Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82819
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民(Yih-Min Wu)
dc.contributor.authorHao-Yun Huangen
dc.contributor.author黃皓昀zh_TW
dc.date.accessioned2022-11-25T08:00:17Z-
dc.date.copyright2021-11-12
dc.date.issued2021
dc.date.submitted2021-09-07
dc.identifier.citation1. Allen, R. M., Kanamori, H. (2003). The potential for earthquake early warning in southern California. Science, 300(5620), 786-789. 2. Allen, R. M., Melgar, D. (2019). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 47, 361-388. 3. Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521-1532. 4. Campbell, K. W., Bozorgnia, Y. (2010). A ground motion prediction equation for the horizontal component of cumulative absolute velocity (CAV) based on the PEER-NGA strong motion database. Earthquake Spectra, 26(3), 635-650. 5. Cooper, J. D. (1868). Letter to editor. San Francisco Daily Evening Bulletin, Nov. 3. 6. Danciu, L., Tselentis, G. A. (2007). Engineering ground-motion parameters attenuation relationships for Greece. Bulletin of the Seismological Society of America, 97(1B), 162-183. 7. Du, W., Wang, G. (2013). A simple ground‐motion prediction model for cumulative absolute velocity and model validation. Earthquake engineering structural dynamics, 42(8), 1189-1202. 8. Electrical Power Research Institute (1988). A Criterion for Determining Exceedance of the Operating Basis Earthquake (No. EPRI-NP--5930). 9. Electrical Power Research Institute (1991). Standardization of the Cumulative Absolute Velocity (No. EPRI-TR--100082-T2). 10. Electrical Power Research Institute (2006). Program on Technology Innovation: Use of Cumulative Absolute Velocity (CAV) in Determining Effects of Small Magnitude Earthquakes on Seismic Hazard Analyses (No. EPRI--1014099). 11. Erdik, M., Fahjan, Y., Ozel, O., Alcik, H., Mert, A., Gul, M. (2003). Istanbul earthquake rapid response and the early warning system. Bulletin of earthquake engineering, 1(1), 157-163. 12. Espinosa Aranda, J. M., Jimenez, A., Ibarrola, G., Alcantar, F., Aguilar, A., Inostroza, M., Maldonado, S. (1995). Mexico City seismic alert system. Seismological Research Letters, 66, 42-53. 13. Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66(5), 1501-1523. 14. Hanks, T. C., Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350. 15. Heaton, T. H. (1985). A model for a seismic computerized alert network. Science, 228(4702), 987-990. 16. Heaton, T. H., Tajima, F., Mori, A. W. (1986). Estimating ground motions using recorded accelerograms. Surveys in Geophysics, 8(1), 25-83. 17. Hsieh, C. Y., Chao, W. A., Wu, Y. M. (2015). An examination of the threshold-based earthquake early warning approach using a low-cost seismic network. Seismological Research Letters, 86(6), 1664-1667. 18. Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. 19. Kanamori, H. (2005). Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci., 33, 195-214. 20. Kanamori, H., Maechling, P., Hauksson, E. (1999). Continuous monitoring of ground-motion parameters. Bulletin of the Seismological Society of America, 89(1), 311-316. 21. Kostov, M. K. (2005). Site specific estimation of cumulative absolute velocity. In Proc. of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) (pp. 3041–3050). Beijing-China. 22. Kramer, S. L., Mitchell, R. A. (2006). Ground motion intensity measures for liquefaction hazard evaluation. Earthquake Spectra, 22(2), 413-438. 23. Lin, T. L., Wu, Y. M. (2012). A fast magnitude estimation for the 2011 Mw 9.0 great Tohoku earthquake. Seismological Research Letters, 83(4), 666-671. 24. Nakamura, Y. (1988). On the urgent earthquake detection and alarm system (UrEDAS). In Proc. of the 9th World Conference on Earthquake Engineering (Vol. 7, pp. 673-678). Tokyo‐Kyoto. 25. Nakamura, Y. (1989). Earthquake alarm system for Japan railways. Japanese Railway Engineering, (109), 1-7. 26. Olson, E. L., Allen, R. M. (2005). The deterministic nature of earthquake rupture. Nature, 438(7065), 212-215. 27. Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 1-32. 28. SATO, T., HIRASAWA, T. (1973). Body wave spectra from propagating shear cracks. Journal of Physics of the Earth, 21(4), 415-431. 29. Satriano, C., Wu, Y. M., Zollo, A., Kanamori, H. (2011). Earthquake early warning: Concepts, methods and physical grounds. Soil Dynamics and Earthquake Engineering, 31(2), 106-118. 30. Shin, T. C. (1993). The calculation of local magnitude from the simulated Wood-Anderson seismograms of the short-period seismograms in the Taiwan area. Terrestrial, Atmospheric and Oceanic Sciences, 4(2), 155-170. 31. Tsuboi, S., Abe, K., Takano, K., Yamanaka, Y. (1995). Rapid determination of Mw from broadband P waveforms. Bulletin of the Seismological Society of America, 85(2), 606-613. 32. Tsuboi, S., Whitmore, P. M., Sokolowski, T. J. (1999). Application of Mwp to deep and teleseismic earthquakes. Bulletin of the Seismological Society of America, 89(5), 1345-1351. 33. Wu, Y. M., Kanamori, H. (2005a). Experiment on an onsite early warning method for the Taiwan early warning system. Bulletin of the Seismological Society of America, 95(1), 347-353. 34. Wu, Y. M., Kanamori, H. (2005b). Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bulletin of the Seismological Society of America, 95(3), 1181-1185. 35. Wu, Y. M., Kanamori, H. (2008a). Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth, Planets and Space, 60(2), 155-160. 36. Wu, Y. M., Kanamori, H. (2008b). Development of an earthquake early warning system using real-time strong motion signals. Sensors, 8(1), 1-9. 37. Wu, Y. M., Teng, T. L. (2004). Near real-time magnitude determination for large crustal earthquakes. Tectonophysics, 390(1-4), 205-216. 38. Wu, Y. M., Zhao, L. (2006). Magnitude estimation using the first three seconds P‐wave amplitude in earthquake early warning. Geophysical Research Letters, 33, L16312. 39. Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., Nakamura, M. (2008). A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471-1481. 40. Wu, Y. M., Kanamori, H., Allen, R. M., Hauksson, E. (2007). Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophysical Journal International, 170(2), 711-717. 41. Wu, Y. M., Shin, T. C., Chang, C. H. (2001). Near real-time mapping of peak ground acceleration and peak ground velocity following a strong earthquake. Bulletin of the Seismological Society of America, 91(5), 1218-1228. 42. Wu, Y. M., Teng, T. L., Shin, T. C., Hsiao, N. C. (2003). Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386-396. 43. Wu, Y. M., Yen, H. Y., Zhao, L., Huang, B. S., Liang, W. T. (2006). Magnitude determination using initial P waves: A single‐station approach. Geophysical Research Letters, 33, L05306. 44. 中央氣象局 (2019)。震度新分級應變更實用。交通部中央氣象局新聞稿,編號:中象108字第32號。 45. 鄭世楠、王子賓、林祖慰、江嘉豪 (2010)。台灣地區地震目錄的建置。交通部中央氣象局地震技術報告彙編,第54卷,第575-605頁。 46. 顏心儀 (2006)。利用台灣寬頻地震網從事強震預警研究。國立台灣大學理學院地質科學研究所,共61頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82819-
dc.description.abstract"即時的規模估計在地震預警中是重要的任務之一,地震預警方法可分為現地型及區域型。現地型方法是基於初始P波訊息去預估來襲的地動大小,在破壞性的波到達前,將提供震源附近的預警訊息,但準確度的不確定性相對較大。前人研究利用最終累積絕對速度 (Final Cumulative Absolute Velocity, CAVF)來決定等當量的地震矩規模 (equivalent moment magnitude, Mew),其規模估計的準確度最高可應用在地震矩規模 (MW, Global Centroid Moment Tensor)為9.0的日本東北大地震,且對於大地震沒有規模飽和的現象。其中,CAVF是個用來描述地震紀錄中有效強地動之總和的地動參數。然而,前人決定CAVF所花費的時間並不適用於地震預警上的應用。為了縮短計算CAVF的時間,本研究利用台灣地區芮氏規模 (ML)大於5.5的64筆地震事件,一共4,754筆來自台灣自由場強地動觀測網 (Taiwan free-field Strong-Motion Instrumentation Program network, TSMIP network)的強地動紀錄,基於現地型預警的方法,建立在P波到時後間隔一秒到二十秒時窗的五個初始地動參數的組合 (CAV, Cumulative Absolute Displacement, Cumulative Absolute Absement, Pd, and τc)與CAVF的線性關係式。結果顯示,CAVF可透過五個初始地動參數的組合來預估,而隨著時窗增加,估計與實際的CAVF在對數上的相關係數從0.77變化到0.97,標準差從0.25變化到0.10。在規模估計的結果中,任一時窗下,Mew與MW的相關係數大約在0.91左右,標準差大約在0.23左右。第一秒時窗下,Mew的準確度最高可應用在MW6.8成功地震,以及找到集集主震之規模下限值為7.0,有效縮短前人在預估MW所花費時間。當地震發生後,本研究結果將對於震央距30km以外的區域能即時給予規模資訊,達預警之功效。此外,在預估最大地動速度 (Peak Ground Velocity, PGV)上,發現到估計的CAVF比起常見的Pd是更佳的指標。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T08:00:17Z (GMT). No. of bitstreams: 1
U0001-0209202116560100.pdf: 9505164 bytes, checksum: bc48c2f40380b71065c922325a3e1d21 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xii 第 1 章 緒論 1 1.1 前言 1 1.1.1 地震預警的發展與應用 1 1.1.2 地震規模與估計上的限制 3 1.1.3 累積絕對速度之文獻回顧 8 1.2 研究動機與目的 12 第 2 章 研究資料 13 2.1 地震事件與強地動紀錄 13 2.2 資料前處理 18 第 3 章 研究方法 19 3.1 研究流程 20 3.2 五個地動參數之組合建立 22 3.3 經驗關係式之建立 26 第 4 章 結果與分析 27 4.1 估計與實際的CAVF 27 4.1.1 時窗與Te 30 4.1.2 規模分組下的關係 32 4.2 估計與實際的MW 40 4.2.1 殘差分析 44 第 5 章 討論 47 5.1 預估CAVF之測試結果 47 5.1.1 單一參數 47 5.1.2 不同組合 49 5.2 估計的CAVF與PGV 54 5.3 發震時間後之規模估計 56 5.4 地震事件測試 59 5.4.1 事件簡介與測試流程 59 5.4.2 2020/02/15 MW5.3 壽豐地震 60 5.4.3 2020/11/06 MW5.0 台東地震 66 第 6 章 結論 71 參考文獻 72 附錄A CAVF與震度之關係 77 附錄B TSMIP測站目錄 80 附錄C 估計的地震矩規模 87 附錄D 發震時間後之規模殘差 89
dc.language.isozh-TW
dc.title台灣地區累積絕對速度於地震規模估計及預警之應用zh_TW
dc.titleEarthquake Magnitude Estimation and Early Warning using Cumulative Absolute Velocity in Taiwanen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-2141-4603
dc.contributor.advisor-orcid吳逸民(0000-0003-4542-1741)
dc.contributor.oralexamcommittee温士忠(Hsin-Tsai Liu),黃信樺(Chih-Yang Tseng),陳達毅
dc.subject.keyword地震,即時地震學,地震預警,累積絕對速度,zh_TW
dc.subject.keywordearthquake,real-time seismology,earthquake early warning,cumulative absolute velocity,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202102961
dc.rights.note未授權
dc.date.accepted2021-09-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2024-09-10-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-0209202116560100.pdf
  目前未授權公開取用
9.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved