Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82880
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳鑫昌(Hsin-Chang Chen) | |
dc.contributor.author | Chia-Sheng Hsieh | en |
dc.contributor.author | 謝嘉聲 | zh_TW |
dc.date.accessioned | 2022-11-25T08:01:38Z | - |
dc.date.copyright | 2021-09-15 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-08-17 | |
dc.identifier.citation | 1. Zhou, J., X. Allonas, A. Ibrahim, and X. Liu, 2019. Progress in the development of polymeric and multifunctional photoinitiators. Progress in Polymer Science, 99: p. 101165. 2. Lago, M.A., A. Rodríguez-Bernaldo de Quirós, R. Sendón, J. Bustos, M.T. Nieto, and P. Paseiro, 2015. Photoinitiators: a food safety review. Food Additives Contaminants: Part A, 32(5): p. 779-798. 3. Sagratini, G., J. Mañes, D. Giardiná, and Y. Picó, 2006. Determination of Isopropyl Thioxanthone (ITX) in Fruit Juices by Pressurized Liquid Extraction and Liquid Chromatography−Mass Spectrometry. Journal of Agricultural and Food Chemistry, 54(20): p. 7947-7952. 4. Snedeker, S.M., 2014. Benzophenone UV-Photoinitiators Used in Food Packaging: Potential for Human Exposure and Health Risk Considerations. in Toxicants in Food Packaging and Household Plastics: Exposure and Health Risks to Consumers, S.M. Snedeker, Editor. Springer London: London. p. 151-176. 5. Aparicio, J.L. and M. Elizalde, 2015. Migration of Photoinitiators in Food Packaging: A Review. Packaging Technology and Science, 28(3): p. 181-203. 6. Pechancová, R., C. Qiu, J. Smuts, K. Lemr, and K.A. Schug, 2019. Comparative study of ink photoinitiators in food packages using gas chromatography with vacuum ultraviolet detection and gas chromatography with mass spectrometry. Journal of Separation Science, 42(2): p. 556-565. 7. Anderson, W.A.C. and L. Castle, 2003. Benzophenone in cartonboard packaging materials and the factors that influence its migration into food. Food Additives Contaminants, 20(6): p. 607-618. 8. Schmid, P. and F. Welle, 2020. Chemical Migration from Beverage Packaging Materials—A Review. Beverages, 6(2): p. 37. 9. Koivikko, R., S. Pastorelli, A. Rodríguez-Bernaldo de Quirós, R. Paseiro-Cerrato, P. Paseiro-Losada, and C. Simoneau, 2010. Rapid multi-analyte quantification of benzophenone, 4-methylbenzophenone and related derivatives from paperboard food packaging. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 27(10): p. 1478-86. 10. IARC, 2013. Monograph Benzophenone, Vol 101, IARC, Lyon, France. 11. RASFF, 2005. Isopropyl thioxanthone in milk for babies from Spain. Alert notification 2005.631. 12. European Food Safety Authority, 2005. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to 2-Isopropyl thioxanthone (ITX) and 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB) in food contact materials. 13. European Food Safety Authority, 2009. EFSA statement on the presence of 4-methylbenzophenone found in breakfast cereals. 14. Sagratini, G., G. Caprioli, G. Cristalli, D. Giardiná, M. Ricciutelli, R. Volpini, Y. Zuo, and S. Vittori, 2008. Determination of ink photoinitiators in packaged beverages by gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry. Journal of Chromatography A, 1194(2): p. 213-220. 15. Sun, C., S.H. Chan, D. Lu, H.M. Lee, and B.C. Bloodworth, 2007. Determination of isopropyl-9H-thioxanthen-9-one in packaged beverages by solid-phase extraction clean-up and liquid chromatography with tandem mass spectrometry detection. J Chromatogr A, 1143(1-2): p. 162-7. 16. Bagnati, R., G. Bianchi, E. Marangon, E. Zuccato, R. Fanelli, and E. Davoli, 2007. Direct analysis of isopropylthioxanthone (ITX) in milk by high-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 21(13): p. 1998-2002. 17. Gil-Vergara, A., C. Blasco, and Y. Picó, 2007. Determination of 2-isopropyl thioxanthone and 2-ethylhexyl-4-dimethylaminobenzoate in milk: comparison of gas and liquid chromatography with mass spectrometry. Analytical and Bioanalytical Chemistry, 389(2): p. 605-617. 18. Sanches-Silva, A., S. Pastorelli, J.M. Cruz, C. Simoneau, and P. Paseiro-Losada, 2008. Development of a multimethod for the determination of photoinitiators in beverage packaging. J Food Sci, 73(2): p. C92-9. 19. Sanches-Silva, A., S. Pastorelli, J.M. Cruz, C. Simoneau, I. Castanheira, and P. Paseiro-Losada, 2008. Development of an analytical method for the determination of photoinitiators used for food packaging materials with potential to migrate into milk. J Dairy Sci, 91(3): p. 900-9. 20. Gallart-Ayala, H., E. Moyano, and M.T. Galceran, 2008. Liquid chromatography/tandem mass spectrometry (highly selective selected reaction monitoring) for the analysis of isopropylthioxanthone in packaged food. J Chromatogr A, 1208(1-2): p. 182-8. 21. Gallart-Ayala, H., O. Núñez, E. Moyano, and M.T. Galceran, 2011. Analysis of UV ink photoinitiators in packaged food by fast liquid chromatography at sub-ambient temperature coupled to tandem mass spectrometry. J Chromatogr A, 1218(3): p. 459-66. 22. Gallart-Ayala, H., O. Nuñez, E. Moyano, M.T. Galceran, and C.P. Martins, 2011. Preventing false negatives with high-resolution mass spectrometry: the benzophenone case. Rapid Commun Mass Spectrom, 25(20): p. 3161-6. 23. Bradley, E.L., J.S. Stratton, J. Leak, L. Lister, and L. Castle, 2013. Printing ink compounds in foods: UK survey results. Food Addit Contam Part B Surveill, 6(2): p. 73-83. 24. Wu, H., L.H. Wu, F. Wang, C.J. Gao, D. Chen, and Y. Guo, 2019. Several environmental endocrine disruptors in beverages from South China: occurrence and human exposure. Environ Sci Pollut Res Int, 26(6): p. 5873-5884. 25. Chang, H.C., Y.J. Chen, M.H. Chang, C.D. Liao, Y.M. Kao, D.Y. Wang, and H.F. Cheng, 2019. Novel multi-analyte method for detection of thirty photoinitiators in breakfast cereal and packaged juice. Journal of Chromatography B, 1130-1131: p. 121788. 26. Allegrone, G., I. Tamaro, S. Spinardi, and G. Grosa, 2008. Development and validation of a solid-phase extraction and gas chromatography–tandem mass spectrometry method for the determination of isopropyl-9H-thioxanthen-9-one in carton packaged milk. Journal of Chromatography A, 1214(1): p. 128-133. 27. Shen, D.X., H.Z. Lian, T. Ding, J.Z. Xu, and C.Y. Shen, 2009. Determination of low-level ink photoinitiator residues in packaged milk by solid-phase extraction and LC-ESI/MS/MS using triple-quadrupole mass analyzer. Anal Bioanal Chem, 395(7): p. 2359-70. 28. Liu, P., C. Zhao, Y. Zhang, and Y. Chen, 2016. Simultaneous Determination of 10 Photoinitiators in Milk by Solid-Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry. J Food Sci, 81(5): p. T1336-41. 29. Nakagawa, Y., T. Suzuki, and S. Tayama, 2000. Metabolism and toxicity of benzophenone in isolated rat hepatocytes and estrogenic activity of its metabolites in MCF-7 cells. Toxicology, 156(1): p. 27-36. 30. Jeon, H.-K., S.N. Sarma, Y.-J. Kim, and J.-C. Ryu, 2008. Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology, 248(2): p. 89-95. 31. Kasichayanula, S., J.D. House, T. Wang, and X. Gu, 2005. Simultaneous analysis of insect repellent DEET, sunscreen oxybenzone and five relevant metabolites by reversed-phase HPLC with UV detection: Application to an in vivo study in a piglet model. Journal of Chromatography B, 822(1): p. 271-277. 32. Blüthgen, N., S. Zucchi, and K. Fent, 2012. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicology and Applied Pharmacology, 263(2): p. 184-194. 33. Wang, L. and K. Kannan, 2013. Characteristic Profiles of Benzonphenone-3 and its Derivatives in Urine of Children and Adults from the United States and China. Environmental Science Technology, 47(21): p. 12532-12538. 34. Kunisue, T., Z. Chen, G.M. Buck Louis, R. Sundaram, M.L. Hediger, L. Sun, and K. Kannan, 2012. Urinary Concentrations of Benzophenone-type UV Filters in U.S. Women and Their Association with Endometriosis. Environmental Science Technology, 46(8): p. 4624-4632. 35. Kamikyouden, N., K. Sugihara, Y. Watanabe, N. Uramaru, T. Murahashi, M. Kuroyanagi, S. Sanoh, S. Ohta, and S. Kitamura, 2013. 2,5-Dihydroxy-4-methoxybenzophenone: a novel major in vitro metabolite of benzophenone-3 formed by rat and human liver microsomes. Xenobiotica, 43(6): p. 514-519. 36. Okereke, C.S., A.M. Kadry, M.S. Abdel-Rahman, R.A. Davis, and M.A. Friedman, 1993. Metabolism of benzophenone-3 in rats. Drug metabolism and disposition, 21(5): p. 788-791. 37. National Toxicology Program, 2006. Toxicology and carcinogenesis studies of benzophenone (CAS No. 119-61-9) in F344/N rats and B6C3F1 mice (feed studies). 38. National Toxicology Program, 2000. NTP technical report on the toxicity studies of benzophenone (CAS No. 119-61-9) administered in feed to F344/N rats and B6C3F1 mice. 39. European Food Safety Authority, 2009. Scientific Opinion of EFSA prepared by the Panel on food contact materials, enzymes, flavourings and processing aids (CEF) on Toxicological evaluation of benzophenone. 40. National Toxicology Program, 1992. NTP technical report on the toxicity studies of 2-Hydroxy-4-methoxybenzophenone (CAS No. 131-57-7) Adminstered Topically and in Dosed Feed to F344/N Rats and B6C3F1 Mice. 41. Dutta, K., M. Das, and T. Rahman, 1993. Toxicological impacts of benzophenone on the liver of guinea pig (Cavia porcellus). Bulletin of Environmental Contamination and Toxicology, 50(2): p. 282-285. 42. European Food Safety Authority, 2007. Scientific Statement of the Panel on food additives, flavourings, processing aids and materials in contact with food on a request from the Commission related to an update on the hazard assessment of 2-isopropyl thioxanthone (ITX) in food contact materials. 43. Wang, W.Q., H.X. Duan, Z.T. Pei, R.R. Xu, Z.T. Qin, G.C. Zhu, and L.W. Sun, 2018. Evaluation by the Ames Assay of the Mutagenicity of UV Filters Using Benzophenone and Benzophenone-1. Int J Environ Res Public Health, 15(9). 44. Review, C.I., 1983. Addendum to the final report on the safety assessment of benzophenones-1, -3, -4, -5, -9, and -11. Journal of the America College of Toxicology, 2(5): p. 79-84. 45. Jeon, H.-K., 2017. Comparative toxicity related to metabolisms of benzophenone-type UV filters, potentially harmful to the environment and humans. Molecular Cellular Toxicology, 13(3): p. 337-343. 46. Abramsson-Zetterberg, L. and K. Svensson, 2011. 4-Methylbenzophenone and benzophenone are inactive in the micronucleus assay. Toxicology Letters, 201(3): p. 235-239. 47. Hoshino, N., E. Tani, Y. Wako, and K. Takahashi, 2005. A two-generation reproductive toxicity study of benzophenone in rats. The journal of Toxicological Sciences, 30 Spec No.: p. 5-20. 48. European Food Safety Authority, 2009. Toxicological evaluation of benzophenone. 49. National Toxicology Program, 2002. Developmental toxicity evaluation for benzophenone (CAS No. 119-61-9) administered by gavage to Sprague-Dawley (CD) rats on gestational days 6 through 19. NTP Study No. 50. Hoshino, N., E. Tani, Y. Wako, and K. TAKAHASHI, 2005. A two-generation reproductive toxicity study of benzophenone in rats. The Journal of toxicological sciences, 30(Special): p. S5-20. 51. Program, N.T., Final study report. Developmental toxicity evaluation for benzophenone (CAS no. 119-61-9) administered by gavage to New Zealand white rabbits on gestational days 6 through 29. NTP study no. 2004, TER-99-001. 52. Hsieh, M.H., E.C. Grantham, B. Liu, R. Macapagal, E. Willingham, and L.S. Baskin, 2007. In utero exposure to benzophenone-2 causes hypospadias through an estrogen receptor dependent mechanism. J Urol, 178(4 Pt 2): p. 1637-42. 53. Weisbrod, C.J., P.Y. Kunz, A.K. Zenker, and K. Fent, 2007. Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicol Appl Pharmacol, 225(3): p. 255-66. 54. Nakamura, N., A.L. Inselman, G.A. White, C.-W. Chang, R.A. Trbojevich, E. Sephr, K.L. Voris, R.E. Patton, M.S. Bryant, W. Harrouk, B.S. McIntyre, P.M.D. Foster, and D.K. Hansen, 2015. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring. Birth defects research. Part B, Developmental and reproductive toxicology, 104(1): p. 35-51. 55. Nakamura, N., V. Vijay, V.G. Desai, D.K. Hansen, T. Han, C.-W. Chang, Y.-C. Chen, W. Harrouk, B. McIntyre, P.M. Foster, J.C. Fuscoe, and A.L. Inselman, 2018. Transcript profiling in the testes and prostates of postnatal day 30 Sprague-Dawley rats exposed prenatally and lactationally to 2-hydroxy-4-methoxybenzophenone. Reproductive toxicology (Elmsford, N.Y.), 82: p. 111-123. 56. Schlumpf, M., B. Cotton, M. Conscience, V. Haller, B. Steinmann, and W. Lichtensteiger, 2001. In vitro and in vivo estrogenicity of UV screens. Environmental health perspectives, 109(3): p. 239-244. 57. Seidel, F., 2020. Reproductive toxicity of benzophenone-3. Archives of Toxicology, 94(10): p. 3593-3594. 58. Santamaria, C.G., N. Meyer, A. Schumacher, M.L. Zenclussen, C.M. Teglia, M.J. Culzoni, A.C. Zenclussen, and H.A. Rodriguez, 2020. Dermal exposure to the UV filter benzophenone-3 during early pregnancy affects fetal growth and sex ratio of the progeny in mice. Archives of Toxicology, 94(8): p. 2847-2859. 59. Kim, S., D. Jung, Y. Kho, and K. Choi, 2014. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two generation exposure study. Aquatic Toxicology, 155: p. 244-252. 60. Kinnberg, K.L., G.I. Petersen, M. Albrektsen, M. Minghlani, S.M. Awad, B.F. Holbech, J.W. Green, P. Bjerregaard, and H. Holbech, 2015. Endocrine-disrupting effect of the ultraviolet filter benzophenone-3 in zebrafish, Danio rerio. Environmental Toxicology and Chemistry, 34(12): p. 2833-2840. 61. Ghazipura, M., R. McGowan, A. Arslan, and T. Hossain, 2017. Exposure to benzophenone-3 and reproductive toxicity: A systematic review of human and animal studies. Reproductive Toxicology, 73: p. 175-183. 62. Kunz, P.Y., T. Gries, and K. Fent, 2006. The Ultraviolet Filter 3-Benzylidene Camphor Adversely Affects Reproduction in Fathead Minnow (Pimephales promelas). Toxicological Sciences, 93(2): p. 311-321. 63. Li, V.W., M.P. Tsui, X. Chen, M.N. Hui, L. Jin, R.H. Lam, R.M. Yu, M.B. Murphy, J. Cheng, P.K. Lam, and S.H. Cheng, 2016. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res Int, 23(9): p. 8275-85. 64. Quintaneiro, C., B. Teixeira, J.L. Benedé, A. Chisvert, A.M.V.M. Soares, and M.S. Monteiro, 2019. Toxicity effects of the organic UV-filter 4-Methylbenzylidene camphor in zebrafish embryos. Chemosphere, 218: p. 273-281. 65. In, S.J., S.H. Kim, R.E. Go, K.A. Hwang, and K.C. Choi, 2015. Benzophenone-1 and nonylphenol stimulated MCF-7 breast cancer growth by regulating cell cycle and metastasis-related genes via an estrogen receptor α-dependent pathway. J Toxicol Environ Health A, 78(8): p. 492-505. 66. Schlumpf, M., H. Jarry, W. Wuttke, R. Ma, and W. Lichtensteiger, 2004. Estrogenic activity and estrogen receptor beta binding of the UV filter 3-benzylidene camphor. Comparison with 4-methylbenzylidene camphor. Toxicology, 199(2-3): p. 109-20. 67. Nakagawa, Y. and T. Suzuki, 2002. Metabolism of 2-hydroxy-4-methoxybenzophenone in isolated rat hepatocytes and xenoestrogenic effects of its metabolites on MCF-7 human breast cancer cells. Chem Biol Interact, 139(2): p. 115-28. 68. Morizane, M., Y. Kawasaki, T. Miura, K. Yagi, S. Esumi, Y. Kitamura, and T. Sendo, 2015. Photoinitiator-Initiated Estrogenic Activity in Human Breast Cancer Cell Line MCF-7. J Toxicol Environ Health A, 78(23-24): p. 1450-60. 69. Park, M.-A., K.-A. Hwang, H.-R. Lee, B.-R. Yi, E.-B. Jeung, and K.-C. Choi, 2013. Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models. Toxicology, 305: p. 41-48. 70. Shin, S., R.E. Go, C.W. Kim, K.A. Hwang, K.H. Nam, and K.C. Choi, 2016. Effect of benzophenone-1 and octylphenol on the regulation of epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in estrogen receptor expressing ovarian cancer cells. Food Chem Toxicol, 93: p. 58-65. 71. Kawamura, Y., Y. Ogawa, T. Nishimura, Y. Kikuchi, J.-i. Nishikawa, T. Nishihara, and K. Tanamoto, 2003. Estrogenic Activities of UV Stabilizers Used in Food Contact Plastics and Benzophenone Derivatives Tested by the Yeast Two-Hybrid Assay. Journal of Health Science, 49(3): p. 205-212. 72. Nakagawa, Y. and K. Tayama, 2002. Benzophenone-induced estrogenic potency in ovariectomized rats. Archives of Toxicology, 76(12): p. 727-731. 73. Houk, C.P., E.J. Pearson, N. Martinelle, P.K. Donahoe, and J. Teixeira, 2004. Feedback inhibition of steroidogenic acute regulatory protein expression in vitro and in vivo by androgens. Endocrinology, 145(3): p. 1269-75. 74. Reitsma, M., T.F.H. Bovee, A.A.C.M. Peijnenburg, P.J.M. Hendriksen, R.L.A.P. Hoogenboom, and J.C.W. Rijk, 2013. Endocrine-Disrupting Effects of Thioxanthone Photoinitiators. Toxicological Sciences, 132(1): p. 64-74. 75. Zhang, Q.Y., X.Y. Ma, M. Dzakpasu, and X.C.C. Wang, 2017. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity. Ecotoxicology and Environmental Safety, 142: p. 338-347. 76. Habauzit, D., C. Martin, G. Kerdivel, and F. Pakdel, 2017. Rapid assessment of estrogenic compounds by CXCL-test illustrated by the screening of the UV-filter derivative benzophenones. Chemosphere, 173: p. 253-260. 77. Peijnenburg, A., J. Riethof-Poortman, H. Baykus, L. Portier, T. Bovee, and R. Hoogenboom, 2010. AhR-agonistic, anti-androgenic, and anti-estrogenic potencies of 2-isopropylthioxanthone (ITX) as determined by in vitro bioassays and gene expression profiling. Toxicol In Vitro, 24(6): p. 1619-28. 78. Nakagawa, Y. and K. Tayama, 2001. Estrogenic potency of benzophenone and its metabolites in juvenile female rats. Archives of Toxicology, 75(2): p. 74-79. 79. Yamasaki, K., M. Takeyoshi, M. Sawaki, N. Imatanaka, K. Shinoda, and M. Takatsuki, 2003. Immature rat uterotrophic assay of 18 chemicals and Hershberger assay of 30 chemicals. Toxicology, 183(1): p. 93-115. 80. Koda, T., T. Umezu, R. Kamata, K. Morohoshi, T. Ohta, and M. Morita, 2005. Uterotrophic effects of benzophenone derivatives and a p-hydroxybenzoate used in ultraviolet screens. Environmental Research, 98(1): p. 40-45. 81. Suzuki, T., S. Kitamura, R. Khota, K. Sugihara, N. Fujimoto, and S. Ohta, 2005. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicology and applied pharmacology, 203(1): p. 9-17. 82. Schlecht, C., H. Klammer, H. Jarry, and W. Wuttke, 2004. Effects of estradiol, benzophenone-2 and benzophenone-3 on the expression pattern of the estrogen receptors (ER) alpha and beta, the estrogen receptor-related receptor 1 (ERR1) and the aryl hydrocarbon receptor (AhR) in adult ovariectomized rats. Toxicology, 205(1): p. 123-130. 83. Schreurs, R.H.M.M., E. Sonneveld, J.H.J. Jansen, W. Seinen, and B. van der Burg, 2005. Interaction of Polycyclic Musks and UV Filters with the Estrogen Receptor (ER), Androgen Receptor (AR), and Progesterone Receptor (PR) in Reporter Gene Bioassays. Toxicological Sciences, 83(2): p. 264-272. 84. Jiménez-Díaz, I., J.M. Molina-Molina, A. Zafra-Gómez, O. Ballesteros, A. Navalón, M. Real, J.M. Sáenz, M.F. Fernández, and N. Olea, 2013. Simultaneous determination of the UV-filters benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in human placental tissue by LC–MS/MS. Assessment of their in vitro endocrine activity. Journal of Chromatography B, 936: p. 80-87. 85. Miller, D., B.B. Wheals, N. Beresford, and J.P. Sumpter, 2001. Estrogenic activity of phenolic additives determined by an in vitro yeast bioassay. Environmental Health Perspectives, 109(2): p. 133-138. 86. Schultz, T.W., J.R. Seward, and G.D. Sinks, 2000. Estrogenicity of benzophenones evaluated with a recombinant yeast assay: Comparison of experimental and rules‐based predicted activity. Environmental Toxicology and Chemistry: An International Journal, 19(2): p. 301-304. 87. Kerdivel, G., R. Le Guevel, D. Habauzit, F. Brion, S. Ait-Aissa, and F. Pakdel, 2013. Estrogenic potency of benzophenone UV filters in breast cancer cells: proliferative and transcriptional activity substantiated by docking analysis. PLoS One, 8(4): p. e60567. 88. Kim, S. and K. Choi, 2014. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review. Environment International, 70: p. 143-157. 89. Schreurs, R., P. Lanser, W. Seinen, and B. van der Burg, 2002. Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Archives of toxicology, 76(5-6): p. 257-261. 90. Nashev, L.G., D. Schuster, C. Laggner, S. Sodha, T. Langer, G. Wolber, and A. Odermatt, 2010. The UV-filter benzophenone-1 inhibits 17β-hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochemical Pharmacology, 79(8): p. 1189-1199. 91. Ma, R., B. Cotton, W. Lichtensteiger, and M. Schlumpf, 2003. UV filters with antagonistic action at androgen receptors in the MDA-kb2 cell transcriptional-activation assay. Toxicol Sci, 74(1): p. 43-50. 92. Jarry, H., J. Christoffel, G. Rimoldi, L. Koch, and W. Wuttke, 2004. Multi-organic endocrine disrupting activity of the UV screen benzophenone 2 (BP2) in ovariectomized adult rats after 5 days treatment. Toxicology, 205(1-2): p. 87-93. 93. Schmutzler, C., A. Bacinski, I. Gotthardt, K. Huhne, P. Ambrugger, H. Klammer, C. Schlecht, C. Hoang-Vu, A. Grüters, W. Wuttke, H. Jarry, and J. Köhrle, 2007. The Ultraviolet Filter Benzophenone 2 Interferes with the Thyroid Hormone Axis in Rats and Is a Potent in Vitro Inhibitor of Human Recombinant Thyroid Peroxidase. Endocrinology, 148(6): p. 2835-2844. 94. Swiss Confederation, 2017. Verordnung des EDI über Materialien und Gegenstände, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen(SR 817.023.21). 95. Swiss Confederation, 2017. Anhang 10 der Verordnung des EDI über Materialien und Gegenstände, die dazu bestimmt sind, mit Le-bensmitteln in Berührung zu kommen Liste der zulässigen Stoffe für die Herstellung von Druckfarben und Anforderungen an diese Stoffe. 96. Swiss Confederation, 2017. Anhang 2 der Verordnung des EDI über Materialien und Gegenstände, die dazu bestimmt sind, mit Le-bensmitteln in Berührung zu kommen - Liste der zulässigen Stoffe für die Herstellung von Bedarfsgegen-ständen aus Kunststoff und Anforderungen an diese Stoffe. 97. European Commision, 2004. Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC, Off. J. Eur. Union 338 pp. 4–17. 98. European Commision, 2006. Commission Regulation (EC) No 2023/2006 of 22 December 2006 on good manufacturing practice for materials and articles intended to come into contact with food. 99. European Commision, 2011. Commission regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. 100. European Printing Ink Association, 2013. EuPIA Suitability list of photo-initiators for low migration UV printing inks and varnishes. 101. Germany Federal Ministry of Food and Agriculture, 2016. Twenty-first ordinance: amending the consumer goods ordinance. 102. 衛生福利部食品藥物管理署, 2014. 鮮乳與保久乳品名及標示原則. 103. Pastorelli, S., A. Sanches-Silva, J.M. Cruz Freire, C. Simoneau, and P. Losada, 2008. Study of the migration of benzophenone from printed paperboard packages to cakes through different plastic films. European Food Research and Technology, 227: p. 1585-1590. 104. Ashurst, P.R., 2016. Fruit Juices. in Encyclopedia of Food and Health, B. Caballero, P.M. Finglas, and F. Toldrá, Editors. Academic Press: Oxford. p. 130-137. 105. 吳瑞碧, 2000. 果蔬汁產品綠色度之量化. 106. 食力, 2015. 破除鮮乳添加食安謠言 認識鮮乳製造流程. Available from: https://www.foodnext.net/issue/paper/3852963541. 107. 林世航, 2019. 鮮乳和保久乳是怎麼做的?帶你看加工製程7步驟. Available from: https://www.taisounds.com/Lifestyle/Food/uid4470310081. 108. Vazquez-Roig, P. and Y. Picó, 2015. Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC Trends in Analytical Chemistry, 71: p. 55-64. 109. Anastassiades, M., S.J. Lehotay, D. Stajnbaher, and F.J. Schenck, 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and 'dispersive solid-phase extraction' for the determination of pesticide residues in produce. J AOAC Int, 86(2): p. 412-31. 110. 臺灣區飲料工業同業公會, 2020. 2020年會員工廠各類飲料銷售數量統計表. 111. 衛生福利部食品藥物管理署, 2013. 食品化學檢驗方法之確效規範. 112. Food and Drug Administration, 2019. Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products. 113. Joint FAO/WHO Food Standards Programme, 2013. Codex alimentarius Commission. 114. Trufelli, H., P. Palma, G. Famiglini, and A. Cappiello, 2011. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrometry Reviews, 30(3): p. 491-509. 115. Gosetti, F., E. Mazzucco, D. Zampieri, and M.C. Gennaro, 2010. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1217(25): p. 3929-3937. 116. European Commision, 2002. 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (Text with EEA relevance) (notified under document number C(2002) 3044). 117. Tehrany, E.A. and S. Desobry, 2004. Partition coefficients in food/packaging systems: a review. Food Additives Contaminants, 21(12): p. 1186-1202. 118. Waters. Sample Preparation. 119. Jeon, H.-K., Y. Chung, and J.-C. Ryu, 2006. Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography–mass spectrometry. Journal of Chromatography A, 1131(1): p. 192-202. 120. Pai, C.-W., D. Leong, C.-Y. Chen, and G.-S. Wang, 2020. Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes. Chemosphere, 256: p. 127002. 121. Wu, J.-W., H.-C. Chen, and W.-H. Ding, 2013. Ultrasound-assisted dispersive liquid–liquid microextraction plus simultaneous silylation for rapid determination of salicylate and benzophenone-type ultraviolet filters in aqueous samples. Journal of Chromatography A, 1302: p. 20-27. 122. Careghini, A., M. Corti, A. Mastorgio, L. Romele, S. Saponaro, and E. Sezenna, Transfer of Benzophenones from Soil to Plants. 2015. 123. Sanches-Silva, A., C. Andre, I. Castanheira, J.M. Cruz, S. Pastorelli, C. Simoneau, and P. Paseiro-Losada, 2009. Study of the Migration of Photoinitiators Used in Printed Food-Packaging Materials into Food Simulants. Journal of Agricultural and Food Chemistry, 57(20): p. 9516-9523. 124. 劉晏君, 2021. 以QuEChERS 搭配液相層析通用游離源串聯質譜法測定海洋 無脊椎動物中紫外線吸收化合物之方法開發與應用, 國立臺灣大學食品安全與健康研究所碩士論文. 125. Negreira, N., I. Rodríguez, E. Rubí, and R. Cela, 2010. Solid-phase microextraction followed by gas chromatography–mass spectrometry for the determination of ink photo-initiators in packed milk. Talanta, 82(1): p. 296-303. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82880 | - |
dc.description.abstract | "紫外線吸收化合物 (Ultraviolet-absorbing compounds, UVACs) 已廣泛應用於個人護理產品與紫外線固化油墨 (UV-cured ink) 中作為光引發劑 (photoinitiators, PIs) 經照射紫外光活化產生自由基,引發油墨單體聚合進而使油墨瞬間硬化於食品包材。因不含揮發性有機化合物與有機溶劑,省去等待溶劑揮發時間及降低生產者接觸有機溶劑之機會,且因具環境友善特點,已逐漸取代傳統溶劑型油墨。近年來研究發現,油墨固化後仍會殘留紫外線吸收化合物於油墨與包裝材質中,並藉化學與物理方式遷移至食品中造成食物污染。 自2005年起,歐洲發生多起紫外線吸收化合物從包裝材質上油墨滲入食品中的案例,致使歐盟於2011年訂定塑膠包裝材料中紫外線吸收化合物遷移限量 (specific migration limit),目前已有多個國家針對紫外線吸收化合物訂定相關遷移限量。近年來相關毒理研究發現,紫外線吸收化合物之毒性主要為遺傳毒性與造成內分泌干擾,其中二苯甲酮(benzophenone, BP) 已被國際癌症研究署 (International Agency for Research on Cancer, IARC) 列為Group 2B疑似人類致癌物。因目前臺灣尚未建立食品包裝材質與油墨之紫外線吸收化合物之遷移限量規範,且為了解國人經飲用包裝果(蔬)汁與牛奶暴露紫外線吸收化合物之風險,本研究為其建立分析方法。 本研究擬採用微型QuEChERS進行樣品前處理,減少試劑及大體積耗材之使用量以達永續化學之目的,並結合極致效能液相層析廣用游離串聯質譜法 (ultra-performance liquid chromatography-UniSpray ionization-tandem mass spectrometry, UPLC-USI-MS/MS) 提升分析靈敏度,檢測136件市售包裝果(蔬)汁與51件牛奶中16個微量PIs之含量。實驗方法參數最佳化包括使用果(蔬)汁與牛奶樣品之體積,以達微小化之效果,並調整QuEChERS前處理方法 (萃取與淨化步驟) 及UPLC-USI-MS/MS參數最佳化,以得最佳之分析結果。優化後方法確效部分,果(蔬)汁與牛奶基質中各分析物之基質匹配檢量線 (matrix-matched calibration curve) 決定係數 (r2) 皆大於0.990,顯示呈良好線性關係;16個紫外線吸收化合物於果(蔬)汁樣品中定量極限為0.005 - 7.255 ng/mL,而於牛奶樣品中定量極限為0.004 - 7.143 ng/mL;同日間 (intra-day) 與異日間 (inter-day) 之實驗中,各分析物在果(蔬)汁基質中均有良好之準確度 (回收率93.9% - 110.1%) 與精密度 (1.5% - 16.8%),而在牛奶基質中亦能獲得良好之準確度 (回收率66.8% - 114.6%) 及精密度 (0.6% - 22.2%),顯示此分析方法符合國內食藥署及歐盟頒佈之確效規範。 將此UPLC-USI-MS/MS方法應用至187件樣品檢測,其定量結果顯示,187件樣品均可檢出微量PIs。136件果(蔬)汁樣品裡16個分析物中BP在每件樣品中均可測得,並在塑膠包裝柳橙汁中可測得最高濃度 (51.39 ng/mL) 之BP,可能源於柳橙汁纖維吸附非極性之BP;51件牛奶樣品中,鮮乳樣本可測得7種待測分析物,其中BP檢出率為100%,濃度範圍為4.15 - 16.34 ng/mL,4-甲基二苯甲酮 (4-methylbenzophenone, 4-MBP) 檢出濃度最高,在冷藏紙盒包鮮乳中濃度高達150.02 ng/mL。本研究已成功建立並確效一套快速且有效分析市售包裝果(蔬)汁與牛奶中紫外線吸收化合物之定量方法,未來可結合國家攝食資料庫,評估國人經食品暴露紫外線吸收化合物之風險,以達降低食品安全之目的。" | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T08:01:38Z (GMT). No. of bitstreams: 1 U0001-0508202116570000.pdf: 4120528 bytes, checksum: 374d59eb7e450a04b2b71b8bb8c47a33 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iv 圖目錄 ix 表目錄 x 第一章 前言 1 1.1 食品中紫外線吸收化合物來源及分佈 2 1.2 紫外線吸收化合物毒理研究 4 1.2.1 生物體代謝途徑 4 1.2.2 多次投藥毒性試驗 5 1.2.3 遺傳毒性 6 1.2.4 致癌性 6 1.2.5 生長發育毒性 7 1.2.6 內分泌干擾 9 1.3 紫外線吸收化合物於食品接觸材料與產品及油墨之管理規範 11 1.3.1 瑞士 12 1.3.2 歐盟 12 1.3.3 德國 13 1.4 包裝果蔬汁與鮮乳 13 1.4.1 果蔬汁與鮮乳分類 13 1.4.2 包裝容器 14 1.4.3 果(蔬)汁與鮮乳生產 15 1.5 文獻實驗方法 16 1.6 研究動機 19 第二章 材料與方法 20 2.1 化合物與試劑 20 2.2 樣品採集 21 2.3 樣品前處理 22 2.3.1 果(蔬)汁 22 2.3.2 牛奶 22 2.4 UPLC-USI-MS/MS分析方法 23 2.5 應用軟體 23 2.6 分析方法確效 24 2.6.1 線性 (檢量線) 24 2.6.2 基質效應 25 2.6.3 偵測極限與定量極限 25 2.6.4 準確度與精密度 25 第三章 結果與討論 27 3.1 儀器參數最佳化 27 3.1.1 液相層析條件最佳化 27 3.1.2 質譜參數最佳化 27 3.2 樣品前處理最佳化 28 3.2.1 果(蔬)汁 28 3.2.2 牛奶 29 3.3 分析方法確效 32 3.3.1 基質匹配檢量線、LODs與LOQs 32 3.3.2 基質效應 32 3.3.3 準確度與精密度 33 3.4 本研究之分析方法與文獻分析方法比較 35 3.5 果(蔬)汁與牛奶中紫外線吸收化合物背景濃度檢測 37 3.5.1 果(蔬)汁 37 3.5.2 牛奶 41 3.6 果(蔬)汁與牛奶中紫外線吸收化合物背景濃度分佈原因探討 44 3.6.1 三種果(蔬)汁類別 (天然果(蔬)汁、還原果(蔬)汁與果(蔬)汁飲料) 44 3.6.2 三種牛奶類別 (全脂鮮乳、低脂鮮乳與保久乳) 47 第四章 研究局限性 50 第五章 結論與建議 51 5.1 結論 51 5.2 建議 52 圖 53 表 66 參考文獻 96 附錄 105 | |
dc.language.iso | zh-TW | |
dc.title | 以微型QuEChERS搭配極致效能液相層析廣用游離串聯質譜法分析包裝果蔬汁與牛奶中紫外線吸收化合物之含量 | zh_TW |
dc.title | Determination of ultraviolet-absorbing compounds in packaged juice and milk by micro-QuEChERS coupled with ultra-performance liquid chromatography-UniSpray ionization-tandem mass spectrometry | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳美蓮(Hsin-Tsai Liu),黃鈺芳(Chih-Yang Tseng) | |
dc.subject.keyword | 包裝果蔬汁,牛奶,紫外線吸收化合物,QuEChERS,極致效能液相層析廣用游離串聯質譜法, | zh_TW |
dc.subject.keyword | Packaged juice,Fresh milk,Ultraviolet-absorbing compounds,QuEChERS,UPLC-USI-MS/MS, | en |
dc.relation.page | 109 | |
dc.identifier.doi | 10.6342/NTU202102119 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2021-08-17 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 食品安全與健康研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-31 | - |
Appears in Collections: | 食品安全與健康研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-0508202116570000.pdf Restricted Access | 4.02 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.