Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82888
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志鴻(Chih-Hung Chen)
dc.contributor.authorChun-Hsien Suen
dc.contributor.author蘇峻賢zh_TW
dc.date.accessioned2022-11-25T08:01:49Z-
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-08-13
dc.identifier.citationAlan Arnold Griffith. Vi. the phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582­593):163–198, 1921. Mokhtar Adda-Bedia, Rodrigo Arias, Martine Ben Amar, and Fernando Lund. Dynamic instability of brittle fracture. Physical review letters, 82(11):2314, 1999. Jeremy Bleyer and Jean-François Molinari. Microbranching instability in phase-field modelling of dynamic brittle fracture. Applied Physics Letters, 110(15):151903, 2017. Jay Fineberg and M Marder. Instability in dynamic fracture. Physics Reports, 313(1-2):1–108, 1999. Eran Sharon and Jay Fineberg. Universal features of the microbranching instability in dynamic fracture. Philosophical Magazine B, 78(2):243–251, 1998. Ariel Livne, Eran Bouchbinder, and Jay Fineberg. Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Physical review letters, 101(26):264301, 2008. Tamar Goldman Boué, Gil Cohen, and Jay Fineberg. Origin of the microbranching instability in rapid cracks. Physical Review Letters, 114(5):054301, 2015. John M Ball, David Kinderlehrer, Paulo Podio-Guidugli, and Marshall Slemrod. Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids: A Collection of Reprints of 14 Seminal Papers. Springer, 1999. Eran Sharon and Jay Fineberg. Microbranching instability and the dynamic fracture of brittle materials. Physical Review B, 54(10):7128, 1996. Eran Bouchbinder, Tamar Goldman, and Jay Fineberg. The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Reports on Progress in Physics, 77(4):046501, 2014. Eran Bouchbinder, Jay Fineberg, and M Marder. Dynamics of simple cracks. Annu. Rev. Condens. Matter Phys., 1(1):371–395, 2010. H Henry and M Adda-Bedia. Fractographic aspects of crack branching instability using a phase-field model. Physical Review E, 88(6):060401, 2013. Itamar Kolvin, Gil Cohen, and Jay Fineberg. Crack front dynamics: the interplay of singular geometry and crack instabilities. Physical Review Letters, 114(17):175501, 2015. Ariel Livne, Oded Ben-David, and Jay Fineberg. Oscillations in rapid fracture. Physical review letters, 98(12):124301, 2007. A Livne, G Cohen, and J Fineberg. Universality and hysteretic dynamics in rapid fracture. Physical review letters, 94(22):224301, 2005. E Sharon, G Cohen, and J Fineberg. Crack front waves and the dynamics of a rapidly moving crack. Physical Review Letters, 88(8):085503, 2002. Lital Rozen-Levy, John M Kolinski, Gil Cohen, and Jay Fineberg. How fast cracks in brittle solids choose their path. Physical Review Letters, 125(17):175501, 2020. John Frederick Knott. Fundamentals of fracture mechanics. Gruppo Italiano Frattura, 1973. David Broek. The practical use of fracture mechanics. Springer Science Business Media, 2012. Ted L Anderson. Fracture mechanics: fundamentals and applications. CRC press, 2017. Emmanuel E Gdoutos. Fracture mechanics: an introduction, volume 263. Springer Nature, 2020. D Kammer. Slip fronts at frictional interfaces: A numerical and theoretical study. EPFL Thesis, 12, 2014. M Srinivasan and S Seetharamu. Fracture toughness of metal castings. Sci. Technol. Cast. Process, 2012. Lambert Ben Freund. Dynamic fracture mechanics. Cambridge university press, 1998. K Bertram Broberg. Cracks and fracture. San Diego, CA: Academic Press, 1999. Chih-Hung Chen, Eran Bouchbinder, and Alain Karma. Instability in dynamic fracture and the failure of the classical theory of cracks. Nature Physics, 13(12):1186–1190, 2017. David Roylance. Introduction to fracture mechanics. 2001. H Henry. Study of the branching instability using a phase field model of inplane crack propagation. EPL (Europhysics Letters), 83(1):16004, 2008. John W Cahn and John E Hilliard. Free energy of a nonuniform system. i. interfacial free energy. The Journal of chemical physics, 28(2):258–267, 1958. Fucheng Tian, Xiaoliang Tang, Tingyu Xu, Junsheng Yang, and Liangbin Li. Bifurcation criterion and the origin of limit crack velocity in dynamic brittle fracture. International Journal of Fracture, 224:117–131, 2020. Ryo Kobayashi. A brief introduction to phase field method. In AIP Conference Proceedings, volume 1270, pages 282–291. American Institute of Physics, 2010. Blaise Bourdin, Gilles A Francfort, and Jean-Jacques Marigo. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48(4):797–826, 2000. Alain Karma, David A Kessler, and Herbert Levine. Phase-field model of mode iii dynamic fracture. Physical Review Letters, 87(4):045501, 2001. Martin H Sadd. Elasticity: theory, applications, and numerics. Academic Press, 2009. Loup Verlet. Computer” experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical review, 159(1):98, 1967. William H Press, H William, Saul A Teukolsky, A Saul, William T Vetterling, and Brian P Flannery. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press, 2007. Jeremy Bleyer and Jean-François Molinari. Microbranching instability in phase-field modelling of dynamic brittle fracture. Applied Physics Letters, 110(15):151903, 2017. Itamar Kolvin, Jay Fineberg, and Mokhtar Adda-Bedia. Nonlinear focusing in dynamic crack fronts and the microbranching transition. Physical review letters, 119(21):215505, 2017. Jérémy Bleyer, Clément Roux-Langlois, and Jean-François Molinari. Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms. International Journal of Fracture, 204(1):79–100, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82888-
dc.description.abstract"裂紋在生活中隨處可見,與人類文明的相聯性已非常久遠,裂紋的生成與傳播屬於工程上常見的問題,裂紋與材料科學的關係更是密不可分,任何新興材料的開發皆需考量其在負載作用下,經過變形、裂紋生成與傳播,最後破壞;儘管科技日新月異,所有材料皆仍有其壽命,即使在一般正常使用下亦會隨時間增長而不堪使用,透過研究裂紋如何生長有助於開發出性能更優異、更耐用的材料且能延長其使用壽命,因此我們認為裂紋具有高度的研究價值。 在種類繁多的材料中,脆性材料以具有高強度機械性質的優勢被廣泛使用,為深入瞭解在脆性材料之中的快速動態裂紋傳播,近年來出現許多實驗與理論試圖釐清裂紋在脆性材料中的生長機制,藉著前人的研究成果可以得知裂紋在高速傳播時前緣曲率受破裂不穩定性影響而無法保持平滑,並會伴隨速度的強烈震盪與微分歧現象(microbranch)的產生,使得經由裂紋生成的破裂平面具有特別的樣貌;本研究的重點著重於建立一個數學模型來分析裂紋的動態傳播,在彈性力學理論的基礎之下透過使用相場法分析,並同時運用有限差分法建立數值模型。系統以單一脆性材料為主,例如:壓克力(PMMA)、玻璃及脆性凝膠等,並透過在初始位置提供一微小種子裂紋,再施以單一方向的拉伸負載使得裂紋開始生長傳播,以模擬破壞理論中的開口式破裂模式(opening mode),並透過結果再進行各種材料參數(例如:Poisson's ratio、系統大小等等)對裂紋生長之影響進行分析。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T08:01:49Z (GMT). No. of bitstreams: 1
U0001-0308202116085300.pdf: 6970092 bytes, checksum: 87715be8e56709059be3daf0f331850a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsAcknowledgements 1 摘要 2 Abstract 4 Contents 6 List of Figures 8 List of Tables 14 Chapter 1 緒論 1 1.1 研究介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 微分歧現象 (microbranch) 與分歧線 (branchline) . . . . . . . . . . 2 1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 線彈性破壞力學 linear elastic fracture mechanics . . . . . . . . . . 9 Chapter 2 模擬系統與研究方法 15 2.1 模擬系統設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 彈性力學方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 相場法 phase-­field method . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 數學模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 ec閥值與裂紋生長之關係 . . . . . . . . . . . . . . . . . . . . . . 22 2.6 模擬方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.7 運動方程式與應變能密度estrain離散化 . . . . . . . . . . . . . . . 26 Chapter 3 結果與討論 33 3.1 破裂過程區域 fracture process zone . . . . . . . . . . . . . . . . . . 34 3.2 裂紋不穩定性與裂紋速度之關係 . . . . . . . . . . . . . . . . . . 37 3.3 裂紋生長與ec閥值分布圖 . . . . . . . . . . . . . . . . . . . . . . 41 3.4 裂紋生長與應變能密度 . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 微分歧現象與裂紋速度增韌機制 (velocity­-toughening mechanism) 44 3.6 微分歧現象與能量消散速率 D . . . . . . . . . . . . . . . . . . . . 49 Chapter 4 結論 52 References 54
dc.language.isozh-TW
dc.title利用相場法探討動態裂紋微分歧不穩定現象zh_TW
dc.titlePhase-field study of microbranching instability in dynamic cracksen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee包淳偉(Hsin-Tsai Liu),詹楊皓(Chih-Yang Tseng),周佳靚
dc.subject.keyword微分歧不穩定性,相場法,破裂平面粗糙度,破裂能量,開口式破裂模式,zh_TW
dc.subject.keywordmicrobranch instability,phase-field method,fracture surface roughness,fracture energy,mode-I fracture,en
dc.relation.page58
dc.identifier.doi10.6342/NTU202102052
dc.rights.note未授權
dc.date.accepted2021-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2024-09-01-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202116085300.pdf
  目前未授權公開取用
6.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved