K. Mahalakshmi, Mohan Valiatthan. (2019). Gram-positive microorganisms in periodontitis. Drug Invent Today, 12(6), 1199-1203. [113] Espen A. Ellingsen, S. M., Trude H. Flo, Andra B. Schromm, Thomas Hartung, Christoph Thiemermann, Terje Espevik, Douglas T. Golenbock, Simon J. Foster, Rigmor Solberg, Ansgar O. Aasen, Jacob E. Wang. (2002). Induction of cytokine production in human T cells and monocytes by highly purified lipoteichoic acid: involvement of Toll-like receptors and CD14. Med Sci Monit, 8(5), 149-156. [114] Tietze, K., Dalpke, A., Morath, S., Mutters, R., Heeg, K., Nonnenmacher, C. (2006). Differences in innate immune responses upon stimulation with gram-positive and gram-negative bacteria. J Periodontal Res, 41(5), 447-454. doi:10.1111/j.1600-0765.2006.00890.x [115] L Räsänen, H Arvilommi. (1981). Cell walls, peptidoglycans, and teichoic acids of gram-positive bacteria as polyclonal inducers and immunomodulators of proliferative and lymphokine responses of human B and T lymphocytes. Infect Immun, 34(3): 712–717. doi:10.1128/iai.34.3.712-717.1981 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82907 | - |
| dc.description.abstract | 牙齦炎及牙周炎統稱為牙周病,影響已開發國家及開發中國家將近一半的人口,根據流行病學研究,牙周病不僅盛行於老年人口,同時對成人甚至青少年都會造成影響,除此之外,牙周病還與許多全身性疾病相關,例如糖尿病、心血管疾病、類風濕性關節炎。牙周病會導致牙齦萎縮、齒槽骨流失、甚至牙齒掉落,進而衰減咀嚼功能、生活品質及自尊。牙周病是一個由於口腔微生物及宿主免疫間致病性交互作用而引起的發炎性疾病,雖然牙周病的治療已經相當完善,但隨著牙周病的高普及率及人口老年化,完整解釋與微生物相關的牙周病發病機制變得十分迫切。過去研究指出,人體牙齦下的牙菌斑中含有很多牙周致病菌,然而,由於細菌間複雜的行為以及傳統培養及定序方法的限制,藉由新的科技及實驗方法去找到新的牙周致病菌變得刻不容緩。在本研究中,我們使用全新的第三代定序系統— Oxford Nanopore Technology (ONT)定序系統去分析國立台大醫院中非牙周病患者及牙周病患者口內微生物的全基因組序列,以及辨識他們牙齦下牙菌斑細菌的物種組成,我們的系統不僅確認已知牙周致病菌在牙周病患者的牙齦下牙菌斑中增加,也發現了一個新的牙周病相關致病菌—Scardovia wiggsiae (S. wiggsiae)—其在牙周病患者口中相較非牙周病患者多了31.8倍,因此我們假設我們新篩選出的牙周病相關致病菌S. wiggsiae會介導牙周病的發病機制。S. wiggsiae是革蘭氏陽性的絕對性厭氧菌,從牙本質蛀牙病變處分離出來,S. wiggsiae被視為蛀牙致病菌,且和兒童早期蛀牙有高度相關性。為了瞭解S. wiggsiae在牙周病中扮演的角色,我們在C57BL/6老鼠的上顎第一大臼齒及第二大臼齒間放多股線九天,去建立一個牙周病的動物模型,並在放線隔天,於老鼠牙齦處接種S. wiggsiae及一株牙齦下牙菌斑中早期定殖的細菌S. gordonii,去評估S. wiggsiae對於牙周病的致病力,且為了評估因S. wiggsiae引起的牙周病表現型的嚴重程度,我們蒐集牙齦溝液後,以多重分析去觀察GCF中免疫細胞激素的變化;蒐集上顎組織後,以微米電腦斷層掃描技術、蘇木精-伊紅染色及免疫組織染色去觀察免疫細胞浸潤以及齒槽骨流失的狀況。根據免疫組織染色及抗酒石酸磷酸酶試劑染色的結果,我們發現S. wiggsiae顯著地誘導蝕骨細胞的活化以及嗜中性白血球的浸潤,而這也可能是牙周病中S. wiggsiae與宿主組織之間的交互作用及致病機制。憑藉著我們完善的ONT定序系統及牙周病動物模型,我們可以辨認出更多新的牙周致病菌,甚至益生菌,在未來,這些牙周致病菌可能會是牙周病的早期診斷生物標記物以及治療策略。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T08:02:19Z (GMT). No. of bitstreams: 1 U0001-3007202114235300.pdf: 74033437 bytes, checksum: 5a2a61c710fb70acc77cb3822c4a0b7c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i Abbreviation ii 中文摘要 iv Abstract v Contents vii List of Tables ix List of Figures x Introduction 1 1.1 Periodontal disease 1 1.2 Oral microbiota 3 1.3 Nanopore sequencing 8 1.4 ONT system in PD 10 1.5 Scardovia wiggsiae 12 1.6 Streptococcus gordonii 13 1.7 Animal experiment 15 1.1.1 Animal model 15 1.1.2 Analyses 16 2. Material and methods 23 2.1 Bacteria culture 23 2.1.1 S. wiggsiae 23 2.1.2 S.gordonii 24 2.2 Animal model 25 2.3 Micro computed tomography (Micro-CT) 27 2.4 Histological analysis 27 2.4.1 Hematoxylin and eosin staining (H E stain) 27 2.4.2 Immunohistochemistry stain (IHC stain) 28 2.4.3 Tartrate-resistant acid phosphatase (TRAP) staining 29 2.5 Gingival crevicular fluid collection 30 2.6 Multiplex analysis 30 2.7 Statistical analysis 30 3. Results 31 3.1 Effects of S. wiggsiae on bone resorption 31 3.2 Effects of S. wiggsiae on neutrophil infiltration 31 3.3 Effects of S. wiggsiae on osteoclast activation 32 3.4 Effects of S. wiggsiae on pro-inflammatory cytokines in GCF 32 4. Discussion 33 5. Conclusion 40 6. Tables and Figures 41 7. Reference 63 | |
| dc.language.iso | en | |
| dc.subject | 口腔微生物 | zh_TW |
| dc.subject | 牙周病 | zh_TW |
| dc.subject | 第三代定序 | zh_TW |
| dc.subject | Scardovia wiggsiae | zh_TW |
| dc.subject | Periodontal disease | en |
| dc.subject | Nanopore sequencing system | en |
| dc.subject | Scardovia wiggsiae | en |
| dc.subject | Oral microbiota | en |
| dc.title | Scardovia wiggsiae是一個嶄新牙周病相關致病菌 | zh_TW |
| dc.title | Scardovia wiggsiae is a novel periodontal disease-associated pathogen | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳漪紋(Hsin-Tsai Liu),劉正哲(Chih-Yang Tseng) | |
| dc.subject.keyword | 牙周病,第三代定序,Scardovia wiggsiae,口腔微生物, | zh_TW |
| dc.subject.keyword | Periodontal disease,Nanopore sequencing system,Scardovia wiggsiae,Oral microbiota, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202101933 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-07-31 | - |
| Appears in Collections: | 口腔生物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-3007202114235300.pdf Restricted Access | 72.3 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
