Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8286
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾泰琳(Tai-Lin Tseng)
dc.contributor.authorChieh-Chen Leeen
dc.contributor.author李婕禎zh_TW
dc.date.accessioned2021-05-20T00:51:22Z-
dc.date.available2025-08-08
dc.date.available2021-05-20T00:51:22Z-
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citationAngelier, J., Lee, J. C., Chu, H. T., Hu, J. C., Lu, C. Y., Chan, Y. C., Lin, T. J., Font, Y., Deffontaines, B., and Tsai, Y. B. (2001), Le séisme de Chichi (1999) et sa place dans l'orogène de Taiwan, Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(1), 5-21, doi:10.1016/S1251-8050(01)01563-4
Cai, H. T., Jin, X., and Wang, S. X. (2015), One-Dimensional Velocity Structure of the Crust in Fujian, Southeast China, Terrestrial, Atmospheric and Oceanic Sciences, 26(5), doi:10.3319/tao.2015.04.08.01(t)
Chang, C. P., Chang, T. Y., Angelier, J., Kao, H., Lee, J. C., and Yu, S. B. (2003), Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data, Earth and Planetary Science Letters, 214(1-2), 115-127, doi:10.1016/s0012-821x(03)00360-1
Chen, K. X., Kuo-Chen, H., Brown, D., Li, Q. S., Ye, Z., Liang, W. T., Wang, C. Y., and Yao, H. J. (2016), Three-dimensional ambient noise tomography across the Taiwan Strait: The structure of a magma-poor rifted margin, Tectonics, 35(8), 1782-1792, doi:10.1002/2015tc004097
Chung, S. L., Sun, S. S., Tu, K., Chen, C. H., and Lee, C. Y. (1994), Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension, Chemical Geology, 112(1-2), 1-20, doi:10.1016/0009-2541(94)90101-5
Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H. (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, Journal of Geophysical Research: Solid Earth, 86(B4), 2825-2852, doi:10.1029/JB086iB04p02825 
Ekström, G., Nettles, M., and Dziewoński, A. M. (2012), The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Physics of the earth and planetary interiors, 200-201, 1-9, doi:10.1016/j.pepi.2012.04.002
Fitch, T. J., McCowan, D. W., and Shields, M. W. (1980), Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes, Journal of Geophysical Research: Solid Earth, 85(B7), 3817-3828, doi:10.1029/JB085iB07p03817
Frohlich, C. (1994), Earthquakes with non-double-couple mechanisms, Science, 264(5160), 804-809, doi:10.1126/science.264.5160.804
Hardebeck, J. L., and Shearer, P. M. (2002), A new method for determining first-motion focal mechanisms, Bulletin of the Seismological Society of America, 92(6), 2264-2276, doi:10.1785/0120010200
Hsieh, H. H., Yen, H. Y., and Shih, M. H. (2010), Moho Depth Derived from Gravity Data in the Taiwan Strait Area, Terrestrial, Atmospheric and Oceanic Sciences, 21(2), doi:10.3319/tao.2009.03.05.01(t)
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., and Chen, H. Y. (2009), Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479(1-2), 4-18, doi:10.1016/j.tecto.2008.11.016
Huang, B. S., Chen, K. C., Yen, H. Y., and Yao, Z. X. (1999), Re-examination of the epicenter of the 16 September 1994 Taiwan Strait earthquake using the beam-forming method, Terrestrial, Atmospheric and Oceanic Sciences, 10, 529-542, doi:10.3319/TAO.1999.10.3.529(T) 
Huang, C. Y., Xia, K. Y., Yuan, P. B. Y., and Chen, P. G. (2001), Structural evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology, Journal of Asian Earth Sciences, 19(5), 619-638, doi:10.1016/S1367-9120(00)00065-1
Huang, C. Y., Yen, Y., Zhao, Q., and Lin, C. T. (2012), Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea, Chinese Science Bulletin, 57(24), 3130-3149, doi:10.1007/s11434-012-5349-y
Institute of Earth Sciences, Academia Sinica, Taiwan (1996): Broadband Array in Taiwan for Seismology, Institute of Earth Sciences, Academia Sinica, Taiwan, Other/Seismic Network, doi:10.7914/SN/TW
Jian, P. R., Tseng, T. L., Liang, W. T., and Huang, P. H. (2018), A New Automatic Full‐Waveform Regional Moment Tensor Inversion Algorithm and Its Applications in the Taiwan Area, Bulletin of the Seismological Society of America, 108(2), 573-587, doi:10.1785/0120170231
Jost, M. L., and Herrmann, R. B. (1989), A student’s guide to and review of moment tensors, Seismological Research Letters, 60(2), 37-57, doi:10.1785/gssrl.60.2.37
Kagan, Y. (1991), 3-D rotation of double-couple earthquake sources, Geophysical Journal International, 106(3), 709-716, doi:10.1111/j.1365-246X.1991.tb06343.x
Kanamori, H. (1978), Quantification of earthquakes, Nature, 271(5644), 411-414.
Kao, H., and Chen, W. P. (1994), The double seismic zone in Kuril‐Kamchatka: The tale of two overlapping single zones, Journal of Geophysical Research: Solid Earth, 99(B4), 6913-6930, doi:10.1029/93JB03409
Kao, H., and Chen, W. P. (1995), Transition from interplate slip to double seismic zone along the Kuril‐Kamchatka arc, Journal of Geophysical Research: Solid Earth, 100(B6), 9881-9903, doi:10.1029/95JB00239 
Kao, H., and Jian, P. R. (1999), Source parameters of regional earthquakes in Taiwan: July 1995-December 1996, Terrestrial, Atmospheric and Oceanic Sciences, 10(3), 585-604, doi:10.3319/TAO.1999.10.3.585(T)
Kao, H., and Jian, P. R. (2001), Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data, Tectonophysics, 333(1-2), 179-198, doi:10.1016/S0040-1951(00)00274-2
Kao, H., Jian, P. R., Ma, K. F., Huang, B. S., and Liu, C. C. (1998), Moment‐tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophysical Research Letters, 25(19), 3619-3622, doi:10.1029/98GL02803
Kao, H., Liu, Y. H., and Jian, P. R. (2001), Source parameters of regional earthquakes in Taiwan: January-December, 1997, Terrestrial, Atmospheric and Oceanic Sciences, 12(2), 431-439, doi:10.3319/TAO.2001.12.2.431(T)
Kao, H., and Rau, R. J. (1999), Detailed structures of the subducted Philippine Sea plate beneath northeast Taiwan: a new type of double seismic zone, Journal of Geophysical Research: Solid Earth, 104(B1), 1015-1033, doi:10.1029/1998JB900010
Kao, H., Shen, S. s. J., and Ma, K. F. (1998), Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc‐Taiwan region, Journal of Geophysical Research: Solid Earth, 103(B4), 7211-7229, doi:10.1029/97JB03510
Kao, H., and Wu, F. T. (1996), The 16 September 1994 Earthquake (m b= 6.5) in the Taiwan Strait and Its Tectonic Implications, Terrestrial, Atmospheric and Oceanic Sciences, 7(1), 13-29, doi:10.3319/TAO.1996.7.1.13(T)
Kennet, B. (1991), IASPEI 1991 seismological tables, Terra Nova, 3(2), 122-122, doi:10.1111/j.1365-3121.1991.tb00863.x 
Kim, K. H., Chiu, J. M., Kao, H., Liu, Q., and Yeh, Y. H. (2004), A preliminary study of crustal structure in Taiwan region using receiver function analysis, Geophysical Journal International, 159(1), 146-164, doi:10.1111/j.1365-246X.2004.02344.x
Knopoff, L., and Randall, M. J. (1970), The compensated linear‐vector dipole: A possible mechanism for deep earthquakes, Journal of Geophysical Research, 75(26), 4957-4963, doi:10.1029/JB075i026p04957
Kubo, A., and Fukuyama, E. (2003), Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes, Earth and Planetary Science Letters, 210(1-2), 305-316, doi:10.1016/s0012-821x(03)00132-8
Kuo, Y. W., Wang, C. Y., Kuo-Chen, H., Jin, X., Cai, H. T., Lin, J. Y., Wu, F. T., Yen, H. Y., Huang, B. S., Liang, W.-T., Okaya, D., and Brown, L. (2016), Crustal structures from the Wuyi-Yunkai orogen to the Taiwan orogen: The onshore-offshore wide-angle seismic experiments of the TAIGER and ATSEE projects, Tectonophysics, 692, 164-180, doi:10.1016/j.tecto.2015.09.014
Lan, C. Y., Lee, T., and Wang-Lee, C. M. (1990), The Rb-Sr isotopic record in Taiwan gneisses and its tectonic implication, Tectonophysics, 183(1-4), 129-143.
Lee, S. J., Liang, W. T., Cheng, H. W., Tu, F. S., Ma, K.-F., Tsuruoka, H., Kawakatsu, H., Huang, B. S., and Liu, C. C. (2014), Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan, Geophysical Journal International, 196(1), 432-446, doi:10.1093/gji/ggt371
Lee, T. Y., and Lawver, L. A. (1994), Cenozoic plate reconstruction of the South China Sea region, Tectonophysics, 235(1-2), 149-180, doi:10.1016/0040-1951(94)90022-1
Lin, A. T., and Watts, A. B. (2002), Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, Journal of Geophysical Research: Solid Earth, 107(B9), ETG 2-1-ETG 2-19, doi:10.1029/2001jb000669
Lin, A. T., Watts, A. B., and Hesselbo, S. P. (2003), Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, 15(4), 453-478, doi:10.1046/j.1365-2117.2003.00215.x
Lin, J. Y., Sibuet, J. C., and Hsu, S. K. (2005), Distribution of the East China Sea continental shelf basins and depths of magnetic sources, Earth, planets and space, 57(11), 1063-1072, doi:10.1186/BF03351885
Liu, C. S., Liu, S. Y., Lallemand, S. E., Lundberg, N., and Reed, D. L. (1998), Digital elevation model offshore Taiwan and its tectonic implications, Terrestrial, Atmospheric and Oceanic Sciences, 9(4), 705-738, doi:10.3319/TAO.1998.9.4.705(TAICRUST)
Nettles, M., and Ekström, G. (1998), Faulting mechanism of anomalous earthquakes near Bárdarbunga Volcano, Iceland, Journal of Geophysical Research: Solid Earth, 103(B8), 17973-17983, doi:10.1029/98JB01392
Silver, P. G., and Jordan, T. H. (1982), Optimal estimation of scalar seismic moment, Geophysical Journal International, 70(3), 755-787, doi:10.1111/j.1365-246X.1982.tb05982.x
Spikin, S. A. (1986), Estimation of earthquake source parameters by the inversion of waveform data: global seismicity, 1981-1983, Bulletin of the Seismological Society of America, 76(6), 1515-1541.
Suppe, J. (1980). A retrodeformable cross section of northern Taiwan. Paper presented at the Proc. Geol. Soc. China.
Teng, L. S. (1990), Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183(1-4), 57-76, doi:10.1016/0040-1951(90)90188-E
Tseng, T. L., Hsu, H. C., Jian, P. R., Huang, B. S., Hu, J. C., and Chung, S.-L. (2016), Focal mechanisms and stress variations in the Caucasus and northeast Turkey from constraints of regional waveforms, Tectonophysics, 691, 362-374, doi:10.1016/j.tecto.2016.10.028
Wang, H. L., Zhu, L., and Chen, H. W. (2010), Moho depth variation in Taiwan from teleseismic receiver functions, Journal of Asian Earth Sciences, 37(3), 286-291, doi:10.1016/j.jseaes.2009.08.015
Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., and Nakamura, M. (2008), A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005, Bulletin of the Seismological Society of America, 98(3), 1471-1481, doi:10.1785/0120070166
Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274(1-3), 41-59, doi:10.1016/S0040-1951(96)00297-1
Zhang, Y. F., Kuo-Chen, H., Alvarez-Marron, J., Brown, D., Lin, A. T., Xie, Z. Z., and Jin, X. (2020), Imaging active faulting in the western Taiwan Strait, Scientific Reports, 10(1), 3703, doi:10.1038/s41598-020-60666-3
Zhao, L. S., and Helmberger, D. V. (1994), Source estimation from broadband regional seismograms, Bulletin of the Seismological Society of America, 84(1), 91-104.
Zheng, T. Y., Ai, Y. S., and Chen, Q. Z. (1998), The 16 September 1994 Taiwan Strait earthquake: a simple rupture event starting as a break of asperity, Physics of the earth and planetary interiors, 107(4), 269-284, doi:10.1016/S0031-9201(98)00085-5
Zhu, L. P., and Helmberger, D. V. (1996), Advancement in source estimation techniques using broadband regional seismograms, Bulletin of the Seismological Society of America, 86(5), 1634-1641.  
Zhu, L. P., and Rivera, L. A. (2002), A note on the dynamic and static displacements from a point source in multilayered media, Geophysical Journal International, 148(3), 619-627, doi:10.1046/j.1365-246X.2002.01610.x
李霞(2013),福建省大地構造單元劃分及基本特徵,世界地質,第32卷,第3期,第549-557頁。
林玉儂(2005),1935年新竹臺中烈震(MGR=7.1)之地表變形與發震構造,國立臺灣大學地質科學研究所碩士論文,共82頁。
徐輝龍、夏少紅、孫金龍、丘學林、曹敬賀(2012),南海北部海陸聯合深地震探測及其地質學意義,熱帶海洋學報,第31卷,第3期,第21-27頁。
許炘志(2013),以區域波形震源逆推探討高加索至東土耳其之應力變化,國立臺灣大學地質科學研究所碩士論文,共110頁。
陳硯歆(2010),台灣海峽震源機制及其應力狀態,國立臺灣大學地質科學研究所碩士論文,共113頁。
黃昭、王善雄(2006),臺灣海峽濱海斷裂帶的構造特徵與活動性,大地測量與地球動力學,第26卷,第3期,第16-22頁。
黃卿團、鄭韶鵬(2006),福建東南沿海及領區活動斷裂的微地貌研究,地球物理學進展,第21卷,第4期,1099-1107。
鄭克(2019),臺灣海峽濱海斷裂帶地質構造特徵,海洋地質與第四紀地質,第39卷,第6卷,第72-80頁。
鄭世楠、江嘉豪、陳燕玲(2012),台灣地區歷史地震資料的建置,中央氣象局地震技術報告彙編,第60卷,第427-448頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8286-
dc.description.abstract臺灣由歐亞板塊與菲律賓海板塊聚合斜向碰撞而成,地震活動活躍,發生於臺灣島內的中小規模地震可利用台灣地震網資料加以約束震源機制解,但臺灣外海地區的地震往往面臨測站方位角包覆上的限制。為了更瞭解地體構造,本研究使用更確切的震源位置、較適合區域構造之速度模型及更廣的測站方位角包覆性,以區域波形逆推法計算臺灣海峽及琉球隱沒帶南段兩個外海地區的震源機制。
針對臺灣海峽地區,本研究系統性分析1996年至2018年芮氏規模大於3.5的地震事件,包含2018年11月25日 Mw 5.7的臺灣灘地震序列,同時使用福建與臺灣地震觀測網的波形資料,共提供21筆新的震源機制解。在琉球隱沒帶南段地區則分析規模5以上之中深層地震,額外加入日本觀測網的YNG和IGK測站波形資料進行逆推,同時也針對速度模型中的上部地函速度層做測試。在兩個區域的結果均顯示,以加站方式擴大觀測網的包覆性之時,對CLVD有明顯改善,而波形誤差值則是略為增高。調整速度模型則對少數地震的CLVD產生影響,誤差值卻不變。最後的震源機制與初始相比,旋轉角在海峽較明顯(平均差26度),南琉球隱沒帶變化約20度。
研究結果顯示深度大於190 km深的隱沒帶地震適用地函速度層更接近IASP91的速度模型,鄰近臺灣濱海地區與較淺的地震則可用原始簡易三層速度模型(莫荷面位於40 km)。震源機制可知板塊內部應力發生改變,深度80-120 km呈現地震沿板塊傾沒方向一致的伸張應力(down-dip extension),而深度超過230 km的地震則全部轉為傾沒壓縮應力(down-dip compression)。針對海峽地區,海峽中部地區使用莫荷面位於30或35 km速度模型得到整體較佳之最終解;而震央位置較靠近臺灣及臺灣沿岸地區之地震,則大多使用莫荷面40 km。
本研究綜合前人結果彙整臺灣海峽地區震源機制44筆,主要屬於歐亞被動大陸邊緣的地殼內淺震。其中苗栗外海一帶有與造山變形前緣有關的極淺逆衝地震;新竹臺中外海以帶走滑的逆衝為主;西南濱海地區則有走滑,以及與早期歐亞大陸邊緣因荷重增加產生撓曲並在附近造成的正斷層;臺南盆地是海峽地震活躍區,主要為正斷層兼有少許走滑移,可能為西北傾的斷層面;臺灣灘地震序列幾乎皆為走滑型態淺震(深度11-21 km),較符合福建地震局目錄的餘震分布,斷層面應為東西走向;濱海斷裂系統附近則有正斷層及走向滑移,型態較零散。在構造應力方面,苗栗外海主壓縮應力軸為西北-東南向,臺南濱海地區為東北-西南向或東-西向臺灣灘主餘震序列之主應力軸方向則主要為西北-東南向。
zh_TW
dc.description.abstractTaiwan is a seismically active region formed by the oblique convergence between Philippine Sea Plate and Eurasia Plate. The focal mechanisms of most small-moderate sized earthquakes can be well constrained by the local seismic array of Taiwan, except for those occurred offshore Taiwan where azimuthal coverage is limited. To better understand the tectonic structures, it is desirable to improve the focal mechanisms using reasonable velocity models and the best available stations for well-located events based on waveform inversion. In this study we focus on the shallow earthquakes in Taiwan Strait and the intermediate-depth earthquakes in the southernmost Ryukyu subduction zone.
For Taiwan Strait region, we systematically studied earthquakes from 1996 to 2018, including the Mw5.7 Taiwan Shoal sequence happened on 2018/11/25. A total of 21 new moment tensors (MTs) were resolved by combining Fujian and Taiwan seismic networks from either side of the strait. As for the southern Ryukyu subduction zone, we evaluate the MTs of M≥5 intermediate-depth earthquakes of the Ryukyu subduction zone by including waveforms of stations YNG and IGK from Japan network. In the inversion, we test models with different upper mantle velocities as well. The overall results show that as azimuthal coverage improved by enlarging the network, the compensated linear vector dipole (CLVD) components can be reduced significantly but the misfit value is increased slightly. Modifying the velocity has little effect on the CLVD and the average misfit is almost unchanged. When compared to the original MTs, our final solutions are generally rotated by ~26 degrees for events in the Taiwan Strait and 20 degrees in the southern Ryukyu subudution zone.
Our study indicates that the events deeper than 190 km in the subduction zone prefer model with upper mantle velocity closer to that of the IASP91. In contrast, the shallower events near the Taiwan’s coastal area can be well simulatedwith the simple 3-layer model with Moho at 40 km and a half-space upper mantle originally designed for Taiwan region. The resulting focal mechanisms reveal that stress in the subducting slab varies with depth. Between depth of 80-120 km, the earthquakes show extension axis aligned with the dip of slab (down-dip extension). When depth is greater than 230 km, the stress of all earthquakes turn 180 degrees to down-dip compression.
By combining results of previous studies, we compile a total of 44 well-constrained focal mechanisms in Taiwan Strait region. These events are mainly shallow crustal earthquakes under the passive margin of Eurasia. There is a sequence of extremely shallow thrusting events in the offshore Miaoli area of Taiwan that are associated with the deformation front formed by collision. Further to the south, earthquakes in offshore Hsinchu and Taichung are dominant in strike-slips. In offshore region of southwestern Taiwan, both strike-slip and normal events are present. The latter is related to bending caused by gravity load on the continental margin. In Taiwan Strait areas, Tainan Basin is relatively active in seismicity. Earthquakes there are mostly normal faulting with minor strike-slip component. The causal faults likely dip to the north. Events near the Binhai Fault system show complex focal mechanisims. The 2018 Taiwan Shoal earthquake sequence show high angle strike-slips and shallow centroid depth of 11-21 km, more consistent with aftershock distribution determined by Fujian seismic center. The inferred fault plane is E-W striking, also consistent with the previous study. Overall, the orientation of P axis are NW-SE off shore Miaoli, NE-SW in the offshore area of southwestern Taiwan, and NW-SE in Taiwan Shoal.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:51:22Z (GMT). No. of bitstreams: 1
U0001-0808202015293600.pdf: 85874574 bytes, checksum: 1f28ff9d9a14fac13c720d08317ba47e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 ix
表目錄 xii
第1章 緒論 1
1.1 研究動機與目的 1
1.2 臺灣海峽之構造簡介與前人研究 5
1.3 琉球隱沒帶之簡介與前人研究 12
1.4 本文內容 17
第2章 研究方法 18
2.1 地震矩張量 19
2.2 震源機制與地震矩張量的關係 22
2.3 觀測波形與震源的關係 24
2.4 格林函數 26
2.5 逆推方法 26
第3章 資料與分析 29
3.1 地震資料來源 29
3.1.1 波形資料與測站分布 29
3.1.2 地震目錄與篩選 30
3.2 前置資料處理與資料品質檢視 40
3.3 速度模型 41
3.3.1 臺灣海峽之速度模型設定 41
3.3.2 琉球隱沒帶南段之速度模型設定 44
3.4 逆推程序與頻寬設定 47
第4章 結果與討論 51
4.1 整體震源機制之改進 51
4.1.1 臺灣海峽地區震源機制之改進 52
4.1.2 琉球隱沒帶南段地區震源機制之改進與分析 61
4.2 臺灣海峽震源機制與地體構造的關聯性 73
4.2.1 臺灣海峽整體逆推震源機制結果 73
4.2.2 苗栗外海主餘震序列 77
4.2.3 臺南濱海區域地震 78
4.2.4 臺南盆地區域地震 78
4.2.5 福建及海峽西部地震與濱海斷裂帶 80
4.2.6 臺灣淺灘主餘震序列 84
第5章 結論 95
參考文獻 97
附錄A 測站資訊 105
附錄B 南琉球隱沒帶地區逆推結果之地震震源參數 107
附錄C 臺灣海峽地區逆推結果之地震震源參數 119
dc.language.isozh-TW
dc.title利用多重地震觀測網之寬頻波形資料改進臺灣海峽及琉球隱沒帶南段地區之震源機制zh_TW
dc.titleImproving Focal Mechanisms for Earthquakes in Taiwan Strait and Southern Ryukyu Subduction Zone with Broadband Waveforms of Combined Networksen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃柏壽(Bor-Shouh Huang),梁文宗(Wen-Tzong Liang),簡珮如(Pei-Ru Jian),郭陳澔(Hao Kuo-Chen)
dc.subject.keyword臺灣海峽,震源機制,地震矩張量逆推,琉球隱沒帶,板塊構造應力,zh_TW
dc.subject.keywordTaiwan Strait,focal mechanisms,moment tensor inversion,Ryukyu subduction zone,tecontic stress,en
dc.relation.page122
dc.identifier.doi10.6342/NTU202002682
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2025-08-08-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-0808202015293600.pdf83.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved