Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82692
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭朱杏(Chuhsing Kate Hsiao)
dc.contributor.authorJung-Sheng Chenen
dc.contributor.author陳榮陞zh_TW
dc.date.accessioned2022-11-25T07:57:54Z-
dc.date.copyright2021-11-02
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citation1. S. Ancoli-Israel, Roger Cole, Cathy Alessi et al. (2003). The role of actigraphy in the study of sleep and circadian rhythms. Sleep, 26(3), 342-392. 2. G. D. Bergland (1968). Numerical Analysis: A fast fourier transform algorithm for real-valued series. Communications of the Association for Computing Machinery, 11(10), 703–710. doi:10.1145/364096.364118 3. R. J. G. B. Campello E. R. Hruschka (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858-2875. doi:https://doi.org/10.1016/j.fss.2006.07.006 4. W. T. Cochran, J. W. Cooley, D. L. Favin et al. (1967). What is the fast Fourier transform? Proceedings of the IEEE, 55(10), 1664-1674. doi:10.1109/PROC.1967.5957 5. I. Daghlas, H. S. Dashti, J. Lane et al. (2019). Sleep duration and myocardial infarction. Journal of the American College of Cardiology, 74(10), 1304-1314. 6. A. Doherty, D. Jackson, N. Hammerla et al. (2017). Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLOS ONE, 12(2), e0169649. doi:10.1371/journal.pone.0169649 7. N. J. Douglas, S. Thomas et, M. A. Jan (1992). Clinical value of polysomnography. The Lancet, 339(8789), 347-350. doi:https://doi.org/10.1016/0140-6736(92)91660-Z 8. M. Ferrara L. De Gennaro (2001). How much sleep do we need? Sleep Medicine Reviews, 5(2), 155-179. doi:https://doi.org/10.1053/smrv.2000.0138 9. K. P. Glanville, J. R. I. Coleman, D. M. Howard et al. (2021). Multiple measures of depression to enhance validity of major depressive disorder in the UK Biobank. The British Journal of Psychiatry, 7(2), e44. doi:10.1192/bjo.2020.145 10. Y. Hayashino, S. Yamazaki, M. Takegami et al. (2010). Association between number of comorbid conditions, depression, and sleep quality using the Pittsburgh Sleep Quality Index: Results from a population-based survey. Sleep Medicine, 11(4), 366-371. doi:https://doi.org/10.1016/j.sleep.2009.05.021 11. S. E. Jones, V. T. van Hees, D. R. Mazzotti et al. (2019). Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nature Communications, 10(1), 1585. doi:10.1038/s41467-019-09576-1 12. T. M. Kodinariya, P. R. Makwana (2013). Review on determining number of Cluster in K-Means Clustering. International Journal, 1(6), 90-95. 13. B. P. Kolla, J. M. Biernacka et al. (2021). Prevalence of sleep disturbance and associated risk factors in UK Biobank participants with alcohol use disorders and major depression. medRxiv, 2021.2003.2008.21252907. doi:10.1101/2021.03.08.21252907 14. A. Kosmadopoulos, C. Sargent, D. Darwent et al. (2014). Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system. Behavior Research Methods, 46(4), 1032-1041. doi:10.3758/s13428-013-0438-7 15. S. D. Kyle, C. E. Sexton, B. Feige et al. (2017). Sleep and cognitive performance: cross-sectional associations in the UK Biobank. Sleep Medicine, 38, 85-91. doi:https://doi.org/10.1016/j.sleep.2017.07.001 16. A. Leroux, S. Xu, P. Kundu et al. (2021). Quantifying the Predictive Performance of Objectively Measured Physical Activity on Mortality in the UK Biobank. The Journals of Gerontology: Series A, 76(8), 1486-1494. doi:10.1093/gerona/glaa250 17. A. Luca, M. Luca, C. Calandra (2013). Sleep disorders and depression: brief review of the literature, case report, and nonpharmacologic interventions for depression. Clinical Interventions in Aging, 8, 1033-1039. doi:10.2147/cia.S47230 18. J. H. Migueles, C. Cadenas-Sanchez, A. V. Rowlands et al. (2019). Comparability of accelerometer signal aggregation metrics across placements and dominant wrist cut points for the assessment of physical activity in adults. Scientific Reports, 9(1), 1-12. 19. J. H. Migueles, A. V. Rowlands, F. Huber et al. (2019). GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. Journal for the Measurement of Physical Behaviour, 2(3), 188-196. doi:10.1123/jmpb.2018-0063 20. A. Mulugeta, A. Zhou, C. King et al. (2020). Association between major depressive disorder and multiple disease outcomes: a phenome-wide Mendelian randomisation study in the UK Biobank. Molecular Psychiatry, 25(7), 1469-1476. doi:10.1038/s41380-019-0486-1 21. H. J. Nussbaumer (1981). The Fast Fourier Transform. In H. J. Nussbaumer (Ed.), Fast Fourier Transform and Convolution Algorithms (pp. 80-111). Berlin, Heidelberg: Springer Berlin Heidelberg. 22. T. G. Pavey, S. R. Gomersall, B. K. Clark et al. (2016). The validity of the GENEActiv wrist-worn accelerometer for measuring adult sedentary time in free living. Journal of Science and Medicine in Sport, 19(5), 395-399. doi:https://doi.org/10.1016/j.jsams.2015.04.007 23. C. P. Pollak, W. W. Tryon, H. Nagaraja et al. (2001). How Accurately Does Wrist Actigraphy Identify the States of Sleep and Wakefulness? Sleep, 24(8), 957-965. doi:10.1093/sleep/24.8.957 24. P. J. Rousseeuw (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:https://doi.org/10.1016/0377-0427(87)90125-7 25. S. Sabia, V. T. van Hees, M. J. Shipley et al. (2014). Association Between Questionnaire- and Accelerometer-Assessed Physical Activity: The Role of Sociodemographic Factors. American Journal of Epidemiology, 179(6), 781-790. doi:10.1093/aje/kwt330 26. D. J. Smith, B. I. Nicholl, B. Cullen et al. (2013). Prevalence and Characteristics of Probable Major Depression and Bipolar Disorder within UK Biobank: Cross-Sectional Study of 172,751 Participants. PLOS ONE, 8(11), e75362. doi:10.1371/journal.pone.0075362 27. V. T. van Hees, Z. Fang, J. Langford et al. (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. Journal of Applied Physiology (1985), 117(7), 738-744. doi:10.1152/japplphysiol.00421.2014 28. V. T. van Hees, L. Gorzelniak, E. C. Dean León et al. (2013). Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLOS ONE, 8(4), e61691. doi:10.1371/journal.pone.0061691 29. V. T. van Hees, S. Sabia, K. N. Anderson et al. (2015). A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer. PLOS ONE, 10(11), e0142533. doi:10.1371/journal.pone.0142533 30. V. T. van Hees, S. Sabia, S. E. Jones et al. (2018). Estimating sleep parameters using an accelerometer without sleep diary. Scientific Reports, 8(1), 12975. doi:10.1038/s41598-018-31266-z 31. H. Wang, J. M. Lane, S. E. Jones et al. (2019). Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nature Communications, 10(1), 3503. doi:10.1038/s41467-019-11456-7 32. M. Willetts, S. Hollowell, L. Aslett et al. (2018). Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants. Scientific Reports, 8(1), 1-10. 33. G. Zhu, M. Catt, S. Cassidy et al. (2019). Objective sleep assessment in> 80,000 UK mid-life adults: Associations with sociodemographic characteristics, physical activity and caffeine. PLOS ONE, 14(12), e0226220. 34. C. L. Clarke, J. Taylor, L. J. Crighton et al. (2017). Validation of the AX3 triaxial accelerometer in older functionally impaired people. Aging clinical and experimental research, 29(3), 451-457. 35. A. C. Dirican, S. Aksoy (2017). Step counting using smartphone accelerometer and fast Fourier transform. Sigma Journal of Engineering and Natural Sciences, 8, 175-182. 36. S. Zhang, A. V. Rowlands, P. Murray et al. (2012). Physical activity classification using the GENEA wrist-worn accelerometer. Medicine and science in sports and exercise, 44(4), 742-748.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82692-
dc.description.abstract"手部配戴腕動計(wrist-worn device)能紀錄受試者其手部活動的狀況,搜集其 手部在 X、Y、Z 三軸加速度的時序資料。這些資料經由 R 軟體中的套件 GGIR 校正後,能計算出代表活動狀況的兩個變數,手部活動量(Euclidean norm minus one, ENMO)與手部抬升角度(angle!)數值,並透過 HDCZA (Heuristic algorithm looking at Distribution of Change in Z-Angle)演算法估計每日的睡眠期間及睡眠參 數。本研究首先結合英國生物樣本庫(UK Biobank, UKB)腕動計資料、自填睡眠問 題以及 GGIR 的應用之睡眠變數,將手部活動代表的睡眠狀態的時序資料,利用 快速傅立葉轉換找出睡眠期間手部活動的特徵,並利用這些特徵,進行不同睡眠 狀態的分類。接下來本研究針對不同睡眠狀態組別,利用英國生物樣本庫紀錄的 自填睡眠變數,描述不同組別之個體在這些睡眠變數的不同,並找出與睡眠狀態 組別相關的變數,進而建立出能預測睡眠狀態組別之模式。研究結果顯示,這樣 的分析流程能分類不同睡眠狀態的組別,而且這些組別與已知的睡眠參數有相關 性。未來或許能藉由腕動計資料,來輔助評估個體的睡眠狀態。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:57:54Z (GMT). No. of bitstreams: 1
U0001-1910202121280800.pdf: 5089408 bytes, checksum: 4548a109211ff346de175fc598c02297 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 背景 1 1.1 腕動計資料背景 1 1.2 研究動機與目標 2 第二章 材料與方法 6 2.1 資料介紹 6 2.2 研究變數 7 2.3 統計分析 8 2.3.1 快速傅立葉轉換與振幅性質 9 2.3.2 快速傅立葉轉換變數的資料結構 11 2.3.3 快速傅立葉轉換特徵選取 13 2.3.4 以個人睡眠變數進行K-means分群分析 15 第三章 結果 18 3.1 分群過程與分群後的人口統計資料 18 3.2 分群結果與手部活動特徵的關聯性 19 3.3 分群結果與三種睡眠變數的關聯性 20 3.3.1 8個GGIR的睡眠變數 22 3.3.2 根據睡眠習慣自行計算的睡眠變數 23 3.3.3 UKB紀錄的潛在的MDD症狀變數與受試者自填睡眠變數 24 第四章 討論 26 參考文獻 30 附錄 55 附錄1 以振幅排序前20%作為個人睡眠變數的分析結果 55 附錄2 分析結果不受隨機抽樣分析用資料集的影響 62 附錄3 以UKB的心理疾病紀錄作為分類睡眠困難與否的依據 65
dc.language.isozh-TW
dc.subject睡眠狀態zh_TW
dc.subject重度憂鬱症zh_TW
dc.subject腕動計zh_TW
dc.subject快速傅立葉轉換zh_TW
dc.subjectR軟體套件GGIRzh_TW
dc.subjectGGIRen
dc.subjectmajor depression disorderen
dc.subjectwrist-worn deviceen
dc.subjectFFTen
dc.subjectsleep statusen
dc.title以傅立葉轉換之腕動計資料探討睡眠狀態的特徵與差異zh_TW
dc.titleFeature Extraction and Classification of Sleep Status with Fast Fourier Transformed Accelerometer Dataen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏秀(Hsin-Tsai Liu),林煜軒(Chih-Yang Tseng),盧子彬,馮嬿臻
dc.subject.keyword快速傅立葉轉換,腕動計,R軟體套件GGIR,睡眠狀態,重度憂鬱症,zh_TW
dc.subject.keywordFFT,wrist-worn device,GGIR,sleep status,major depression disorder,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202103899
dc.rights.note未授權
dc.date.accepted2021-10-26
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2023-10-25-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1910202121280800.pdf
  未授權公開取用
4.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved