Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82889
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻(Chih-Hung Chen)
dc.contributor.authorPai-Chi Hsuen
dc.contributor.author許栢淇zh_TW
dc.date.accessioned2022-11-25T08:01:51Z-
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-16
dc.identifier.citationM Stanley Whittingham. Electrical energy storage and intercalation chemistry. Science, 192(4244):1126–1127, 1976. Akshaya K Padhi, Kirakodu S Nanjundaswamy, and John B Goodenough. Phosphoolivines as positive ­electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 144(4):1188, 1997. Akira Yoshino. The birth of the lithium­ion battery. Angewandte Chemie International Edition, 51(24):5798–5800, 2012. Ramstrom. Scientifc background on the nobel prize in chemistry 2019. The Royal Swedish Academy of Sciences, pages 1–14, 2019. Xue­Qiang Zhang, Xin­Bing Cheng, Xiang Chen, Chong Yan, and Qiang Zhang. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials, 27(10):1605989, 2017. Xin­Bing Cheng, Rui Zhang, Chen­Zi Zhao, Fei Wei, Ji­Guang Zhang, and Qiang Zhang. A review of solid electrolyte interphases on lithium metal anode. Advanced science, 3(3):1500213, 2016. Xin­Bing Cheng, Rui Zhang, Chen­Zi Zhao, and Qiang Zhang. Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 117(15):10403–10473, 2017. Wu Xu, Jiulin Wang, Fei Ding, Xilin Chen, Eduard Nasybulin, Yaohui Zhang, and Ji Guang Zhang. Lithium metal anodes for rechargeable batteries. Energy Environmental Science, 7(2):513–537, 2014. Chong Yan, Yu­Xing Yao, Xiang Chen, Xin­Bing Cheng, Xue­Qiang Zhang, Jia­Qi Huang, and Qiang Zhang. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high­voltage lithium metal batteries. Angewandte Chemie International Edition, 57(43):14055–14059, 2018. J­M Tarascon and Michel Armand. Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer­reviewed research and review articles from Nature Publishing Group, pages 171–179, 2011. Feng Hao, Ankit Verma, and Partha P Mukherjee. Mechanistic insight into dendrite SEI interactions for lithium metal electrodes. Journal of Materials Chemistry A, 6(40):19664–19671, 2018. Kai Liu, Allen Pei, Hye Ryoung Lee, Biao Kong, Nian Liu, Dingchang Lin, Yayuan Liu, Chong Liu, Po­chun Hsu, Zhenan Bao, et al. Lithium metal anodes with an adaptive“solid­liquid'interfacial protective layer. Journal of the American Chemical Society, 139(13):4815–4820, 2017. Ming Liu, Zhu Cheng, Kun Qian, Tomas Verhallen, Chao Wang, and Marnix Wagemaker. Efficient Li­metal plating/stripping in carbonate electrolytes using a LiNO3­–polymer electrolyte, monitored by operando neutron depth profiling. Chemistry of Materials, 31(12):4564–4574, 2019. Xiaosong Xiong, Qi Zhou, Yusong Zhu, Yuhui Chen, Lijun Fu, Lili Liu, Nengfei Yu, Yuping Wu, and Teunis van Ree. In pursuit of a dendrite­free electrolyte/electrode interface on lithium metal anodes: a minireview. Energy Fuels, 34(9):10503–10512, 2020. Qiuwei Shi, Yiren Zhong, Min Wu, Hongzhi Wang, and Hailiang Wang. Highcapacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proceedings of the National Academy of Sciences, 115(22):5676–5680, 2018. Yayuan Liu, Dingchang Lin, Yuzhang Li, Guangxu Chen, Allen Pei, Oliver Nix, Yanbin Li, and Yi Cui. Solubility­mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nature communications, 9(1):1–10, 2018. Chunqing Zhang, Qing Lan, Yutao Liu, Jiliang Wu, Huixia Shao, Hui Zhan, and Yifu Yang. A dual­layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME­LiNO3 for dendrite­free lithium metal anode. Electrochimica Acta, 306:407–419, 2019. Jang­Yeon Hwang, Seong­Jin Park, Chong S Yoon, and Yang­Kook Sun. Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy Environmental Science, 12(7):2174–2184, 2019. Vincent Giordani, Wesley Walker, Vyacheslav S Bryantsev, Jasim Uddin, Gregory V Chase, and Dan Addison. Synergistic effect of oxygen and LiNO3 on the interfacial stability of lithium metal in a Li/O2 battery. Journal of The Electrochemical Society, 160(9):A1544, 2013. Anna Jozwiuk, Balázs B Berkes, Thomas Weiß, Heino Sommer, Jürgen Janek, and Torsten Brezesinski. The critical role of lithium nitrate in the gas evolution of lithium sulfur batteries. Energy Environmental Science, 9(8):2603–2608, 2016. Rosy, Sabine Akabayov, Michal Leskes, and Malachi Noked. Bifunctional role of LiNO3 in Li–O2 batteries: Deconvoluting surface and catalytic effects. ACS applied materials interfaces, 10(35):29622–29629, 2018. Yulin Jie, Xiaojing Liu, Zhanwu Lei, Shiyang Wang, Yawei Chen, Fanyang Huang, Ruiguo Cao, Genqiang Zhang, and Shuhong Jiao. Enabling high­voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angewandte Chemie, 132(9):3533–3538, 2020. Adri CT Van Duin, Siddharth Dasgupta, Francois Lorant, and William A Goddard. ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409, 2001. Samuel Bertolini and Perla B Balbuena. Buildup of the solid electrolyte interphase on lithium­metal anodes: reactive molecular dynamics study. The Journal of Physical Chemistry C, 122(20):10783–10791, 2018. Sang­Pil Kim, Adri CT Van Duin, and Vivek B Shenoy. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li­ion batteries: A molecular dynamics study. Journal of Power Sources, 196(20):8590–8597, 2011. Dmitry Bedrov, Grant D Smith, and Adri CT van Duin. Reactions of singly­-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. The Journal of Physical Chemistry A, 116(11):2978–2985, 2012. Hasan Metin Aktulga, Joseph C Fogarty, Sagar A Pandit, and Ananth Y Grama. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 38(4­5):245–259, 2012. Steve Plimpton. Fast parallel algorithms for short­range molecular dynamics. Journal of computational physics, 117(1):1–19, 1995. Alexander Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012, 2009. Md Mahbubul Islam, Vyacheslav S Bryantsev, and Adri CT Van Duin. ReaxFF reactive force field simulations on the influence of teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium­sulfur batteries. Journal of the Electrochemical Society, 161(8):E3009, 2014. Gerhard H Wrodnigg, Jürgen O Besenhard, and Martin Winter. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes? Journal of power sources, 97:592–594, 2001. ER Logan, Erin M Tonita, KL Gering, Lin Ma, Michael KG Bauer, Jing Li, LY Beaulieu, and JR Dahn. A study of the transport properties of ethylene carbonatefree Li electrolytes. Journal of The Electrochemical Society, 165(3):A705, 2018. Ruben­Simon Kühnel, David Reber, and Corsin Battaglia. Perspective–electrochemical stability of water­in­salt electrolytes. Journal of The Electrochemical Society, 167(7):070544, 2020. Leandro Martínez, Ricardo Andrade, Ernesto G Birgin, and José Mario Martínez. Packmol: a package for building initial configurations for molecular dynamic simulations. Journal of computational chemistry, 30(13):2157–2164, 2009. Tingzheng Hou, Guang Yang, Nav Nidhi Rajput, Julian Self, Sang­Won Park, Jagjit Nanda, and Kristin A Persson. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy, 64:103881, 2019. Tamar Schlick. Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide, volume 21. Springer Science Business Media, 2010. Xiang Chen, Ting­Zheng Hou, Bo Li, Chong Yan, Lin Zhu, Chao Guan, Xin­Bing Cheng, Hong­Jie Peng, Jia­Qi Huang, and Qiang Zhang. Towards stable lithiumsulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Materials, 8:194–201, 2017. Yannick J Bomble. Amsterdam density functional 2005 scientific computing and modelling nv, vrije universiteit, theoretical chemistry, de boelelaan 1083, 1081 hv amsterdam, the netherlands. http://www. scm. com. see web site for pricing information., 2006. Richard Payne and Ignatius E Theodorou. Dielectric properties and relaxation in ethylene carbonate and propylene carbonate. The Journal of Physical Chemistry, 76(20):2892–2900, 1972. Sandeep K Reddy and Sundaram Balasubramanian. Liquid dimethyl carbonate: a quantum chemical and molecular dynamics study. The Journal of Physical Chemistry B, 116(51):14892–14902, 2012. Kang­Seop Yun, Sung Jin Pai, Byung Chul Yeo, Kwang­Ryeol Lee, Sun­Jae Kim, and Sang Soo Han. Simulation protocol for prediction of a solid­electrolyte interphase on the silicon­based anodes of a lithium­ion battery: ReaxFF reactive force field. The journal of physical chemistry letters, 8(13):2812–2818, 2017. Martha A Gialampouki, Javad Hashemi, and Andrew A Peterson. The electrochemical mechanisms of solid–electrolyte interphase formation in lithium­based batteries. The Journal of Physical Chemistry C, 123(33):20084–20092, 2019. Kang Xu, Yiufai Lam, Sheng S Zhang, T Richard Jow, and Timothy B Curtis. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. The Journal of Physical Chemistry C, 111(20):7411–7421, 2007. Jennifer Jones, Mérièm Anouti, Magaly Caillon­Caravanier, Patrick Willmann, Pierre Yves Sizaret, and Daniel Lemordant. Solubilization of SEI lithium salts in alkylcarbonate solvents. Fluid phase equilibria, 305(2):121–126, 2011. Xue­Qiang Zhang, Tao Li, Bo­Quan Li, Rui Zhang, Peng Shi, Chong Yan, Jia­Qi Huang, and Qiang Zhang. A sustainable solid electrolyte interphase for high­ energy density lithium metal batteries under practical conditions. Angewandte Chemie, 132(8):3278–3283, 2020. Yifang Zhang, Yiren Zhong, Shuquan Liang, Bo Wang, Xi Chen, and Hailiang Wang. Formation and evolution of lithium metal anode–carbonate electrolyte interphases. ACS Materials Letters, 1(2):254–259, 2019. Xue­Qiang Zhang, Chen­Zi Zhao, Jia­Qi Huang, and Qiang Zhang. Recent advances in energy chemical engineering of next­generation lithium batteries. Engineering, 4(6):831–847, 2018. Jiale Fu, Xiao Ji, Ji Chen, Long Chen, Xiulin Fan, Daobin Mu, and Chunsheng Wang. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angewandte Chemie, 132(49):22378–22385, 2020. Anthony K Rappe and William A Goddard III. Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95(8):3358–3363, 1991. Salatan Duangdangchote, Atiweena Krittayavathananon, Nutthaphon Phattharasupakun, and Montree Sawangphruk. The protection of lithium metal enabled by LiNO3 for lithium–sulfur batteries. ECS Transactions, 97(7):827, 2020. Yixuan Wang, Shinichiro Nakamura, Makoto Ue, and Perla B Balbuena. Theoretical studies to understand surface chemistry on carbon anodes for lithium­ion batteries: reduction mechanisms of ethylene carbonate. Journal of the American Chemical Society, 123(47):11708–11718, 2001. Zhe Liu, Peng Lu, Qinglin Zhang, Xingcheng Xiao, Yue Qi, and Long­Qing Chen. A bottom­up formation mechanism of solid electrolyte interphase revealed by isotopeassisted time­of­flight secondary ion mass spectrometry. The journal of physical chemistry letters, 9(18):5508–5514, 2018. Axel D Becke. A new mixing of hartree–fock and local density­functional theories. The Journal of chemical physics, 98(2):1372–1377, 1993. Chengteh Lee, Weitao Yang, and Robert G Parr. Development of the colle­salvetti correlation­energy formula into a functional of the electron density. Physical review B, 37(2):785, 1988. Xue­Qiang Zhang, Xiang Chen, Xin­Bing Cheng, Bo­Quan Li, Xin Shen, Chong Yan, Jia­Qi Huang, and Qiang Zhang. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angewandte Chemie, 130(19):5399–5403, 2018. Alexander Stukowski. Computational analysis methods in atomistic modeling of crystals. Jom, 66(3):399–407, 2014. Yu­Sheng Su, Yongzhu Fu, Thomas Cochell, and Arumugam Manthiram. A strategic approach to recharging lithium­sulphur batteries for long cycle life. Nature communications, 4(1):1–8, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82889-
dc.description.abstract"隨著近年來電動車與無人機的快速發展,傳統以石墨作為負極材料的鋰離子電池 (lithium ion battery, LIB) 開始無法應付人類對於電池續航的需求,研究與開發具有商業價值的高電容量電池成為許多團隊迫切追求的目標。其中,以鋰金屬作為負極材料的鋰金屬電池 (lithium metal battery, LMB) 理論電容量高達3860mAhg−1,為 LIB 理論電容量的 10 倍,因此具有高電容量優勢的 LMB 被視為新一代高能量密度電池中最為重要的技術之一。然而,在 LMB 充電過程中,鋰原子於負極材料表面不均勻的沈積將會嚴重影響固態電解質界面 (solid electrolyte interphase, SEI) 的穩定性,導致 SEI 破裂並促使金屬鋰枝晶 (dendrite) 生長,造成庫倫效率 (Coulombic efficiency, CE) 下降,甚至存在鋰枝晶刺穿隔離膜 (separator) 造成短路的安全性隱憂,因此解決枝晶生長成為 LMB 商業化的關鍵議題。 由於 SEI 是由電解液於負極表面發生自發性還原反應而產生的鈍化層,因此不同的電解液配方選用將直接影響 SEI 的成份與性質。近年來研究指出,添加硝酸鋰 (lithium nitrate, LiNO3) 能使電池在充放電過程中形成較為穩定的 SEI,進而達到抑制鋰枝晶的效果。本研究使用能夠考慮化學反應的反應分子動力學 (reactive molecular dynamics, RMD) 模擬 SEI 之形成,並探討 SEI 的生長機制以及 LiNO3 添加於碳酸乙烯酯 (ethylene carbonate, EC) 與碳酸二甲酯 (dimethyl carbonate, DMC) 混和溶液對於 SEI 之功效。此外,為了進一步探討不同配方之電解液對於 SEI 機械性質的影響,我們另外針對 SEI 進行拉伸試驗來驗證 LiNO3 添加物對 SEI 材料行為之改變。 結果表明,SEI 可以分為結構較為鬆散的外層與結構較為緻密的內層,且外層 SEI 先於內層 SEI 生成。我們發現由於 LiNO3 具有還原電位較高的特性,經還原後會在 SEI 外層形成 LiNxOy 無機物,提高了外層 SEI 密度。相較沒有添加 LiNO3 的 SEI,較為緻密的外層 SEI 減緩了反應後期的無機反應,讓 SEI 內氣體成份含量減少,並使內層 SEI 更為緻密。最後,拉伸試驗結果表明加入 LiNO3 會使 SEI 具有較高的韌性,使得 SEI 對於鋰金屬變形有更好的耐受能力,從而抑制枝晶生長。本研究從鋰原子不均勻沈積會導致 SEI 破裂並促成枝晶形成的角度出發,提供 SEI 組成、結構與機械性質等不同面向探討 LiNO3 添加物對於 SEI 之影響,並且對於 SEI 的生成機制與增韌機制有更進一步的了解。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T08:01:51Z (GMT). No. of bitstreams: 1
U0001-0308202116084600.pdf: 22436769 bytes, checksum: a7fb44025e2cab5cdfd1998c4a29dfc3 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 3 摘要 5 Abstract 7 目錄 9 圖目錄 11 表目錄 17 第一章 緒論 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 第二章 模擬方法與系統設定 9 2.1 反應分子動力學 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 反應力場 (ReaxFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 模擬系統設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 拉伸試驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 模型驗證 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 第三章 研究結果與討論 25 3.1 固態電解質界面性質探討 . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 固態電解質界面結構 . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 固態電解質界面生成機制 . . . . . . . . . . . . . . . . . . . . . . 29 3.2 硝酸鋰對於固態電解質界面之組成改變 . . . . . . . . . . . . . . . . 33 3.3 硝酸鋰添加劑對於機械性質之影響 . . . . . . . . . . . . . . . . . . 43 第四章 結論與未來展望 47 4.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 參考文獻 51
dc.language.isozh-TW
dc.title分子動力學探討硝酸鋰對鋰電池中固態電解質界面(SEI)生長機制及機械性質之影響zh_TW
dc.titleMD Study of the Influences of LiNO3 Additive on the Formation of Solid Electrolyte Interphase (SEI) and the Mechanical Performances in Lithium Metal Batteriesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee包淳偉(Hsin-Tsai Liu),詹楊皓(Chih-Yang Tseng),周佳靚
dc.subject.keyword鋰金屬電池,鋰枝晶,固態電解質界面,硝酸鋰添加物,反應力場,zh_TW
dc.subject.keywordLithium Metal Battery,Lithium Dendrite,SEI,Lithium Nitrate,ReaxFF,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202102051
dc.rights.note未授權
dc.date.accepted2021-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2024-09-01-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202116084600.pdf
  目前未授權公開取用
21.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved