請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82878完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳明汝(Ming-Ju Chen) | |
| dc.contributor.author | Chien-Ting Chen | en |
| dc.contributor.author | 陳芊廷 | zh_TW |
| dc.date.accessioned | 2022-11-25T08:01:35Z | - |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-11 | |
| dc.identifier.citation | 凃博文。2018。探討荷蘭乳牛消化道微生物組與乳房炎之關聯性。國立台灣大學動物科學技術學研究所。碩士論文。 許瑜庭。2020。藉由微生物質體及代謝質體系統性研究荷蘭牛乳房炎。國立台灣大學動物科學技術學研究所。碩士論文。 Abdullah, M., M. R. Akter, L. Kabir, S. M., A. S. Khan, M. S. Saleh Ibne, and M. A. Aziz. 2013. Characterization of bacterial pathogens isolated from calf diarrhoea in Panchagarh district of Bangladesh. J. Agric. Food. Tech. 3:8–13. Abe, F., N. Ishibashi, and S. Shimamura. 1995. Effect of administration of Bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78:2838–2846. Abecia, L., A.I. Martin-Garcia, G. Martinez-Fernandez, C.J. Newbold, and D.R. Yanez-Ruiz. 2013. Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning. J. Anim Sci. 91:4832–4840. Abecia, L., K. E. Waddams, G. Martinez-Fernandez, A. I. Martin-Garcia, E. RamosMorales, and C. J. Newbold. 2014. An antimethanogenic nutritional intervention in early life of ruminants modifies ruminal colonization by archaea. Archaea. 2014:41–46. Abu-Tarboush, H.M., M. Y. Al-Saiady, and A. H. Keir El-Din. 1996. Evaluation of diet containing Lactobacilli on performance, fecal coliform and lactobacilli of young dairy calves. Anim. Feed. Sci. Tech. 57:39–49. Adams, M., J. Luo, D. Rayward, S. King, R. Gibson, and G. Moghaddam. 2008. Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim Feed Sci Technol. 145:41–52. Al-Alo, K. Z. K., G.H. Nikbakhtbrujeni, S. Lotfollahzadeh, F. Moosakhani, and A. Gharabaghi. 2018. Passive protective effect of anti-K99 antibodies against enterotoxigenic E. coli infection in neonatal calves. Iran J Vet Med. 19:3–8. Allen, H.K., U.Y. Levine, T. Looft, M. Bandrick, and T.A. Casey. 2013. Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 21:114–119. Allen, M. S. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80:1447–1462. Al-Saiady, M.Y. 2010. Effect of probiotic bacteria on immunoglobulin concentration and other blood components of newborn calves. J. Anim. Vet. Adv. 9:604–609. Andersen, P. H. 2003. Bovine endotoxicosis–some aspects of relevance to production diseases. A review. Acta Vet. Scand. 44:1–15. Arowolo, M. A., and J. He. 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 4:241–249. Arthington, J. D., M. B. Cattell, and J. D. Quigley III. 2000. Effect of dietary IgG source (colostrum, serum, or milk-derived supplement) on the efficiency of Ig absorption in newborn Holstein calves. J. Dairy Sci. 83:1463–1467. Bach, A., A. López-García, O. González-Recio, G. Elcoso, F. Fàbregas, F. Chaucheyras-Durand, and M. Castex. 2019. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J. Dairy Sci. 102:6180–6198. Baldwin, R. L., VI. McLeod, J. L. Klotz, and R. N. Heitmann. 2004. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J. Dairy Sci. 87 (E. Suppl.): E55–E65. Bartels, C.J., M. Holzhauer, R. Jorritsma, W. A. Swart, and T. J. Lam. 2010. Prevalence prediction and risk factors of enteropathogens in normal and non-normal faces of young Dutch dairy calves. Prev. Vet. Med. 93:162–169. Bayatkouhsar, J., A. M. Tahmasebi, A. A. Naserian, R. R. Mokarram, and R. Valizadeh. 2013. Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Anim. Feed. Sci. Tech. 186:1–11. Belguesmia, Y., D. Domenger, J. Caron, P. Dhulster, R. Ravallec, D. Drider, and B. Cudennec. 2016. Novel probiotic evidence of lactobacilli on immunomodulation and regulation of satiety hormones release in intestinal cells. J. Funct. Foods. 24: 276–286. Berchtold, J. 2009. Treatment of calf diarrhea: intravenous fluid therapy. Vet Clin North Am Food Anim. Pract. 25:73–99. Berge, A. C. B., D. A. Moore, T. E. Besser, and W. M. Sischo. 2009. Targeting therapy to minimize antimicrobial use in preweaned calves: Effects on health, growth, and treatment costs. J. Dairy Sci. 92:4707– 4714. Berge, A. C., T. E. Besser, D. A. Moore, and W. M. Sischo. 2009. Evaluation of the effects of oral colostrum supplementation during the first fourteen days on the health and performance of preweaned calves. J. Dairy. Sci. 92:286–295. Bevins, C. L., and N. H. Salzman. 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9:356–368. Biavati, B., and L. Mattarelli. 2006. The Family Bifidobacteriaceae. Prokaryotes. 3:322–382. Bidarkar, V. K., P. S. Swain, S. Ray, and G. Dominic. 2014. Probiotics: Potential alternative to antibiotics in ruminant feeding. TVAS. 1:1–4. Biddle, A., L. Stewart, J. Blanchard, and S. Leschine. 2013. Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities. Diversity. 5:627–640. Bischoff, S. C. 2011. ‘Gut health’: A new objective in medicine. BMC Med. 9:24. Blättler, U., H. M. Hammon, C. Morel, C. Philipona, A. Rauprich, V. Romé, I. Le Huërou-Luron, P. Guilloteau, and J. W. Blum. 2001. Feeding colostrum, its composition and feeding duration variably modify proliferation and morphology of the intestine and digestive enzyme activities of neonatal calves. J. Nutr. 131:1256–1263. Bolin, S. R., A.W. McClurkin, R. C. Cutlip, and M. F. Coria. 1985. Severe clinical disease induced in cattle persistently infected with noncytopathic bovine viral diarrhea virus by superinfection with cytopathic bovine viral diarrhea virus. Am J Vet Res. 46:573–576. Borda-Molina, D., M. Vital, V. Sommerfeld, M. Rodehutscord and A. Camarinha-Silva. 2016. Insights into Broilers’ Gut Microbiota Fed with Phosphorus, Calcium, and Phytase Supplemented Diets. Front. Microbiol. 7:2033. Cant, J. P., B. W. McBride, and W. J. Croom Jr. 1996. The regulation of intestinal metabolism and its impact on whole animal energetics. J. Anim. Sci. 74:2541–2553. Castro, J. J., A. Gomez, B. A. White, J. R. Loften, and J. K. Drackley. 2016. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 2. Effects of gastrointestinal site and age. J. Dairy Sci. 99:9703–9715. Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Skaug. 265-270. Chaves, A.H., J.F. Coelho da Solva, O. Fajardo de Campos, A.J. Rezende, and S. Campos Valadares Filho. 1999. Efeito da estirpe LT516 de Lactobacillus acidophilus como probiótico para bezerros. Rev. Bras. Zootec. 28:1075–1085. Cho, Y. I., and K. J. Yoon. 2014. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15:1. Cody, W. L., J. W. Wilson, D. R. Hendrixson, K. S. McIver, K. E. Hagman, C. M. Ott, C. A. Nickerson, and M. J. Schurr. 2008. Skim milk enhances the preservation of thawed− 80 C bacterial stocks. J. Microbiol. Methods. 75:135–138. Cole, M. F., S. P. Fitzsimmons, M. J. Sheridan, and Y. Xu. 1995. Humoral immunity to commensal bacteria: quantification, specificity and avidity of serum IgG and IgM antibodies reactive with the oral bacteria Prevotella intermedia and Prevotella nigrescens. Microb. ecol. health dis. 8:235–242. Collado, M. C., and Y. Sanz. 2007. Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques. Vet Microbiol. 121:299–306. Collier, C. T., M. R. Smiricky-Tjardes, D. M. Albin, J. E. Wubben, V. M. Gabert, B. Deplancke, D. Bane, D. B. Anderson, and H. R. Gaskins. 2003. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. Anim. Sci. J. 81:3035–3045. Constable, P. D. 2004. Antimicrobial use in the treatment of calf diarrhea. J. Vet. Intern. Med. 18:8–17. Constable, P. D. 2009. Treatment of calf diarrhea: antimicrobial and ancillary treatments. North Am. Food Anim. Pract. 25:101–120. Cruywagen, C. W., I. Jordan, and L. Venter. 1996. Effect of Lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J Dairy Sci. 79:483–486. D'Aimmo, M. R., M. Modesto, and B. Biavati. 2007. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int. J. Food Microbiol. 115:35–42. Danielson, P. Á. 2002. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 3:561–597. De Barbieri, I., R. S. Hegarty, C. Silveira, L. M. Gulino, V. H. Oddy, and R. A. Gilbert. 2015. Programming rumen bacterial communities in newborn Merino lambs. Small Rumin Res. 129:48–59. Delcaru, C., I. Alexandru, P. Podgoreanu, V. C. Cristea, C. Bleotu, M. C. Chifiriuc, E. Bezirtzoglou, and V. Lazar. 2016. Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens. Anaerobe. 39:39–44. Den Besten, G., K. Van Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54:2325–2340. Dratwa-chaupnik, A., A. Herosimczyk, A. Lepczyñski, and W. F. Skrzypczak. 2012. Calves with diarrhea and a water-electrolyte balance. Med. Weter. 68:5–8. Druart, C., M. Alligier, N. Salazar, A. M. Neyrinck, and N. M. Delzenne. 2014. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv. Nutr. 5:624S–633S. Duffy, L. C., M. A. Zielezny, M. Riepenhoff-Talty, D. Dryja, S. Sayahtaheri-Altaie, E. Griffiths, and P. L. Ogra. 1994. Effectiveness of Bifidobacterium bifidum in mediating the clinical course of murine rotavirus diarrhea. Pediatr. Res. 35:690–695. El Kaoutari, A., F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11:497–504. Elam, N. A., J. F. Gleghorn, J. D. Rivera, M. L. Galyean, P. J. Defoor, M. M. Brashears, and S. M. Younts-Dahl. 2003. Effects of live cultures of Lactobacillus acidophilus (strains NP45 and NP51) and Propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and Escherichia coli strain O157 shedding of finishing beef steers. J Anim Sci. 81:2686–2698. El-Sissi, A. F., A. S. Hafez, and A. A. El-Gedawy. 2020. Evaluation of Immunological Status of Calves Suffered from Diarrhea Under Field Condition. JAVS. 5:40–48. Espe, D. and C.Y. Cannon. 1940. The Length of the Intestine of Calves and its Bearing on the Absorption of the Nutrients from the Chyme1. J. Dairy. Sci. 23:1211–1214. Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15. Foditsch, C., R. V. V. Pereira, E. K. Ganda, M. S. Gomez, E. C. Marques, T. Santin, and R. C. Bicalho. 2015. Oral administration of Faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in pre-weaned dairy heifers. PloS one. 10:e0145485. Fomenky, B. E., D. N. Do, G. Talbot, J. Chiquette, N. Bissonnette, Y. P. Chouinard, and E. M. Ibeagha-Awemu. 2018. Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre-and post-weaned calves. Sci. Rep. 8:1–21. Fonty, G., P. Gouet, J. P. Jounay, and J. Senaud. 1987. Establishment of the microflora and anaerobic fungi in the rumen of lambs. Microbiology. 133:1835–43. Foster, D.M., and G. W. Smith. 2009. Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract. 25:13–36. Frizzo, L. S., E. Bertozzi, L.P. Soto, M.V. Zbrun, G. Sequeira, R. Dalla Santina, R. Rodríguez Armesto, and M. R. Rosmini. 2008. The effect of supplementation with three lactic acid bacteria from bovine origin on growth performance and health status of young calves. J. adv. Vet. 7:400– 408. Frizzo, L. S., L. P. Soto, M.V. Zbrun, E. Bertozzi, G. Sequeira, and R. Rodríguez Armesto. 2010. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim Feed Sci Tech. 157:159–167. Frizzo, L. S., M. L. Signorini, and M. R. Rosmini. 2018. Probiotics and prebiotics for the health of cattle. In Probiotics and Prebiotics in Animal Health and Food Safety. pp. 155-174. Springer, Cham. Frizzo, L. S., M. V. Zbrun, and L. P. Soto. 2012. Pathogen translocation and histopathological lesions in an experimental model of Salmonella Dublin infection in calves receiving lactic acid bacteria and lactose supplements. J Vet Sci. 13:261–270. Fuller, R. 1992. History and development of probiotics. In Probiotics. pp. 1–8. Springer, Dordrecht. Furness, J. B., L. R. Rivera, H. J. Cho, D. M. Bravo, and B. Calllaghan. 2013. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10:729–740. Gagnon, M., E. E. Kheadr, G. Le Blay, and I. Fliss. 2004. In vitro inhibition of Escherichia coli O157: H7 by bifidobacterial strains of human origin. Int. J. Food Microbiol. 92:69–78. Gantois, I., R. Ducatelle, F. Pasmans, F. Haesebrouck, I. Hautefort, A. Thompson, and F. Van Immerseel. 2006. Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72:946–949. Geva-Zatorsky, N., E. Sefik, L. Kua, L. Pasman, T. G. Tan, A. Ortiz-Lopez, T. B. Yanortsang, L. Yang, R. Jupp, D. Mathis, C. Benoist, and D. L. Kasper. 2017. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell 168:928–943 e911. Gilliland, S.E., B. B. Bruce, L. J. Bush, and T. E. Staley. 1980. Comparison of two strains of Lactobacillus acidophilus as dietary adjuncts for young calves. J Dairy Sci. 63:964–972. Gomez, D. E., L. G. Arroyo, M. C. Costa, L. Viel, and J. S. Weese. 2017. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J. Vet. Intern. Med. 31:928–939. Gorgulu, M., A. Siuta, S. Yurtseven, E. Ongel, and H.R. Kutlu. 2003. Efecto de probióticos en el comportamiento y salud de terneros en crecimiento. Revista Cubana de Ciencia Agrícola 2:125–129. Guttman, J. A., and B. B. Finlay. 2008. Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Trends Microbiol. 16:535–542. Guzman, C. E., L. T. Bereza-Malcolm, B. De Groef, and A. E. Franks. 2015. Presence of selected methanogens, fibrolytic bacteria, and Proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours. PLoS One 10:e0133048. Hanning, I., and S. Diaz-Sanchez. 2015. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome. 3:1–11. Hansen, J., A. Gulati and R. B. Sartor. 2010. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr. Opin. Gastroenterol. 26: 564–571. Hardham, J. M., K. W. King, K. Dreier, J. Wong, C. Strietzel, R. R. Eversole, C. Sfintescu, and R. T. Evans. 2008. Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. Int J Syst Evol Micr. 58:103–109. Harrigan, W. F. 1998. Laboratory methods in food microbiology. Gulf professional publishing. He F., H. Morita, and A. C. Ouwehand. 2002. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol. Immunol. 46:781–785. He, C., Y. Shan, and W. song. 2015. Targeting gut microbiota as a possible therapy for diabetes. Nutr Res. 35:361–367. Henderson, G., F. Cox, S. Ganesh, A. Jonker, W. Young, C. Global Rumen Census, and P. H. Jassen. 2015. Erratum: rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 6:19175. Higginbotham, G. E., and D. L. Bath. 1993. Evaluation of Lactobacillus fermentation cultures in calf feeding system. Int. J. Dairy Sci. 76:615–620. Higginbotham, G.E., J. D. Robison, E. R. Atwill, C. Das Gracas, and M. Pereira. 1998. Effect of a direct Feed microbial product on calf performance and fecal flora. Prof. Anim. Sci. 14:108–113. Hill, C., F. Guarner, and G. Reid. 2014. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 11:506–514. Hodgson, J. 1971. The development of solid food intake in calves. 4. The effect of the addition of material to the rumen, or its removal from the rumen, on voluntary food intake. Anim. Prod. 13:581–592. Hong, N., S. Ku, K. Yuk, T. V. Johnston, G. E. Ji, and M. S. Park. 2021. Production of biologically active human interleukin-10 by Bifidobacterium bifidum BGN4. Microb. Cell Factories. 20:1–14. Hooper, L. V., D. R. Littman, and A. J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science. 336:1268–1273. Huang, M. Z., D. A. Cui, X. H. Wu, W. Hui, Z. T. Yan, X. Z. Ding, and S. Y. Wang. 2020. Serum Metabolomics Revealed the Differential Metabolic Pathway in Calves with Severe Clinical Diarrhea Symptoms. Animals. 10:769. Imaoka, A., T. Shima, K. Kato, S. Mizuno, T. Uehara, S. Matsumoto, and Y. Umesaki. 2008. Anti-inflammatory activity of probiotic Bifidobacterium: enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol. 14:2511. Inturri, R., A. Stivala, P. M. Furneri, and G. Blandino. 2016. Growth and adhesion to HT-29 cells inhibition of Gram-negatives by Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 alone and in combination. Eur. Rev. Med. Pharmacol. Sci. 20:4943–4949. Inturri, R., L. Trovato, G. L. Volti, S. Oliveri, and G. Blandino. 2019. In vitro inhibitory activity of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 alone or in combination against bacterial and Candida reference strains and clinical isolates. Heliyon. 5:e02891. Isolauri, E., Y. Sütas, P. Kankaanpää, H. Arvilommi, and S. Salminen. 2001. Probiotics: effects on immunity. Am. J. Clin. Nutr. 73:444s–450s. Izzo, M. M., V. L. Mohler, and J. K. House. 2011. Antimicrobial susceptibility of Salmonella isolates recovered from calves with diarrhoea in Australia. Aust. Vet. J. 89:402–408. Jami E., A. Israel, A. Kotser, and I. Mizrahi. 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7:1069–79. Jang, J. Y., S. Kim, M. S. Kwon, J. Lee, D. H. Yu, R. H. Song, and J. Park. 2019. Rotavirus-mediated alteration of gut microbiota and its correlation with physiological characteristics in neonatal calves. Sci. J. Microbiol. 57:113–121. Jelinski, M. D., C. S. Ribble, M. Chirino-Trejo, E. G. Clark, and E. D. Janzen. 1995. The relationship between the presence of Helicobacter pylori, Clostridium perfringens type A, Campylobacter spp, or fungi and fatal abomasal ulcers in unweaned beef calves. Can. Vet. J. 36:379. Jenny, B.F., H. J. Vandkijk, and J.A. Collins. 1991. Performance and fecal flora of calves fed a Bacillus subtiliis concentrate. J Dairy Sci. 74:1968–1973. Jochims, K., F. J. Kaup, and D. Drommer. 1994. An immunoelectron microscopic investigation of colostral IgG absorption across the intestine of newborn calves. Res. Vet. Sci. 57:75–80. Jonsson, E., and I. Olsson.1985. The effect on performance, health and faecal microflora of feeding Lactobacillus strains to neonatal calves. Swed. J. Agri. Res. 15:71–76 Kamra, D. N. 2005. Rumen microbial ecosystem. Curr Sci. 89:124–136. Kelly, W. J., S. C. Leahy, E. Altermann, C. J. Yeoman, J. C. Dunne, Z. Kong, D. M. Pacheco, D. Li, S. J. Noel, C. D. Moon, A. L. Cookson, and G. T. Attwood. 2010. The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316 (T) highlights adaptation to a polysaccharide-rich environment. PLoS One. 5:e11942. Khan, M. A., A. Bach, D. M. Weary, and M. A. G. von Keyserlingk. 2016. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 99:885–902. Khan, M. A., D. M. Weary, and M. A. G. von Keyserlingk. 2011. Invited review: Effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J. Dairy Sci. 94:1071–1081. Khanna, S., M. Bishnoi, K. K. Kondepudi, and G. Shukla. 2020. Isolation, characterization and anti-inflammatory mechanism of probiotics in lipopolysaccharide-stimulated RAW 264.7 macrophages. World J Microb Biot. 36:1–11. Kim, E. T., S. J. Lee, T. Y. Kim, H. G. Lee, R. M. Atikur, B. H. Gu, and Kim, M. 2021. Dynamic Changes in Fecal Microbial Communities of Neonatal Dairy Calves by Aging and Diarrhea. Animals. 11:11–13. Kim, H. S., T. W. Whon, H. Sung, Y. S. Jeong, E. S. Jung, N. R. Shin, and J. W. Bae. 2021. Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance. Nat. Commun. 12:1–16. Kim, M. K., H. G. Lee, J. A. Park, S. K. Kang, and Y. J. Choi. 2011. Effect of feeding direct-fed microbial as an alternative to antibiotics for the prophylaxis of calf diarrhea in Holstein calves. Asian Australas J Anim Sci. 24:643–649. Kim, Y., D. Lee, D. Kim, J. Cho, J. Yang, M. Chung, and N. Ha. 2008. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharm. Res. 34:68–473. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. Klein-Jöbstl, D., E. Schornsteiner, E. Mann, M. Wagner, M. Drillich, and S. Schmitz-Esser. 2014. Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Front. Microbiol. 5:622. Koboziev, I., C. R. Webb, K. L. Furr, and M. B. Grisham. 2014. Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic. Biol. Med. 68: 122–133. Koukias, N., E. Buzzetti, and E. A. Tsochatzis. 2017. Intestinal hormones, gut microbiota and non-alcoholic fatty acid liver disease. Minerva Endocrinol 42: 184–194. Kulp, A., and M. J. Kuehn. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64:163–184. Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874. Lance, S. E., G. Y. Miller, D. D. Hancock, P. C. Bartlett, L. E. Heider, and M. L. Moeschberger. 1992. Effects of environment and management on mortality in preweaned dairy calves. J. Am. Vet. Med. Assoc. 201:1197–1202. Le, O. T., P. J. Dart, K. Harper, D. Zhang, B. Schofield, M. J. Callaghan, and D. M. McNeill. 2017. Effect of probiotic Bacillus amyloliquefaciens strain H57 on productivity and the incidence of diarrhoea in dairy calves. Anim. Prod. Sci. 57:912–919. Lee, D. K., S. Jang, M. J. Kim, J. H. Kim, M. J. Chung, K. J. Kim, and N. J. Ha. 2008. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines. BMC cancer. 8:1–8. Legato, M. J. 2017. Principles of gender-specific medicine: Gender in the genomic era. Academic Press. Lesmeister, K.E., A. J. Heinrichs, and M. T. Gabler. 2004. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves J. Dairy Sci. 87:1832–1839. Li, R. W., E. E. Connor, R. L. Baldwin, and M. L. Sparks. 2012. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol. 14:129–139. Liang, G., N. Malmuthuge, T. B. McFadden, H. Bao, P. J. Griebel, P. Stothard, and L. L. Guan. 2014. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life. PLoS One 9:e92592. Libertucci, J., and V. B. Young. 2019. The role of the microbiota in infectious diseases. Nat. Microbiol. 4:35–45. Liu, J., D.H. Taft and M. X. Maldonado-Gomez. 2019a. The fecal resistome of dairy cattle is associated with diet during nursing. Nat Commun. 10:4406 Liu, X., W. Zhao, D. Yu, J. G. Cheng, Y. Luo, Y. Wang, and Y. M. Wu. 2019b. Effects of compound probiotics on the weight, immunity performance and fecal microbiota of forest musk deer. Sci. Rep. 9:1–12. Lyons, T., H. Jahns, J. Brady, E. O’Hara, S. M. Waters, D. Kenny, and K. G. Meade. 2020. Integrated analyses of the microbiological, immunological and ontological transitions in the calf ileum during early life. Sci. Rep. 10:1–14. Magne, F., M. Gotteland, L. Gauthier, A. Zazueta, S. Pesoa, P. Navarrete, and R. Balamurugan. 2020. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients. Nutrients. 12:1474. Makras, L., and L. De Vuyst. 2006. The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int. Dairy J. 16:1049–1057. Malmuthuge, N. 2017. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J Dairy Sci. 100:5996–6005. Malmuthuge, N., Liang, G., Griebel, P. J., and Guan, L. L. 2019. Taxonomic and functional compositions of the small intestinal microbiome in neonatal calves provide a framework for understanding early life gut health. Appl Environ Microbiol. 85:e02534–18. Malmuthuge, N., M. Li, Y. Chen, P. Fries, P. J. Griebel, B. Baurhoo. 2012. Distinct commensal bacteria associated with ingesta and mucosal epithelium in the gastrointestinal tracts of calves and chickens. FEMS Microbiol Ecol. 79:337–47. Malmuthuge, N., P. J. Griebel, and L. L. Guan. 2014. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of pre-weaned calves. Appl Environ Microbiol. 80:2012–28. Malmuthuge, N., P. J. Griebel, and L. L. Guan. 2015. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Front. Vet. Sci. 2:36. Malmuthuge, N., Y. Chen, G. Liang, L. A. Goonewardene, and L. L. Guan. 2015. Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of neonatal calves. J. Dairy Sci. 98:8044–8053. Mao, S., M. Zhang, J. Liu, and W. Zhu. 2015. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci. Rep. 5:1–14. Marin, M. L., J. H. Lee, J. Murtha, Z. Ustunol, and J. J. Pestka. 1997. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. J Dairy Sci. 80:2713–2720. Marquez, C. J. 2014. Calf Intestinal Health: Assessment and Dietary Interventions for its Improvement. PhD thesis, University of Illinois at Urbana-Champaign, Champaign, IL. Mayer, M., J. M. Abenthuma, D. Matthesa, M. J. Kleebergera, C. Egeb, J. Hölzel, J. Bauer, and K. Schwaiger. 2012. Development and genetic influence of the rectal bacterial flora of newborn calves. Vet. Microbiol. 161:179–185. Maynou, G., A. Bach, and M. Terré. 2017. Feeding of waste milk to Holstein calves affects antimicrobial resistance of Escherichia coli and Pasteurella multocida isolated from fecal and nasal swabs. J Dairy Sci. 100:2682–2694. McEwen, S. A., and J. F. Fedorka-Cray. 2002. Antimicrobial use and resistance in animals. Clin Infect Dis. 34:S93–S106. Meale, S. J., A. V. Chaves, S. Ding, R. D. Bush, and T. A. McAllister. 2013. Effects of crude glycerin supplementation on wool production, feeding behavior, and body condition of Merino ewes. J. Dairy Sci. 91:878–885. Meale, S. J., F. Chaucheyras-Durand, H. Berends, and M. A. Steele. 2017. From pre-to postweaning: Transformation of the young calf's gastrointestinal tract. J. Dairy Sci. 100:5984–5995. Meale, S. J., S. Li, P. Azevedo, H. Derakhshani, J. C. Plaizier, E. Khafipour, and M. A. Steele. 2016. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front. microbiol. 7:582. Minamoto, Y., C. C. Otoni, S. M. Steelman, O. Büyükleblebici, J. M. Steiner, A. E. Jergens, and J. S. Suchodolski. 2015. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut microbes. 6:33–47. Miquel, S., M. Leclerc, R. Martin, F. Chain, M. Lenoir, S. Raguideau, and P. Langella. 2015. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio. 6:e00300–15. Moen, K., J. G. Brun, T. M. Madland, T. Tynning, and R. Jonsson. 2003. Immunoglobulin G and A antibody responses to Bacteroides forsythus and Prevotella intermedia in sera and synovial fluids of arthritis patients. Clin. Vaccine Immunol. 10:1043–1050. Morrison, S.J., S. Dawson, and A.F. Carson. 2010. The effects of mannan oligosaccharide and Streptococcus faecium addition to milk replacer on calf health and performance. Livest. Sci. 131, 292–296. Muktar, Y., G. Mamo, B. Tesfaye, and D. Belina. 2015. A review on major bacterial causes of calf diarrhea and its diagnostic method. J. Vet. Med. Anim. 7:173–185. Namba, K., T. Yaeshima, N. Ishibashi, H. Hayasawa, and S. Yamazaki. 2003. Inhibitory Effects of Bifidobacterium longum on Enterohemorrhagic Escherichia coli O157: H7. Biosci Microflora. 22:85–91. Neish, A. S., A. T. Gewirtz, H. Zeng, A. N. Young, M. E. Hobert, V. Karmali, and J. L. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. sci. 289:1560–1563. Nunn, C.L. 1993. Effect of vitamin E and selenium on neonatal immunoglobulin levels and incidence of scours in beef calves. Ore. Ag. Exp. Sta. 10:726. Oikonomou, G., A. G. Teixeira, C. Foditsch, M. L. Bichalho, V. S. Machado, and R. C. Bicalho. 2013. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One. 8:e63157. Ok, M., R. Yildiz, F. Hatipoglu, N. Baspinar, M. Ider, K. Üney, and, F. Terzi. 2020. Use of intestine-related biomarkers for detecting intestinal epithelial damage in neonatal calves with diarrhea. Am. J. Vet. Res. 81:39–146. Okada, Y., Y. Tsuzuki, R. Hokari, S. Komoto, C. Kurihara, A. Kawaguchi, and Miura, S. 2009. Anti‐inflammatory effects of the genus Bifidobacterium on macrophages by modification of phospho‐IκB and SOCS gene expression. Int. J. Clin. Exp. Pathol. 90:31–140. Ottman, N., H. Smidt, W. M. De Vos, and C. Belzer. 2012. The function of our microbiota: who is out there and what do they do?. Front. cell. infect. microbiol. 2:104. Oultram, J., E. Phipps, A. G. V. Teixeira, C. Foditsch, M. L. Bicalho, and V. S. Machado. 2015. Effects of antibiotics (oxytetracycline, florfenicol or tulathromycin) on neonatal calves' faecal microbial diversity. Vet. Rec. 177:598. Parameswaran, N., and S. Patial. 2010. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 20:2. Park, H. E., K. H. Do, and W. K. Lee. 2020. The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells. J. Biomed. Res. 34:6. Park, S. Y., G. E. Ji, Y. T. Ko, H. K. Jung, Z. Ustunol, and J. J. Pestka. 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int. J. Food Microbiol. 46:231–241. Parker, D. 1990. Manipulation of the functional activity of gut by dietary and other means (antibiotics/probiotics). J Nutr. 60:639–648. Perdigón, G., M. Locascio, M. Medici, A. P. D. R. Holagado, and G. Oliver. 2003. Interaction of bifidobacteria with the gut and t……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82878 | - |
| dc.description.abstract | " 仔牛健康的維持對於酪農產業至關重要,並顯著影響了後續仔牛的生長與生產;而仔牛下痢仍是一種常見的疾病,甚至可影響牧場生產經濟且造成損失。目前多使用抗生素作為治療或預防仔牛下痢的發生,然而由於抗藥性與食品安全的疑慮,許多國家逐漸禁止或減少使用抗生素作為飼料添加劑,因此,研究抗生素之替代物將成為現今相當重要的議題。本研究目的為從健康與下痢荷斯登種仔牛之腸道微生物菌群中,找出關鍵的生物指標菌,作為生物標記,同時分析微生物群間的關聯性和其與下痢之關聯性。此外,本研究將進一步篩選此生物指標菌並透過體外試驗評估其作為益生菌的潛力。 本試驗首先經過專業獸醫師診斷與糞便評分後篩選出健康與下痢仔牛各10頭,並測量其各種血液生化指標與生物標誌物。試驗使用次世代定序法 (NGS) 分析健康組與下痢組中微生物菌相之組成,雖然微生物多樣性分析 (α-diversity) 於兩組間無顯著差異,但是透過微生物樣本比較分析 (β-diversity) 則可將健康及下痢仔牛分群。研究進一步使用線性判別分析 (Linear discriminant analysis effect size, LEfSe) 鑑定出14項菌屬與2項菌種可做為微生物標誌。在下痢組結果中,菌種階層指標菌為bacterium_ic1277,健康組中則鑑定出Bifidobacterium longum subsp. longum作為菌種階層的生物指標菌。其中,菌種B. longum subsp. longum為本試驗健康組微生物標誌物之一,後續運用Spearman相關係數評估發現此菌種與生物標誌物免疫球蛋白G (immunoglobulin G, IgG) 呈現正相關,並與促發炎細胞激素第八型介白素 (Interleukin-8, IL-8) 呈負相關性,顯示B. longum subsp. longum可能具有作為仔牛益生菌的潛力。 因此,本研究進一步以B. longum subsp. longum作為目標,進行菌種的篩選,試驗依序使用了傳統微生物培養法、分子鑑定法與系統分類法,透過16S rRNA基因序列分析並根據neighbor-joining法繪製系統分類樹進行鑑定;結果顯示,經上述菌株鑑定方法後確定7株B. longum subsp. longum。試驗接著以體外試驗評估每個不同B. longum subsp. longum菌株之機能性,包括抗菌活性與免疫條件的功能。在抗菌能力結果中,4株B. longum subsp. longum菌株顯示其具有抑制仔牛下痢病原菌之一沙門氏桿菌 (Salmonella enterica) 的效力。同時,試驗亦選擇促發炎細胞激素腫瘤壞死因子-α (Tumor necrosis factor alpha, TNF-α) 與抑制發炎細胞激素第十型介白素 (Interleukin-10, IL-10) 檢測菌株免疫調節能力。結果指出,B. longum subsp. longum HCF-22和B. longum subsp. longum HCF-27是作為潛力益生菌菌株最適合的選擇。上述二者菌株不僅具有良好的細胞存活率亦具有較佳的免疫調節能力,B. longum subsp. longum HCF-22可抑制S. enterica且具有較低的發炎程度,而B. longum subsp. longum HCF-27則在所有菌株中顯著刺激巨噬細胞分泌最高濃度之IL-10 (P < 0.05),展現了最佳的抗發炎能力。 綜上所述,本研究透過比較健康和下痢仔牛的腸道微生物菌相以及體外功能益生菌機能性評估,顯示可進行分離和找出用於酪農業的潛在益生菌。而這些發現不僅可進一步的了解仔牛的腸道微生物群,分離出的菌株更可以用於仔牛益生菌飼料添加劑,預防仔牛發生下痢,同時冀望作為抗生素之替代物。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T08:01:35Z (GMT). No. of bitstreams: 1 U0001-0608202113550200.pdf: 5426887 bytes, checksum: 63058d6009e4e6b7be46affa6bb6083d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "中文摘要 i Abstract iii 目錄 v 圖目錄 ix 表目錄 xi 壹、文獻探討 1 一、仔牛胃腸道 (Gastrointestinal tract, GIT) 環境 1 (一) 仔牛胃腸道組成介紹 1 (二) 仔牛腸道微生物分布 3 (三) 仔牛腸道微生物組功能與其對宿主之交互作用 5 二、仔牛下痢 (Calf diarrhea) 10 (一) 仔牛下痢類型與病徵 10 (二) 仔牛下痢致病機制與致病體種類 11 (三) 仔牛下痢之預防與治療 13 三、仔牛腸道菌相與仔牛下痢之關係 16 (一) 仔牛腸道菌相與仔牛下痢之影響 16 (二) 仔牛腸道菌相與仔牛下痢之潛在機制 17 四、添加活菌於仔牛飼糧之影響 20 (一) 健康狀態、生長性能之影響與作用機制 20 (二) 牛隻腸道微生物相之影響 21 貳、研究動機與目的 28 參、材料與方法 29 第一節:利用微生物體學篩選仔牛腸道中潛力微生物 29 一、試驗流程與實驗設計 29 二、試驗動物 30 三、試驗材料 30 (一) 糞樣 30 (二) 血樣 30 四、試驗方法 30 (一) 健康仔牛與下痢仔牛之現場初篩與試驗分組流程 30 (二) 試驗牛隻生物標誌物 (Biomarker) 與代謝體測定 33 (三) 微生物體學分析 34 (四) 統計分析 43 第二節:潛力菌株之篩選 44 一、試驗流程與實驗設計 44 二、試驗動物 45 三、試驗材料 45 四、試驗方法 45 (一) 目標菌株之篩選 45 (二) 菌株培養與保存方式 48 (三) 目標菌株鑑定 49 第三節:體外試驗 54 一、試驗流程與實驗設計 54 二、試驗方法 55 (一) 目標菌株之特性分析試驗 55 (二) 目標菌株之抗菌活性試驗 (Antimicrobial activity) 55 (三) 菌落計數 59 (四) 候選之乳酸菌株與小鼠巨噬細胞株RAW 264.7共培養 59 (五) 小鼠巨噬細胞株RAW 264.7之細胞存活率試驗 61 (六) 細胞激素測定 62 (七) 統計分析 62 肆、結果 63 第一節:健康與下痢仔牛之腸道微生物體與其關聯性分析 63 一、健康仔牛與下痢仔牛之分組與生物標誌物 (Biomarker) 分析 63 (一) 獸醫專業診斷評判 63 (二) 健康組與下痢組仔牛之血液生化值 67 (三) 血清中蛋白與細胞激素定性試驗 70 二、仔牛腸道微生物體學分析 (Gut microbiome) 72 (一) 腸道微生物DNA萃取 72 (二) 腸道微生物細菌菌相分析 74 (三) 腸道微生物菌相與生物標誌物關聯性分析 103 第二節:自腸道微生物體分析結果篩選仔牛潛在指標菌 109 一、篩選仔牛目標菌株 (生物指標菌) 109 (一) 菌株培養、革蘭氏染色 109 (二) 菌種鑑定 111 第三節:藉由體外試驗測定篩選微生物作為益生菌之特性與功能性 114 一、篩選指標菌之特性分析 114 二、篩選指標菌之功能性分析 117 (一) 指標菌株之抗菌試驗 117 (二) 指標菌株之細胞試驗 123 伍、討論 129 一、仔牛腸道優勢菌群分布 129 二、仔牛下痢對其腸道菌相之影響 132 三、不同健康狀態下仔牛生物標誌物與生物指標菌之關聯性 135 四、不同健康狀態下之腸道菌相功能性 138 五、以生物指標菌作為仔牛益生菌篩選對象 138 六、以功能性試驗探討菌株對病原菌之影響及免疫調節能力 140 (一) 抗菌能力 143 (二) 免疫調節能力 145 陸、結論 150 柒、參考文獻 151 捌、附錄 177" | |
| dc.language.iso | zh-TW | |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 仔牛下痢 | zh_TW |
| dc.subject | 微生物分析 | zh_TW |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | Calf diarrhea | en |
| dc.subject | Gastrointestinal microbiome | en |
| dc.subject | Probiotics | en |
| dc.subject | Microbial analysis | en |
| dc.title | 分析健康與下痢仔牛腸道菌相應用於仔牛益生菌之篩選 | zh_TW |
| dc.title | Analysis of calf’s gastrointestinal microbiome between health and diarrhea for potential probiotic selection | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 莊士德(Shih-Te Chuang) | |
| dc.contributor.oralexamcommittee | 王翰聰(Hsin-Tsai Liu),陳進初(Chih-Yang Tseng),何尚哲 | |
| dc.subject.keyword | 仔牛下痢,腸道菌相,微生物分析,益生菌, | zh_TW |
| dc.subject.keyword | Calf diarrhea,Gastrointestinal microbiome,Microbial analysis,Probiotics, | en |
| dc.relation.page | 177 | |
| dc.identifier.doi | 10.6342/NTU202102149 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-11 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0608202113550200.pdf 未授權公開取用 | 5.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
