Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇(Eric Y. Chuang)
dc.contributor.authorCHIA-CHUN Wuen
dc.contributor.author吳嘉峻zh_TW
dc.date.accessioned2022-11-25T07:59:56Z-
dc.date.copyright2021-11-12
dc.date.issued2021
dc.date.submitted2021-09-10
dc.identifier.citation[1] World Health Organization. (2020). Global tuberculosis report 2020. https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf [2] Orvankundil, S., Jose, B., Yacoob, F., Sreenivasan, S. (2019). Culture positivity of smear negative pulmonary and extrapulmonary tuberculosis- A study from North Kerala, India. Journal of Family Medicine and Primary Care, 8(9), 2903. https://doi.org/10.4103/jfmpc.jfmpc_424_19 [3] Desikan, P. (2013). Sputum smear microscopy in tuberculosis: Is it still relevant? The Indian Journal of Medical Research, 137(3), 442–444. [4] Parsons, L. M., Somoskövi, Á., Gutierrez, C., Lee, E., Paramasivan, C. N., Abimiku, A., Spector, S., Roscigno, G., Nkengasong, J. (2011). Laboratory Diagnosis of Tuberculosis in Resource-Poor Countries: Challenges and Opportunities. Clinical Microbiology Reviews, 24(2), 314–350. https://doi.org/10.1128/CMR.00059-10 [5] TB CARE I. (2014). International Standards for Tuberculosis Care, Edition 3. TB CARE I, The Hague. https://www.who.int/tb/publications/ISTC_3rdEd.pdf?ua=1 [6] Van Deun, A., Hamid Salim, A., Aung, K. J. M., Hossain, M. A., Chambugonj, N., Hye, M. A., Kawria, A., Declercq, E. (2005). Performance of variations of carbolfuchsin staining of sputum smears for AFB under field conditions. The International Journal of Tuberculosis and Lung Disease: The Official Journal of the International Union Against Tuberculosis and Lung Disease, 9(10), 1127–1133. [7] Asmar, S., Drancourt, M. (2015). Rapid culture-based diagnosis of pulmonary tuberculosis in developed and developing countries. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01184 [8] Lumb, R., Van, D. A., Bastian, I., Fitz-Gerald, M. (2013). The Handbook: Laboratory diagnosis of tuberculosis by sputum microscopy. SA Pathology. http://www.stoptb.org/wg/gli/assets/documents/tb%20microscopy%20handbook_final.pdf [9] Steingart, K. R., Henry, M., Ng, V., Hopewell, P. C., Ramsay, A., Cunningham, J., Urbanczik, R., Perkins, M., Aziz, M. A., Pai, M. (2006). Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. The Lancet Infectious Diseases, 6(9), 570–581. https://doi.org/10.1016/S1473-3099(06)70578-3 [10] Reza, L. W., Satyanarayna, S., Enarson, D. A., Kumar, A. M. V., Sagili, K., Kumar, S., Prabhakar, L. A., Devendrappa, N. M., Pandey, A., Wilson, N., Chadha, S., Thapa, B., Sachdeva, K. S., Kohli, M. P. (2013). LED-Fluorescence Microscopy for Diagnosis of Pulmonary Tuberculosis under Programmatic Conditions in India. PLoS ONE, 8(10), e75566. https://doi.org/10.1371/journal.pone.0075566 [11] Francis V., Michael L. R. (2017). Tuberculosis: Practical guide for clinicians, nurses, laboratory technicians and medical auxiliaries. Médecins Sans Frontières and Partners in Health. https://medicalguidelines.msf.org/viewport/TUB/latest/tuberculosis-20321086.html [12] World Health Organization. (2011). Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis: policy statement. http://apps.who.int/iris/bitstream/handle/10665/44602/9789241501613_eng.pdf%3Bjsessionid%3D2A6A754227BE7EBF4BA61520EBA1A92F%3Fsequence%3D1 [13] Fujita, H. (2020). AI-based computer-aided diagnosis (AI-CAD): The latest review to read first. Radiological Physics and Technology, 13(1), 6–19. https://doi.org/10.1007/s12194-019-00552-4 [14] Sinha, N., Ramakrishnan, A. G. (2003). Automation of differential blood count. TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, 547–551. https://doi.org/10.1109/TENCON.2003.1273221 [15] Murphy, K., Habib, S. S., Zaidi, S. M. A., Khowaja, S., Khan, A., Melendez, J., Scholten, E. T., Amad, F., Schalekamp, S., Verhagen, M., Philipsen, R. H. H. M., Meijers, A., van Ginneken, B. (2020). Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Scientific Reports, 10(1), 5492. https://doi.org/10.1038/s41598-020-62148-y [16] Kharat, A., Duddalwar, V., Saoji, K., Gaikwad, A., Kulkarni, V., Naik, G., Lokwani, R., Kasliwal, S., Kondal, S., Gupte, T., Pant, A. (2020). Role of Edge Device and Cloud Machine Learning in Point-of-Care Solutions Using Imaging Diagnostics for Population Screening. arXiv:2006.13808 [cs, eess]. http://arxiv.org/abs/2006.13808 [17] Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., Pfeiffer, D. (2019). Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Scientific Reports, 9(1), 6268. https://doi.org/10.1038/s41598-019-42557-4 [18] Lewis, J. J., Chihota, V. N., van der Meulen, M., Fourie, P. B., Fielding, K. L., Grant, A. D., Dorman, S. E., Churchyard, G. J. (2012). ““Proof-Of-Concept” Evaluation of an Automated Sputum Smear Microscopy System for Tuberculosis Diagnosis. PLoS ONE, 7(11), e50173. https://doi.org/10.1371/journal.pone.0050173 [19] Khutlang, R., Krishnan, S., Whitelaw, A., Douglas, T. S. (2010). Automated detection of tuberculosis in Ziehl-Neelsen-stained sputum smears using two one-class classifiers. Journal of Microscopy, 237(1), 96–102. https://doi.org/10.1111/j.1365-2818.2009.03308.x [20] Khutlang, R., Krishnan, S., Dendere, R., Whitelaw, A., Veropoulos, K., Learmonth, G., Douglas, T. S. (2010). Classification of Mycobacterium tuberculosis in Images of ZN-Stained Sputum Smears. IEEE Transactions on Information Technology in Biomedicine, 14(4), 949–957. https://doi.org/10.1109/TITB.2009.2028339 [21] Xiong, Y., Ba, X., Hou, A., Zhang, K., Chen, L., Li, T. (2018). Automatic detection of mycobacterium tuberculosis using artificial intelligence. Journal of Thoracic Disease, 10(3), 1936–1940. https://doi.org/10.21037/jtd.2018.01.91 [22] Horvath, L., Hänselmann, S., Mannsperger, H., Degenhardt, S., Last, K., Zimmermann, S., Burckhardt, I. (2020). Machine-assisted interpretation of auramine stains substantially increases through-put and sensitivity of microscopic tuberculosis diagnosis. Tuberculosis, 125, 101993. https://doi.org/10.1016/j.tube.2020.101993 [23] Shen, D., Wu, G., Suk, H.-I. (2017). Deep learning in Medical Image Analysis. Annual Review of Biomedical Engineering, 19(1), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442 [24] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386 [25] Ganapathy, N., Swaminathan, R., Deserno, T. (2018). Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. Yearbook of Medical Informatics, 27(01), 098–109. https://doi.org/10.1055/s-0038-1667083 [26] Cai, L., Gao, J., Zhao, D. (2020). A review of the application of deep learning in medical image classification and segmentation. Annals of Translational Medicine, 8(11), 713–713. https://doi.org/10.21037/atm.2020.02.44 [27] Lundervold, A. S., Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Für Medizinische Physik, 29(2), 102–127. https://doi.org/10.1016/j.zemedi.2018.11.002 [28] Gao, X. W., Hui, R., Tian, Z. (2017). Classification of CT brain images based on deep learning networks. Computer Methods and Programs in Biomedicine, 138, 49–56. https://doi.org/10.1016/j.cmpb.2016.10.007 [29] Jaiswal, A. K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A., Rodrigues, J. J. P. C. (2019). Identifying pneumonia in chest X-rays: A deep learning approach. Measurement, 145, 511–518. https://doi.org/10.1016/j.measurement.2019.05.076 [30] Iizuka, O., Kanavati, F., Kato, K., Rambeau, M., Arihiro, K., Tsuneki, M. (2020). Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Scientific Reports, 10(1), 1504. https://doi.org/10.1038/s41598-020-58467-9 [31] Chokmani, K., Khalil, B., Ouarda, T., Bourdages, R. (2007). Estimation of River Ice Thickness Using Artificial Neural Networks. [32] Choi, R., Coyner, A., Kalpathy-Cramer, J., Chiang, M., Campbell, J. (2020). Introduction to Machine Learning, Neural Networks, and Deep Learning. Translational Vision Science Technology, 9(2), 14–14. https://doi.org/10.1167/tvst.9.2.14. [33] Albawi, S., Mohammed, T. A., Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186 [34] Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S. (2018). Activation Functions: Comparison of trends in Practice and Research for Deep Learning. arXiv:1811.03378 [cs]. http://arxiv.org/abs/1811.03378 [35] Shin, H.-C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., Summers, R. M. (2016). Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation. arXiv:1603.08486 [cs]. http://arxiv.org/abs/1603.08486 [36] Wu, G., Kim, M., Wang, Q., Munsell, B. C., Shen, D. (2016). Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning. IEEE Transactions on Biomedical Engineering, 63(7), 1505–1516. https://doi.org/10.1109/TBME.2015.2496253 [37] The Alzheimer’s Disease Neuroimaging Initiative, Suk, H.-I., Lee, S.-W., Shen, D. (2015). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220(2), 841–859. https://doi.org/10.1007/s00429-013-0687-3 [38] Suk, H.-I., Lee, S.-W., Shen, D. (2014). Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis. NeuroImage, 101, 569–582. https://doi.org/10.1016/j.neuroimage.2014.06.077 [39] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. arXiv:1409.0575 [cs]. Retrieved from http://arxiv.org/abs/1409.0575 [40] Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y. L., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., … Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172(5), 1122-1131.e9. https://doi.org/10.1016/j.cell.2018.02.010 [41] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M. P., Ng, A. Y. (2017). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv:1711.05225 [cs, stat]. http://arxiv.org/abs/1711.05225 [42] Simonyan, K., Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556 [cs]. http://arxiv.org/abs/1409.1556 [43] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2014). Going Deeper with Convolutions. arXiv:1409.4842 [cs]. http://arxiv.org/abs/1409.4842 [44] He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs]. http://arxiv.org/abs/1512.03385 [45] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J. (2017). A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv:1704.06857 [cs]. http://arxiv.org/abs/1704.06857 [46] Pang, S., Ding, T., Qiao, S., Meng, F., Wang, S., Li, P., Wang, X. (2019). A novel YOLOv3-arch model for identifying cholelithiasis and classifying gallstones on CT images. PLOS ONE, 14(6), e0217647. https://doi.org/10.1371/journal.pone.0217647 [47] McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A., Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., … Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6 [48] Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580–587. https://doi.org/10.1109/CVPR.2014.81 [49] Girshick, R. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), 1440–1448. https://doi.org/10.1109/ICCV.2015.169 [50] Ren, S., He, K., Girshick, R., Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv:1506.01497 [cs]. http://arxiv.org/abs/1506.01497 [51] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A. C. (2016). SSD: Single Shot Multibox Detector. arXiv:1512.02325 [cs], 9905, 21–37. https://doi.org/10.1007/978-3-319-46448-0_2 [52] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/CVPR.2016.91 [53] Xiao, Y., Tian, Z., Yu, J., Zhang, Y., Liu, S., Du, S., Lan, X. (2020). A review of object detection based on deep learning. Multimedia Tools and Applications, 79(33–34), 23729–23791. https://doi.org/10.1007/s11042-020-08976-6 [54] Thermo Scientific. (2004). Remel TB Auramine-Rhodamine T is a fluorescent stain for microscopic detection of AFB. https://assets.fishersci.com/TFS-Assets/MBD/Instructions/IFU40090.pdf [55] Liu, Y., Sun, P., Wergeles, N., Shang, Y. (2021). A survey and performance evaluation of deep learning methods for small object detection. Expert Systems with Applications, 172, 114602. https://doi.org/10.1016/j.eswa.2021.114602 [56] Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L., Laughing, Tkianai, Hogan, A., Lorenzomammana, YxNONG, AlexWang1900, Diaconu, L., Marc, Wanghaoyang0106, Ml5ah, Doug, Ingham, F., Frederik, … Rai, P. (2020). Ultralytics/yolov5: V3.1 - Bug Fixes and Performance Improvements (v3.1) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.4154370 [57] Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y. M. (2021). Scaled-YOLOv4: Scaling Cross Stage Partial Network. arXiv:2011.08036 [cs]. http://arxiv.org/abs/2011.08036 [58] Tan, M., Pang, R., Le, Q. V. (2020). EfficientDet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079 [59] Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K. (2017). Aggregated Residual Transformations for Deep Neural Networks. arXiv:1611.05431 [cs]. http://arxiv.org/abs/1611.05431 [60] Chang, E., Luelmo, F., Baydulloeva, Z., Joncevska, M., Kasymova, G., Bobokhojaev, O., Mohr, T. (2016). External Quality Assessment of Sputum Smear Microscopy in Tuberculosis Laboratories in Sughd, Tajikistan. Central Asian Journal of Global Health, 4(2). https://doi.org/10.5195/cajgh.2015.230 [61] Macgregor-Skinner, G., Gilpin, C., Iragena, J., Paramasivan, C., Ridderhof, J., Shinnick, T., Deun, A., Weyer, K. (2010). A Roadmap for Ensuring Quality Tuberculosis Diagnostics Services within National Laboratory Strategic Plans. World Health Organization. https://www.who.int/tb/laboratory/gli_roadmap.pdf [62] Bonnet, M., Gagnidze, L., Githui, W., Guérin, P. J., Bonte, L., Varaine, F., Ramsay, A. (2011). Performance of LED-Based Fluorescence Microscopy to Diagnose Tuberculosis in a Peripheral Health Centre in Nairobi. PLoS ONE, 6(2), e17214. https://doi.org/10.1371/journal.pone.0017214 [63] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., Dollár, P. (2015). Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs]. http://arxiv.org/abs/1405.0312 [64] Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., Zhang, L. (2021). D Dynamic Head: Unifying Object Detection Heads with Attentions. arXiv:2106.08322 [cs]. http://arxiv.org/abs/2106.08322 [65] Jha, D., Ali, S., Tomar, N. K., Johansen, H. D., Johansen, D., Rittscher, J., Riegler, M. A., Halvorsen, P. (2021). Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning. IEEE Access, 9, 40496–40510. https://doi.org/10.1109/ACCESS.2021.3063716 [66] Wright, P. W., Wallace, R. J., Wright, N. W., Brown, B. A., Griffith, D. E. (1998). Sensitivity of fluorochrome microscopy for detection of Mycobacterium tuberculosis versus nontuberculous mycobacteria. Journal of Clinical Microbiology, 36(4), 1046–1049. https://doi.org/10.1128/JCM.36.4.1046-1049.1998 [67] Reed, J. L., Basu, D., Butzler, M. A., McFall, S. M. (2017). XtracTB Assay, a Mycobacterium tuberculosis molecular screening test with sensitivity approaching culture. Scientific Reports, 7(1), 3653. https://doi.org/10.1038/s41598-017-03930-3 [68] Cattamanchi, A., Huang, L., Worodria, W., den Boon, S., Kalema, N., Katagira, W., Byanyima, P., Yoo, S., Matovu, J., Hopewell, P. C., Davis, J. L. (2011). Integrated Strategies to Optimize Sputum Smear Microscopy: A Prospective Observational Study. American Journal of Respiratory and Critical Care Medicine, 183(4), 547–551. https://doi.org/10.1164/rccm.201008-1207OC [69] Xie, Q., Luong, M.-T., Hovy, E., Le, Q. V. (2020). Self-training with Noisy Student improves ImageNet classification. arXiv:1911.04252 [cs, stat]. http://arxiv.org/abs/1911.04252
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82803-
dc.description.abstract"結核病(TB)是一種由結核分枝桿菌 (Mycobacterium tuberculosis) 引起的傳染性疾病,是全世界十大死亡原因之一。根據世界衛生組織(WHO)的全球結核病報告,有被診斷為結核病的人與全球預估結核病感染者人數之間存在很大差距。 痰塗片顯微鏡檢查是檢驗結核病中最廣泛使用的方法之一,因為該方法簡單、便宜、高效和快速。痰塗片顯微鏡法可以根據其染色方法分為熒光顯微鏡和明視野顯微鏡。熒光顯微鏡與明視野顯微鏡相比,其靈敏度比其高約10%並且敏感度相近。因此,它經常被用來對所有塗片做初步篩選。發光二極管熒光顯微鏡的低成本使得越來越多的國家使用它,包括一些資源有限的地區。 大量的樣本會導致專業閱片者每天需要負責遠超他們每天能負荷的抹片數量,從而降低了熒光顯微鏡篩查的敏感性。此外,還有許多人為因素會影響該方法的敏感性。 為了解決這個問題,我們開發了一個利用深度學習模型去開發了一個自動檢測結核分枝桿菌以及非結核分枝桿菌 (nontuberculous mycobacteria) 的計算機輔助檢測系統 (computer-aided detection, CAD)。我們還建立了一個圖形用戶界面提供給使用者。該CAD系統可以在70秒內完成對一張塗片的檢測,並且其擁有與人類閱片者相當甚至更高的性能表現。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:59:56Z (GMT). No. of bitstreams: 1
U0001-1009202114543700.pdf: 7814744 bytes, checksum: 28c90c48ebe0fd45d47887d0a5a9c901 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF ABBREVIATIONS viii LIST OF FIGURES x LIST OF TABLES xiii Chapter 1 INTRODUCTION 1 1.1 Tuberculosis 1 1.2 TB diagnosis 1 1.3 Challenges of TB diagnosis in high TB burden areas 3 1.4 (Sputum) smear microscopy 3 1.5 Computer-aided detection system for TB diagnosis 6 1.6 Medical imaging and deep-learning-based CAD system 8 1.7 Deep learning 11 1.7.1 Fully connected layer 13 1.7.2 Convolutional layer 14 1.7.3 Pooling layer 15 1.7.4 Activation function 16 1.7.5 Loss function 17 1.7.6 Optimizer 18 1.7.7 Augmentation 19 1.8 Computer vision tasks for medical images 20 1.8.1 Image recognition 20 1.8.2 Image labeling 23 Chapter 2 MATERIALS AND METHODS 29 2.1.1 Materials 29 2.1.2 Fluorescence staining 29 2.1.3 Scanning smear slides 29 2.1.4 Objects labeling and answers of evaluation test 30 2.2 Data preprocessing 31 2.2.1 Train-valid-test split 31 2.2.2 Background-complexity-based down-sampling for negative data 32 2.2.3 Image splitting 34 2.2.4 Location-shift augmentation 36 2.2.5 Dehazing method 37 2.2.6 Single-color channel process 40 2.3 Deep neural networks 41 2.3.1 The environment of training model, evaluation, and inference 42 2.3.2 Models used for different evaluation tests 42 2.3.3 Object detection models 42 2.3.4 Image classification models 43 2.3.5 Connecting an image classifier to the object detection model 45 2.4 Graphical user interface (GUI) 46 2.5 Evaluation methods for final CAD system 47 2.5.1 Single-blind study 48 2.5.2 Double-blind study 50 2.5.3 Limit of detection (LoD) test 50 2.5.4 Recall rate test for false-negative smear slides of the human readers 51 Chapter 3 RESULTS 52 3.1 Data preprocessing evaluation 52 3.1.1 Image splitting 52 3.1.2 Dehazing method and single-color channel process 53 3.2 Deep neural network models 54 3.2.1 Object detection model 54 3.2.2 Image classification models 56 3.2.3 Connecting an image classifier to the object detection model 57 3.3 Evaluation of the final CAD system 59 3.3.1 Single-blind study 59 3.3.2 Double-blind study 61 3.3.3 Limit of detection (LoD) test 65 3.3.4 Recall rate test for false-negative smear slides of the human readers 66 3.4 Graphical user interface 67 3.4.1 Detection interface 67 3.4.2 Rechecking interface 69 3.4.3 Default setting interface 71 Chapter 4 DISCUSSION 73 4.1 Data preprocessing 73 4.1.1 Image splitting 73 4.1.2 Dehazing method and single-color channel process 73 4.2 Deep learning models 74 4.2.1 Object detection models 74 4.2.2 Image classification model 74 4.2.3 Connecting an image classifier to the object detection model 75 4.3 Evaluation of the CAD system 75 4.3.1 Single-blind study 75 4.3.2 Double-blind study 78 4.3.3 Limit of detection (LoD) test 80 4.3.4 Recall rate test for false-negative smear slides of the human readers 81 4.4 Comparison 81 4.5 Future researches 83 4.5.1 Speed of image screening 83 4.5.2 Improvement in the sensitivity of the CAD system 83 4.5.3 Improvement in the robustness of the CAD system 84 4.5.4 Advanced applications 85 Chapter 5 CONCLUSION 86 REFERENCES 87 APPENDICES 97"
dc.language.isoen
dc.subject螢光顯微鏡檢zh_TW
dc.subject結核病zh_TW
dc.subject深度學習zh_TW
dc.subject電腦輔助檢測系統zh_TW
dc.subjecttuberculosisen
dc.subjectdeep learningen
dc.subjectcomputer-aided detection systemen
dc.subjectfluorescence microscopyen
dc.title"MTB-CAD, 利用深度學習網路建立一套針對螢光染色抹片影像、易用且高效能的電腦輔助分枝桿菌檢測系統"zh_TW
dc.title"MTB-CAD, an user-friendly, high-performance computer-aided detection system for Mycobacterium tuberculosis on fluorescence stained smear slides based on the deep learning models"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱浩傑(Hsin-Tsai Liu),蔡孟勳(Chih-Yang Tseng),盧子彬,賴亮全
dc.subject.keyword結核病,深度學習,電腦輔助檢測系統,螢光顯微鏡檢,zh_TW
dc.subject.keywordtuberculosis,deep learning,computer-aided detection system,fluorescence microscopy,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202103109
dc.rights.note未授權
dc.date.accepted2021-09-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-lift2024-09-17-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-1009202114543700.pdf
  未授權公開取用
7.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved