Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/826
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌
dc.contributor.authorZun-Lin Wangen
dc.contributor.author王尊麟zh_TW
dc.date.accessioned2021-05-11T05:07:56Z-
dc.date.available2019-02-15
dc.date.available2021-05-11T05:07:56Z-
dc.date.copyright2019-02-15
dc.date.issued2019
dc.date.submitted2019-02-13
dc.identifier.citation[1] Akinbile, C.O. (2013). Assessment of the CERES-Rice model for rice production in Ibadan, Nigeria. Agric. Eng. Int.: CIGR J., vol. 15, pp. 19-26.
[2] Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO, Rome.
[3] Bakker, K. (2007). The 'commons' versus the 'commodity': alter-globalization, anti-privatization and the human right to water in the global south. Antipode, vol. 39, pp. 430–455.
[4] Barlow, M., & Clarke, T. (2003). Blue Gold: The Fight to Stop the Corporate Theft of the World’s Water. New York: Stoddart.
[5] Barreteau, O., Le Page, C., & Perez, P. (2007). Contribution of simulation and gaming to natural resource management issues: An introduction. Simulation & Gaming: An Interdisciplinary Journal, vol. 38, pp. 185-194.
[6] Boonyathorobol, W., Walker, & W.R. (1979). Evapotranspiration under depleting soil moisture. Journal of the Irrigation and Drainage Division, 1979, vol. 105, Issue 4, pp. 391-402.
[7] Bouman, B.A.M., Kropff, M.J., Tuong, T.P., Wopereis, M.C.S., Ten Berge, H.F.M., & Van Laar, H.H. (2001). ORYZA2000: Modeling Lowland Rice. IRRI, Los Banos, Laguna.
[8] Dias, M.P.N.M., Navaratne, C.M., Weerasinghe, K.D.N., & Hettiarachchi R.H.A.N. (2016). Application of DSSAT Crop Simulation Model to Identify the Changes of Rice Growth and Yield in Nilwala River Basin for Mid-centuries under Changing Climatic Conditions. Procedia Food Science, vol. 6, pp. 159-163.
[9] Doorenbos, J., & Pruitt, W. O. (1977). Irrigation and drainage paper no. 24. FAO, Rome.
[10] Gao, L., Jin, Z., Huang, Y., & Zhang, L. (1992). Rice clock model: a computer model to simulate rice development. Agricultural and Forest Meteorology, vol. 60(1-2), pp. 1-16.
[11] Gohari, A., Eslamian, S., Mirchi, A., Abedi-Koupaei J., Massah Bavani, A., & Madani, K. (2013). Water transfer as a solution to water shortage: a fix that can Backfire. Journal of Hydrology, vol. 491, pp. 23-39.
[12] Grafton, R. Q., & Horne J. (2014). Water Markets in the Murray-Darling Basin. Agricultural Water Management, vol. 145, pp. 61-71.
[13] Grafton, R. Q., Horne, J., & Wheeler, S. A. (2016). On the marketisation of water: evidence from the Murray-Darling Basin, Australia. Water Resources Management, vol.30, pp. 913-926.
[14] Hamon, W. R. (1961). Estimating potential evapotranspiration. Journal of the Hydraulics, vol. 87, pp. 107-120.
[15] Hamon, W. R. (1963). Computation of direct runoff amounts from storm rainfall. International Association of Science Hydrology Publishing, vol. 63, pp. 52–62.
[16] Harvey, D. (2003). The new imperialism: accumulation by dispossession. The Socialist Register, vol. 40.
[17] Heim, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., vol. 83, pp. 1149–1165.
[18] IWA,水資源統計網站http://waterstatistics.iwa-network.org/
[19] Jones, J. W., Hoogenboom, G., Porter, C. H., Boote K. J., Batchelor W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, vol. 18, pp. 235-265.
[20] Kasprzyk, J. R., Reed, P. M., Kirsch, B. R., & Characklis, G. W. (2009). Managing population and drought risks using many-objective water portfolio planning under uncertainty, Water Resour. Res., vol. 45, no.W12401.
[21] Kiem, A. S. (2013). Drought and water policy in Australia: Challenges for the future illustrated by the issues associated with water trading and climate change adaptation in the Murray–Darling Basin. Global Environmental Change, vol. 23, pp. 1615-1626.
[22] Lee, J. L., & Huang, W. C. (2014). Impact of Climate Change on the Irrigation Water Requirement in Northern Taiwan. Water 2014, vol. 6(11), pp. 3339-3361.
[23] Manon, J., & Bernd, L. (2007). Horizontal and vertical water and solute fluxes in paddy rice fields. Soil and Tillage Research, vol. 94, pp. 133-141.
[24] Marston, L., & Cai., X. (2016). An overview of water reallocation and the barriers to its implementation. Wiley Interdisciplinary Reviews: Water Volume 3, Issue 5.
[25] Mayer, I. S. (2009). The gaming of policy and the politics of gaming: a review. Simulation & Gaming, vol. 40(6), pp. 825–862.
[26] Meinzen-Dick, R., & Ringler, C. (2008). Water reallocation: drivers, challenges, threats, and solutions for the poor. J. Hum. Dev., vol. 9, pp. 47-64.
[27] Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. J. Hydrol, vol. 391(1–2), pp. 202–216.
[28] Molle, F., & Berkoff, J. (2006). Cities versus agriculture: revisiting intersectoral water transfers, potential gains and conflicts. IWMI, Sri Lanka.
[29] Niazi, A., Prasher, S. O., Adamowski, J., & Gleeson, T. (2014). A system dynamics model to conserve arid region water resources through aquifer storage and recovery in conjunction with a dam. Water 2014, vol. 6(8), pp. 2300-2321.
[30] Pahl-Wostl, C. (2007). Transitions towards adaptive management of water facing climate and global change. Water Resources Management, vol. 21, pp. 49–62.
[31] Palmer, W. C. (1965). Meteorological drought. Weather Bureau Res. Paper 45, U.S. Department of Commerce, Washington, DC, pp. 58.
[32] Rani, B.A., & Maragatham, N. (2013). Effect of elevated temperature on rice phenology and yield. Indian J. Sci. Technol., vol. 6, pp. 5095-5097.
[33] Rusca, M., Heun, J., & Schwartz, K. (2012). Water management simulation games and the construction of knowledge. Hydrol. Earth Syst. Sci., vol. 16, pp. 2749-2757.
[34] Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J., vol. 70, pp. 1569-1578.
[35] Shaw, S. B., & Riha, S. J. (2011). Assessing temperature-based PET equations under achanging climate in temperate, deciduous forests. Hydrological Processes, vol. 25(9).
[36] Stave, K. A. (2003). A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. J. Environ. Manag., vol. 67, pp. 303–313.
[37] Steduto, P., Hsiao, T. C., Fereres, E., & Raes. D. (2012). Crop yield response to water. FAO, Rome.
[38] Steduto, P., Hsiao, T. C., Raes, D. & Fereres, E. (2009). AquaCrop--the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J., vol. 101, pp. 426-437.
[39] Sterman, J. D. (2000). Business Dynamics, Systems Thinking and Modeling for A Complex World. McGraw-Hill, Boston.
[40] Stöckle, C. O., Donatelli, M. & Nelson, R. (2003). CropSyst, a cropping systems simulation model. Eur. J. Agron., vol. 18, pp. 289-307.
[41] Subrahmanyam, V. P. (1967). Incidence and spread of continental drought. WMO/IHD Report No. 2, Geneva.
[42] TCCIP(2017),《臺灣氣候變遷科學報告2017-物理現象與機制》。
[43] Tessendorff, H. (1992). Dublin statement on water and sustainable development. Aqua AQUAAA, vol. 41(3), pp. 129-135.
[44] UN Water. (2008). Status report on integrated water resources management and water efficiency plans. New York. Prepared for the 16th session of the Commission on Sustainable Development in May 2008, New York.
[45] Van Rooijen, D. J., Turral, H., & Biggs, T. W. (2005). Sponge city: water balance of a mega-city: water use and wastewater use in Hyderabad India. Irrigation and Drainage, vol. 54, pp. 1-11.
[46] Wang, K., & Davies, E.G.R. (2015). A water resources simulation gaming model for the Invitational Drought Tournament. J. Environ. Manag., vol.160, pp. 167-183.
[47] Wheeler, S. A., Loch, A., Crase, L., Young, M., & Grafton, R. Q. (2017). Developing a water market readiness assessment framework. Journal of Hydrology, vol. 552, pp. 807-820.
[48] Wilhite, D.A., & Glantz, M.H. (1985). Understanding the drought phenomenon: the role of definitions. Water Int. vol. 10, pp. 111–120.
[49] Xi, X., & Poh, K. L. (2013). Using system dynamics for sustainable water resources management in Singapore. Procedia Computer Science, vol. 16, pp. 157–166.
[50] Young, M. D. (2014). Designing water abstraction regimes for an ever-changing and ever-varying future. Agricultural Water Management, vol. 145, pp. 32-38.
[51] Zhu T, Marques GF, & Lund JR. (2015). Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply. Water Resour Res.
[52] 台北市記帳士公會(2016),105年度營利事業各業所得額暨同業利潤標準。
[53] 石門水庫管理中心(2014),103年水位容積資料彙整。
[54] 石門農田水利會(2005),灌溉計畫書。
[55] 吳富春、沈易徵(2001),水田蓄水對植生環境之衝擊分析。
[56] 李苑華(2018),韌性社區供水系統氣候風險評估與調適能力建構方法之發展,國立台灣大學生物環境系統工程學研究所,博士論文。
[57] 周國鼎(2013),2012國際水價現況解析,自來水會訊第32卷第2期。
[58] 邱祈榮、梁玉琦、賴彥任、黃名媛(2004),臺灣地區氣候分區與應用之研究,臺灣地理資訊學刊,第1卷,第41-62頁。
[59] 姚銘輝、陳守泓(2005),利用渦流相關系統量測水稻田蒸發散量及作物係數, 水稻田農業多樣性機能研討會,第227-239頁。
[60] 洪毓謙(1999),以砂箱實驗探討現地複合土層之滲流機制,國立中央大學土木工程研究所,碩士論文。
[61] 桃園農田水利會(2005),灌溉計畫書。
[62] 高振程(2003),水田坵塊系統之回歸水量推估,國立中央大學土木工程研究所,碩士論文。
[63] 國家教育研究院(2002),力學名詞辭典。
[64] 陳凱俐、林雲雀、謝明修、陳婉琪、李家豪(2006),水田經濟效益評估,宜蘭大學生物資源學刊,第3卷第1期,第1-14頁。
[65] 陳豐文、劉正宇(2013),水收支平衡應用於水田灌溉用水消耗特性之評估,農業工程學報,第59卷第1期,第77-98頁。
[66] 陳豐文、劉振宇、蔡西銘(2013),連續型機率分配模式應用於台灣灌區有效雨量之推估,農業工程學報,第59卷第2期,第1-28頁。
[67] 經濟部水利署(2005a),《桃園地區農地耕作調整促進水資源利用研究》。
[68] 經濟部水利署(2005b),《板新地區供水改善計畫二期工程檢討評估暨新店溪水源開發計畫檢討─水源專題報告》。
[69] 經濟部水利署(2007),《多元化水資源開發─桃園及新竹地區農業迴歸水調查與可行性評估》。
[70] 經濟部水利署(2009),《旱災潛勢定義及其分析方法之建立》。
[71] 經濟部水利署(2010),《石門水庫供水區整體水源利用規劃》。
[72] 經濟部水利署(2014),《石門水庫供水區水資源活化計畫》。
[73] 經濟部水利署(2016),《北北桃水源運用整體供水調度規劃》。
[74] 經濟部水利署(2017),《石門水庫運用要點》
[75] 經濟部水利署,各項用水統計資料庫http://wuss.wra.gov.tw/waterusage.aspx
[76] 農田水利入口網《106年農田水利處之數字看板》
[77] 農委會農業統計資料查詢http://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx
[78] 蔡昇甫(2004),水田之功能與效益評估,農田水利會雜誌專題報導,第50卷第10期,第10-17頁。
[79] 蔡明華(1994),水稻田生態環境保護對策之研究,農田水利會雜誌,第41卷第9期,第10-13頁。
[80] 澳洲水資源交易網站www.waterexchange.com.au
[81] 簡傳彬、李總集、李英正、吳瑞賢、溫志超、杻家慶(2000),水稻田迴歸水量量測及初步分析,農業工程研討會論文集,第575-582頁。
[82] 闕雅文(2002),台灣的水市場及建立水銀行之經濟分析,國立台灣大學農業經濟學研究所,博士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/826-
dc.description.abstract氣候變遷可能使得台灣面臨乾季極端乾旱風險增加,更具彈性與調適能力的水資源管理方式成為政策決策者必須思考的關鍵議題。現行制度在乾旱時期水資源調度上,乃透過政府協調農業停灌休耕,農民對於耕作與否並無決定權,「農水工用」情形在水資源調配上存在公平性爭議。在此背景下,水市場或可成為水資源再分配的調適選項,政府無需強制介入,透過市場交易機制消弭灌溉用水移用爭議,同時提高水資源運用效率,反映不同時間點水的價值差異。
  遊戲模擬(simulation gaming)方法有助於政策決策者評估一項假設性政策的可行性,並了解利害關係人間的互動關係。本研究以桃園地區為例,分別建構石門水庫供水系統動力模式與水稻田水平衡模式,將兩者整合於一套水市場模擬遊戲(water market simulation game, WMSG)中,使遊戲模擬結果能貼近真實水資源分配情況,並招募受試者參與遊戲交易決策。
  研究結果顯示,石門水庫供水系統動力模式經合理性驗證,能應用於模擬桃園地區水資源分配情況。應用水稻田水平衡模式推估而得之修正後農業計畫配水量,在總量上與現行實務之推估結果接近,但更能反映稻作不同生育階段之灌溉需水量差異,依旬別不同而有峰谷波動。遊戲模擬結果顯示,水市場機制讓工業方面臨乾旱缺水時必須支付農業方更高的購水費用,農業方保有耕種與否之決定權。水庫有效蓄水量相比無交易情境而言有所增加,唯其增額不多。主要影響水庫空庫與否之因子在於農業計畫配水量之多寡,因此如何訂定合適的農業計畫配水量成為政策決策者必須優先思考的問題。遊戲模擬過程中,除了資訊的公開性外,資訊的「易解讀性」對於玩家決策判斷影響甚大。本研究為探討水市場機制之可行性提出實際模擬方法及工具,但仍存在許多改善空間,後續研究建議進一步探討不同情境下玩家交易策略及水資源再分配結果,強化遊戲模擬與政策實務應用之連結。
zh_TW
dc.description.abstractUnder the impact of climate change, the frequency of extreme precipitation and drought events has been increasing. Flexible water resources management should be considered by policy makers to increase adaptive capacity. In Taiwan, the government usually guides agricultural fallows to transfer water to meet the needs of domestic and industrial water demands during droughts. However, this situation causes that the cultivation rights of farmers are not guaranteed even though the priority of agricultural water demand is higher than that of industry by law.
  Water market mechanism may be potential to solve this fairness dispute of water reallocation. To assess the feasibility of water market as an adaptation method of water reallocation, simulation gaming is an appropriate approach. It can help policy makers assess a hypothetical policy scenario and figure out the relationship and interaction between stakeholders. In this study, Taoyuan region is chosen as the study area and a water market simulation game (WMSG) is developed. WMSG integrates water supply system dynamics model and paddy field water balance model to reflect the water resource transmission and the hydrological mechanisms of the real world. The subjects are invited to play the game as an agricultural or industrial stakeholder and carry on the round-designed water trading.
  Results show that Shimen Reservoir water supply system dynamics model can be applied to estimate the variation of reservoir water level under different hydrological scenarios. The rational agricultural planned allocation is calculated via paddy field water balance model. Total amount of the modified agricultural planned allocation is close to the practical method but more reasonably present the characteristics of irrigation water demand at different growing stages. The settlement of WMSG indicates that industrial players are willing to pay more costs on water purchase to prevent severe loss of production line shutdown caused by water shortage. Agricultural players have the right to decide whether to sell water or to keep farming. The amount of effective storage of Shimen reservoir has slightly increased when compared to the non-trading scenario. The key factor that determines whether the reservoir will be empty or not is the amount of agricultural planned allocation. The author argues that how to formulate a rational agricultural planned allocation is the most important issue for policy makers while considering water reallocation adaptation in Taiwan. Besides transparency and accessibility, interpretability of market information affects player’s decision-making significantly. This study provides practical application tools and models to assess the feasibility of water market mechanism despite still having room to improve. Further research is needed. To enhance the link between simulation game and policy applications, more games should be conducted to discuss the transaction strategies of players and the benefits of water reallocation under different simulation scenarios.
en
dc.description.provenanceMade available in DSpace on 2021-05-11T05:07:56Z (GMT). No. of bitstreams: 1
ntu-108-R05622017-1.pdf: 9203544 bytes, checksum: 557e1d856c8d70784714bc7bd8ff89e5 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章、 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 論文架構 3
第二章、 文獻回顧 5
2.1 乾旱 5
2.2 水資源再分配 6
2.3 水市場應用現況 7
2.4 遊戲模擬模式設計 10
2.5 研究區域介紹 11
2.5.1行政區域 11
2.5.2 地形與氣候 12
2.5.3 河川 12
2.5.4 水利設施 13
2.5.5 農田水利會 18
2.5.6 水資源利用現況與未來推估 19
第三章、 研究方法 21
3.1 水庫供水系統動力模式 21
3.1.1 模式架構概述 22
3.1.2 水源供給與損失 23
3.1.3 生態基流量 24
3.1.4 設施限制與參數 24
3.1.5 Vensim建模 27
3.2 水稻田水平衡模式 31
3.2.1 架構說明 32
3.2.2 土壤含水特性 33
3.2.3 滲漏量(percolation, P) 37
3.2.4 田間蒸發散量(paddy field evapotranspiration, ET) 39
3.2.5 田間有效降雨量(paddy field effective rainfall, ER) 43
3.2.6 灌溉需水量(irrigation water requirement, IWR) 44
3.2.7 實際灌溉用水量(actual irrigation volume, IR) 45
3.2.8 入滲量(infiltration, Inf) 46
3.2.9 田間湛水面水平衡 47
3.2.10 土壤含水量水平衡 48
第四章、 水市場模擬遊戲設計 49
4.1 情境設定 49
4.1.1 乾旱事件選擇 50
4.1.2 水源相關設定 51
4.1.3 農業相關設定 52
4.1.4 工業相關設定 57
4.2 交易機制與規則 60
4.2.1整體說明 60
4.2.2農業方 61
4.2.3工業方 62
4.3 遊戲程式設計 63
第五章、 研究結果與討論 67
5.1 供水系統動力模式合理性驗證 67
5.2 修正農業計畫配水量 69
5.3 遊戲結果 74
5.4研究討論 80
第六章、 結論與建議 83
6.1 結論 83
6.2 建議 85
參考文獻 87
dc.language.isozh-TW
dc.subject水資源再分配zh_TW
dc.subject水市場zh_TW
dc.subject遊戲模擬zh_TW
dc.subject系統動力模式zh_TW
dc.subjectwater marketen
dc.subjectwater reallocationen
dc.subjectsystem dynamic modelen
dc.subjectsimulation gamingen
dc.title以遊戲模擬方法探討乾旱時期水市場機制對水資源再分配之可行性—以桃園地區為例zh_TW
dc.titleInvestigating the Feasibility of Water Market in Water Reallocation during Drought Periods by Simulation Gaming: A Case Study of Taoyuan, Taiwanen
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李明旭,胡明哲,許少瑜
dc.subject.keyword水市場,遊戲模擬,系統動力模式,水資源再分配,zh_TW
dc.subject.keywordwater market,simulation gaming,system dynamic model,water reallocation,en
dc.relation.page93
dc.identifier.doi10.6342/NTU201900536
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf8.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved