Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82657
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王翰聰zh_TW
dc.contributor.advisorHan-Tsung Wangen
dc.contributor.author黃智群zh_TW
dc.contributor.authorChih-Chun Huangen
dc.date.accessioned2022-11-25T07:48:46Z-
dc.date.available2025-03-01-
dc.date.copyright2022-02-18-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAgyekum, A. K., and C. M. Nyachoti. 2017. Nutritional and metabolic consequences of feeding high-fiber diets to swine: a review. Engineering 3:716-725.
Al Hinai, E. A., P. Kullamethee, I. R. Rowland, J. Swann, G. E. Walton, and D. M. Commane. 2019. Modelling the role of microbial p-cresol in colorectal genotoxicity. Gut microbes 10:398-411.
Anguita, M., N. Canibe, J. Pérez, and B. Jensen. 2006. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs and in vitro fermentation. J. Anim. Sci. 84:2766-2778.
Aranda-Aguirre, E., L. E. Robles-Jimenez, J. Osorio-Avalos, E. Vargas-Bello-Pérez, and M. Gonzalez-Ronquillo. 2021. A systematic-review on the role of exogenous enzymes on the productive performance at weaning, growing and finishing in pigs. Vet. Anim. Sci. 14:100195.
Argenzio, R., and M. Southworth. 1975. Sites of organic acid production and absorption in gastrointestinal tract of the pig. Amer. J. Physiol. 228:454-460.
Babidge, W., S. Millard, and W. Roediger. 1998. Sulfides impair short chain fatty acid β-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis. Mol. Cell. Biochem. 181:117-124.
Barker, H. 1981. Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem. 50:23-40.
Bednar, G. E., A. R. Patil, S. M. Murray, C. M. Grieshop, N. R. Merchen, and G. C. Fahey Jr. 2001. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine mode. J. Nutr. 131:276-286.
Bernad-Roche, M., A. Bellés, L. Grasa, A. Casanova-Higes, and R. C. Mainar-Jaime. 2021. Effects of Dietary Supplementation with Protected Sodium Butyrate on Gut Microbiota in Growing-Finishing Pigs. Animals 11:2137.
Bindelle, J., A. Buldgen, M. Delacollette, J. Wavreille, R. Agneessens, J. Destain, and P. Leterme. 2009. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. J. Anim. Sci. 87:583-593.
Blachier, F., F. Mariotti, J.-F. Huneau, and D. Tomé. 2007. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino acids 33:547-562.
Canh, T., A. Aarnink, J. Schutte, A. Sutton, D. Langhout, and M. Verstegen. 1998. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livest. Prod. Sci. 56:181-191.
Canh, T., M. Verstegen, A. Aarnink, and J. Schrama. 1997. Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs. J. Anim. Sci. 75:700-706.
Canibe, N., O. Højberg, S. Højsgaard, and B. B. Jensen. 2005. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J. Anim.l Sci. 83:1287-1302.
Carbonero, F., A. C. Benefiel, A. H. Alizadeh-Ghamsari, and H. R. Gaskins. 2012. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 3:448.
Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
Cho, J. H., Y. J. Chen, B. J. Min, J. S. Yoo, Y. Wang, and I. H. Kim. 2008. Effects of reducing dietary crude protein on growth performance, odor gas emission from manure and blood urea nitrogen and IGF‐1 concentrations of serum in nursery pigs. Anim. Sci. J. 79:453-459.
Cho, S., O. Hwang, and S. Park. 2015. Effect of dietary protein levels on composition of odorous compounds and bacterial ecology in pig manure. Asian-australas. J. Anim. Sci. 28:1362.
Choct, M., R. J. Hughes, J. Wang, M. Bedford, A. Morgan, and G. Annison. 1996. Increased small intestinal fermentation is partly responsible for the anti‐nutritive activity of non‐starch polysaccharides in chickens. Br. Poult. Sci. 37:609-621.
Cowieson, A., M. Toghyani, S. Kheravii, S. Wu, L. Romero, and M. Choct. 2019. A mono-component microbial protease improves performance, net energy, and digestibility of amino acids and starch, and upregulates jejunal expression of genes responsible for peptide transport in broilers fed corn/wheat-based diets supplemented with xylanase and phytase. Poult. Sci. 98:1321-1332.
Dai, X., and H. Karring. 2014. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes. PLoS One 9:e110402.
Dai, Z. L., G. Wu, and W. Y. Zhu. 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci. 16:1768-1786.
Dari, B., C. W. Rogers, and O. S. Walsh. 2019. Understanding factors controlling ammonia volatilization from fertilizer nitrogen applications. BUL:926-926
De Vries, S., A. Pustjens, H. Schols, W. Hendriks, and W. Gerrits. 2012. Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: A review. Anim. Feed Sci. Technol. 178:123-138.
Den Besten, G., K. Van Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54:2325-2340.
Diether, N. E., and B. P. Willing. 2019. Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction. Microorganisms 7:19.
Englyst, H., and G. Hudson. 1987. Colorimetric method for routine measurement of dietary fibre as non-starch polysaccharides. A comparison with gas-liquid chromatography. Food Chem. 24:63-76.
Eriksen, J., J. V. Nørgaard, H. D. Poulsen, H. V. Poulsen, B. B. Jensen, and S. O. Petersen. 2014. Effects of acidifying pig diets on emissions of ammonia, methane, and sulfur from slurry during storage. J. Environ. Qual. 43:2086-2095.
Freire, J., A. Guerreiro, L. Cunha, and A. Aumaitre. 2000. Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci. Technol. 87:71-83.
Garry, B., M. Fogarty, T. Curran, M. O'connell, and J. O'doherty. 2007. The effect of cereal type and enzyme addition on pig performance, intestinal microflora, and ammonia and odour emissions. Animal 1:751-757.
Groot, J. C., J. W. Cone, B. A. Williams, F. M. Debersaques, and E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64:77-89.
Guo, P., K. Zhang, X. Ma, and P. He. 2020. Clostridium species as probiotics: potentials and challenges. J. Anim. Sci. Biotechnol. 11:1-10.
Hawe, S., N. Walker, and B. Moss. 1992. The effects of dietary fibre, lactose and antibiotic on the levels of skatole and indole in faeces and subcutaneous fat in growing pigs. Anim. Prod. 54:413-419.
Hayes, E. T., A. Leek, T. P. Curran, V. Dodd, O. T. Carton, V. Beattie, and J. V. O’Doherty. 2004. The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresour. Technol. 91:309-315.
Heo, J. M., J. C. Kim, C. F. Hansen, B. P. Mullan, D. J. Hampson, and J. R. Pluske. 2008. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch. Anim. Nutr. 62:343-358.
Hsu, J. E., S. H. Lo, Y. Y. Lin, H. T. Wang, and C. Y. Chen. 2021. Effects of essential oil mixtures on nitrogen metabolism and odor emission via in vitro simulated digestion and in vivo growing pig experiments. J. Sci. Food Agric.
Huang, Z., P. Urriola, I. Salfer, M. Stern, and G. Shurson. 2017. Differences in in vitro hydrolysis and fermentation among and within high-fiber ingredients using a modified three-step procedure in growing pigs. J. Anim. Sci. 95:5497-5506.
Ichihara, K., H. Yoshimatsu, and Y. Sakamoto. 1956. Studies on phenol formation III. Ammonium and potassium ions as the activator of beta-tyrosinase. J. Biochem. 43:803-810.
Imoto, S., and S. Namioka. 1978. VFA production in the pig large intestine. J. Anim. Sci. 47:467-478.
Jang, J. C., Z. Zeng, G. C. Shurson, and P. E. Urriola. 2019. Effects of gas production recording system and pig fecal inoculum volume on kinetics and variation of in vitro fermentation using corn distiller’s dried grains with solubles and soybean hulls. Animals 9:773.
Janni, K. 2020. Reflections on Odor Management for Animal Feeding Operations. Atmosphere 11:453.
Jaskiewicz, J., Y. Zhao, J. W. Hawes, Y. Shimomura, D. W. Crabb, and R. A. Harris. 1996. Catabolism of isobutyrate by colonocytes. Arch. Biochem. Biophys. 327:265-270.
Jaworski, N., H. Lærke, K. Bach Knudsen, and H. Stein. 2015. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 93:1103-1113.
Jaworski, N., and H. Stein. 2017. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls. J. Anim. Sci. 95:727-739.
Jensen, B. B. 2006. Prevention of boar taint in pig production. Factors affecting the level of skatole. Acta Vet. Scand. 48:1-4.
Jensen, M., R. Cox, and B. Jensen. 1995a. Microbial production of skatole in the hind gut of pigs given different diets and its relation to skatole deposition in backfat. Anim. Prod. 61:293-304.
Jensen, M. T., R. P. Cox, and B. B. Jensen. 1995b. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Appl. Environ. Microbiol. 61:3180-3184.
Jha, R., and J. Berrocoso. 2015. Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 9:1441-1452.
Jha, R., and J. F. Berrocoso. 2016. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 212:18-26.
Jha, R., J. Bindelle, A. Van Kessel, and P. Leterme. 2011. In vitro fibre fermentation of feed ingredients with varying fermentable carbohydrate and protein levels and protein synthesis by colonic bacteria isolated from pigs. Anim. Feed Sci. Technol. 165:191-200.
Jha, R., T. Woyengo, J. Li, M. Bedford, T. Vasanthan, and R. Zijlstra. 2015. Enzymes enhance degradation of the fiber–starch–protein matrix of distillers dried grains with solubles as revealed by a porcine in vitro fermentation model and microscopy. J. Anim. Sci. 93:1039-1051.
Kiarie, E., L. F. Romero, and C. M. Nyachoti. 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 26:71-88.
Kikugawa, K., and T. Kato. 1988. Formation of a mutagenic diazoquinone by interaction of phenol with nitrite. Food Chem. Toxicol. 26:209-214.
Kim, H. B., K. Borewicz, B. A. White, R. S. Singer, S. Sreevatsan, Z. J. Tu, and R. E. Isaacson. 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 153:124-133.
Kim, H. S., C. Boss, J. W. Lee, R. Patterson, and T. A. Woyengo. 2021. Chemical composition and porcine in vitro disappearance of heat-pretreated and multi-enzyme-supplemented soybean hulls. Anim. Feed Sci. Technol. 277:114951.
Kim, Y. J., T. H. Kim, M. H. Song, J. S. An, W. Yun, J. H. Lee, H. J. Oh, J. S. Lee, G. M. Kim, and H. B. Kim. 2020. Effects of different levels of crude protein and protease on nitrogen utilization, nutrient digestibility, and growth performance in growing pigs. J. Anim. Sci. Technol. 62:659.
Knarreborg, A., J. Beck, M. Jensen, A. Laue, N. Agergaard, and B. Jensen. 2002. Effect of non-starch polysaccharides on production and absorption of indolic compounds in entire male pigs. Anim. Prod. 74:445-453.
Knudsen, K. E. B. 2014. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 93:2380-2393.
Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332-1345.
Le Gall, M., A. Serena, H. Jørgensen, P. K. Theil, and K. E. B. Knudsen. 2009. The role of whole-wheat grain and wheat and rye ingredients on the digestion and fermentation processes in the gut–a model experiment with pigs. Br. J. Nutr. 102:1590-1600.
Le, P. D., A. J. Aarnink, N. W. Ogink, P. M. Becker, and M. W. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3-30.
Lee, J., R. Patterson, and T. Woyengo. 2018. Porcine in vitro degradation and fermentation characteristics of canola co-products without or with fiber-degrading enzymes. Anim. Feed Sci. Technol. 241:133-140.
Lei, X. J., J. Y. Cheong, J. H. Park, and I. H. Kim. 2017. Supplementation of protease, alone and in combination with fructooligosaccharide to low protein diet for finishing pigs. Anim. Sci. J. 88:1987-1993.
Li, X., B. B. Jensen, and N. Canibe. 2019. The mode of action of chicory roots on skatole production in entire male pigs is neither via reducing the population of skatole-producing bacteria nor via increased butyrate production in the hindgut. Appl. Environ. Microbiol. 85:e02327-02318.
Liu, Q., W. Zhang, Z. Zhang, Y. Zhang, Y. Zhang, L. Chen, and S. Zhuang. 2016. Effect of fiber source and enzyme addition on the apparent digestibility of nutrients and physicochemical properties of digesta in cannulated growing pigs. Anim. Feed Sci. Technol. 216:262-272.
Lovegrove, A., C. Edwards, I. De Noni, H. Patel, S. El, T. Grassby, C. Zielke, M. Ulmius, L. Nilsson, and P. Butterworth. 2017. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 57:237-253.
Lyu, Z., C. Huang, Y. Li, P. Li, H. Liu, Y. Chen, D. Li, and C. Lai. 2018. Adaptation duration for net energy determination of high fiber diets in growing pigs. Anim. Feed Sci. Technol. 241:15-26.
Lyu, Z., L. Wang, J. Wang, Z. Wang, S. Zhang, J. Wang, J. Cheng, and C. Lai. 2020. Oat bran and wheat bran impact net energy by shaping microbial communities and fermentation products in pigs fed diets with or without xylanase. J. Anim. Sci. Biotechnol. 11:1-16.
Ma, Q., N. Meng, Y. Li, and J. Wang. 2021. Occurrence, impacts, and microbial transformation of 3-methylindole (skatole): A critical review. J. Hazard. Mater.:126181.
Mackie, R. I., P. G. Stroot, and V. H. Varel. 1998. Biochemical identification and biological origin of key odor components in livestock waste. Journal of Animal Science 76:1331-1342.
Makkar, H. P. 2004. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. Assessing quality and safety of animal feeds. FAO Animal Production and Health Series 160:55-88.
Mc Alpine, P., C. O'shea, P. Varley, P. Solan, T. Curran, and J. O'doherty. 2012. The effect of protease and nonstarch polysaccharide enzymes on manure odor and ammonia emissions from finisher pigs. J. Anim. Sci. 90:369-371.
Navarro, D. M., J. J. Abelilla, and H. H. Stein. 2019. Structures and characteristics of carbohydrates in diets fed to pigs: a review. J. Anim. Sci. Biotechnol. 10:1-17.
NRC. 2012. Nutrient requirements of swine. 11th rev. ed Natl. Acad. Press, Washington, D.C.
Nugraha, R., B. Baskoro, R. Puspitawati, and S. Redjeki. 2017. The effect of centrifugation speeds of 11,000 g and 13,000 g on small salivary protein profiles (less than 30 kDa). J. Phys. Conf. Ser. 012062.
O'shea, C., B. Lynch, M. Lynch, J. Callan, and J. O’Doherty. 2009. Ammonia emissions and dry matter of separated pig manure fractions as affected by crude protein concentration and sugar beet pulp inclusion of finishing pig diets. Agric. Ecosyst. Environ. 131:154-160.
O'Shea, C., P. Mc Alpine, P. Solan, T. Curran, P. Varley, A. Walsh, and J. Doherty. 2014. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower–finisher pigs. Anim. Feed Sci. Technol. 189:88-97.
O'shea, C., T. Sweeney, M. Lynch, D. Gahan, J. Callan, and J. O'Doherty. 2010. Effect of β-glucans contained in barley-and oat-based diets and exogenous enzyme supplementation on gastrointestinal fermentation of finisher pigs and subsequent manure odor and ammonia emissions. J. Anim. Sci. 88:1411-1420.
Payne, A. N., A. Zihler, C. Chassard, and C. Lacroix. 2012. Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol. 30:17-25.
Petry, A. L., and J. F. Patience. 2020. Xylanase supplementation in corn-based swine diets: a review with emphasis on potential mechanisms of action. J. Anim. Sci. 98:skaa318.
Piva, A., A. Panciroli, E. Meola, and A. Formigoni. 1996. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets. J. Nutr. 126:280-289.
Rideout, T., M. Fan, J. Cant, C. Wagner-Riddle, and P. Stonehouse. 2004. Excretion of major odor-causing and acidifying compounds in response to dietary supplementation of chicory inulin in growing pigs. J. Anim. Sci. 82:1678-1684.
Roy, C. C., C. L. Kien, L. Bouthillier, and E. Levy. 2006. Short‐chain fatty acids: ready for prime time? Nutr. Clin. Pract. 21:351-366.
Rubio, L. A. 2003. Carbohydrates digestibility and faecal nitrogen excretion in rats fed raw or germinated faba bean (Vicia faba)-and chickpea (Cicer arietinum)-based diets. Br. J. Nutr. 90:301-309.
Saleh, F., A. Ohtsuka, T. Tanaka, and K. Hayashi. 2004. Carbohydrases are digested by proteases present in enzyme preparations during in vitro digestion. Jpn. Poult. Sci. 41:229-235.
Schiffman, S. S., J. L. Bennett, and J. H. Raymer. 2001. Quantification of odors and odorants from swine operations in North Carolina. Agric. For. Meteorol. 108:213-240.
Serena, A., and K. B. Knudsen. 2007. Chemical and physicochemical characterisation of co-products from the vegetable food and agro industries. Anim. Feed Sci. Technol. 139:109-124.
Shriver, J., S. Carter, A. Sutton, B. Richert, B. Senne, and L. Pettey. 2003. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 81:492-502.
Siggers, R. H., J. Siggers, T. Thymann, M. Boye, and P. T. Sangild. 2011. Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J. Nutri. Biochem. 22:511-521.
Vaddella, V., P. Ndegwa, H. Joo, and J. Ullman. 2010. Impact of separating dairy cattle excretions on ammonia emissions. J. Environ. Qual. 39:1807-1812.
Vangsøe, C. T., E. Bonnin, M. Joseph‐Aime, L. Saulnier, V. Neugnot‐Roux, and K. E. Bach Knudsen. 2021. Improving the digestibility of cereal fractions of wheat, maize, and rice by a carbohydrase complex rich in xylanases and arabinofuranosidases: an in vitro digestion study. J. Sci. Food Agric. 101:1910-1919.
Wallace, R. J. 1996. Ruminal microbial metabolism of peptides and amino acids. J. Nutr. 126:1326S-1334S.
Wang, D., X. Piao, Z. Zeng, T. Lu, Q. Zhang, P. Li, L. Xue, and S. Kim. 2011. Effects of keratinase on performance, nutrient utilization, intestinal morphology, intestinal ecology and inflammatory response of weaned piglets fed diets with different levels of crude protein. Asian-australas. J. Anim. Sci. 24:1718-1728.
Wang, H., Y. Guo, and J. C. Shih. 2008. Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim. Feed Sci. Technol. 140:376-384.
Wang, J., J. Garlich, and J. Shih. 2006. Beneficial effects of versazyme, a keratinase feed additive, on body weight, feed conversion, and breast yield of broiler chickens. J. Appl. Poult. Res. 15:544-550.
Wang, J., Y. Zhu, D. Li, Z. Wang, and B. Jensen. 2004. In vitro fermentation of various fiber and starch sources by pig fecal inocula. J. Anim. Sci. 82:2615-2622.
Wang, M., S. Wichienchot, X. He, X. Fu, Q. Huang, and B. Zhang. 2019. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 88:1-9.
Wang, Y., Y. J. Chen, J. H. Cho, J. S. Yoo, Y. Huang, H. J. Kim, S. O. Shin, T. X. Zhou, and I. H. Kim. 2009. Effect of soybean hull supplementation to finishing pigs on the emission of noxious gases from slurry. Anim. Sci. J. 80:316-321.
Wang, Y., J. Zhou, G. Wang, S. Cai, X. Zeng, and S. Qiao. 2018. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 9:1-14.
Whitehead, T. R., N. P. Price, H. L. Drake, and M. A. Cotta. 2008. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. Appl. Environ. Microbiol. 74:1950-1953.
Whitney, M., G. Shurson, M. Spiehs, J. Knott, and D. Mold. 2005. Economic evaluation of nutritional strategies that affect manure volume, nutrient content, and odor emissions.
Wilfart, A., L. Montagné, H. Simmins, J. Noblet, and J. van Milgen. 2007. Effect of fibre content in the diet on the mean retention time in different segments of the digestive tract in growing pigs. Livest. Sci. 109:27-29.
Williams, B. A., M. W. Bosch, H. Boer, M. W. Verstegen, and S. Tamminga. 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 123:445-462.
Williams, B. A., D. Mikkelsen, B. M. Flanagan, and M. J. Gidley. 2019. “Dietary fibre”: moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotechnol. 10:1-12.
Wondra, K., J. Hancock, K. Behnke, R. Hines, and C. Stark. 1995. Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs. J. Anim. Sci. 73:757-763.
Wong, J. M., R. De Souza, C. W. Kendall, A. Emam, and D. J. Jenkins. 2006. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40:235-243.
Wood, T. M., and K. M. Bhat. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160:87-112.
Yen, J., J. Nienaber, D. Hill, and W. Pond. 1991. Potential contribution of absorbed volatile fatty acids to whole-animal energy requirement in conscious swine. J. Anim. Sci. 69:2001-2012.
Yin, Y. L., J. McEvoy, H. Schulze, U. Hennig, W. B. Souffrant, and K. McCracken. 2000. Apparent digestibility (ileal and overall) of nutrients and endogenous nitrogen losses in growing pigs fed wheat (var. Soissons) or its by-products without or with xylanase supplementation. Livest. Prod. Sci. 62:119-132.
Yue, L., and S. Qiao. 2008. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest. Sci. 115:144-152.
Yun, J., I. Kwon, J. Lohakare, J. Choi, J. Yong, J. Zheng, W. Cho, and B. Chae. 2005. Comparative efficacy of plant and animal protein sources on the growth performance, nutrient digestibility, morphology and caecal microbiology of early-weaned pigs. Asian-australas. J. Anim. Sci. 18:1285-1293.
Zervas, S., and R. Zijlstra. 2002. Effects of dietary protein and fermentable fiber on nitrogen excretion patterns and plasma urea in grower pigs. J. Anim. Sci. 80:3247-3256.
Zhao, J., X. Liu, Y. Zhang, L. Liu, J. Wang, and S. Zhang. 2020. Effects of body weight and fiber sources on fiber digestibility and short chain fatty acid concentration in growing pigs. Asian-australas. J. Anim. Sci. 33:1975.
Zhu, J. 2000. A review of microbiology in swine manure odor control. Agric. Ecosyst. Environ. 78:93-106.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82657-
dc.description.abstract集約化豬肉生產業經常面臨廢棄物的議題,飼糧中過多的蛋白質是造成過多含氮廢棄物的問題,對於現場工作人員以及周遭居民會造成健康的危害。在豬隻飼糧中提高可發酵之非澱粉多醣(non-starch polysaccharide, NSP)可以改變大腸的發酵並促進揮發性脂肪酸(volatile fatty acids, VFA)的生成,並減少微生物發酵產生蛋白質分解所產生的代謝物,然而NSP具有抗營養特性,可經由添加非澱粉多醣酶(NSPase)來減緩其負面效益。

本論文實驗一中,先以體外試驗探討NSP添加量及來源對於發酵之影響,實驗二則以體外試驗探討NSP及酵素添加之影響,最後經動物實驗進行驗證。

實驗一中,飼糧中的NSP設定為中量(M,16.5%)及高量(H,22.0%),分別使用大豆殼(H)或是甜菜粕(P)來作為NSP來源,調配出五種飼糧: (1) CON = 對照組; MH = 中量NSP-大豆殼組; MP = 中量NSP-甜菜粕組; HH = 高量NSP-大豆殼組; HP = 高量NSP-甜菜粕組。試驗結果顯示,高量之NSP添加會減少模擬胃與小腸消化之體外乾物質消化率(in vitro dry matter digestibility, IVDMD)及接續發酵後之體外全消化道乾物質消化率(in vitro total tract dry matter digestibility, IVTTDMD)。提高NSP會提升最大產氣量與達到1/2最大產氣量之時間,但是整體分解速率下降,發酵結束時每公克殘餘物的揮發性脂肪酸的產生也較低。對發酵產物的影響上,大豆殼添加可降低尿素酶活性,而甜菜粕添加可降低氨態氮(NH3-N)與對甲酚的濃度,但是大豆殼添加對於對體外發酵之對甲酚、吲哚或糞臭素之濃度並沒有影響。

實驗二探討了NSP及酵素添加的影響,測試飼糧包括: CON = 對照組; SBH = 大豆殼組(NSP = 16.5 %); NSPase = SBH組添加 0.005% NSPase; NSPase+Pro = NSPase添加 0.005% NSPase 和 0.05% 蛋白酶。體外消化結果顯示,大豆殼添加提升NSP所造成的IVDMD降低,在添加酵素後並沒有改善。IVTTDMD在CON組中最高,發酵結果顯示最大產氣量隨著大豆殼的添加而提升,但是降解速率則降低,在NSPase+Pro組中丙酸比例最高,但丁酸的比例在CON組中最高。與CON組相比,SBH組中尿素酶活性及NH3-N濃度並沒有差異,額外添加酵素時使NH3-N及對甲酚都顯著升高,但糞臭素會顯著降低。
動物試驗結果顯示,豬隻生長性能與糞便中總脂肪酸濃度在四組間並無差異,但CON組糞便中個別揮發性脂肪酸比例在第各週間有差異。未添加酵素之SBH組糞便中蛋白酶活性在第四週時最低,且NH3-N、對甲酚、吲哚及糞臭素在第二及四週均低於其他組。與SBH組相比,酵素添加組糞便中有較高的NH3-N、對甲酚及糞臭素。

整合上述體內外試驗結果看,使用體外消化及發酵法可以有效評估改變飼糧特性對於臭味排放之影響,利用體外法可以大大減少動物試驗所需的時間及飼養成本。而添加酵素於高NSP飼糧的效果受到較多因素影響,對於降低排放之臭味並無明顯助益。
zh_TW
dc.description.abstractThe intensification of pork production has always faced critics regarding its waste production and odor emissions. Nitrogenous and odorous emissions from excessive dietary crude protein are the primary cause of odor, causing irritations and health problems to workers and residents living in the vicinity. Available fermentable non-starch polysaccharide (NSP) modifies the fermentative patterns in the large intestine of pigs, promotes VFA (volatile fatty acids) production, and reduces proteolytic metabolites from microbial fermentation. However, NSPs are well known for their anti-nutritive effects. Exogenous enzymes are often supplemented to ameliorate the negative impacts of NSPs.

This thesis aims to investigate the digestibility and fermentation characteristics of different levels and sources of NSPs. A further evaluation of exogenous enzymes on high NSP diets is also performed. Lastly, an animal feeding trial is conducted to validate the results.

The first experiment investigated the effects of levels and sources of NSP. Diet NSP levels were adjusted to medium (M; 16.5 %) and high (H; 22.0 %) relative to control, and soybean hull (H) and sugar beet pulp (P) were chosen as NSP sources. A total of five diets were formulated: (1) CON = control diet; MH = medium NSP soybean hull diet; MP = medium NSP sugar beet pulp diet; HH = high NSP soybean hull diet; HP = high NSP sugar beet pulp diet. High levels of NSP decreased the in vitro (simulation gastric-intestinal phase) dry matter digestibility (IVDMD) and total tract (including fermentation) dry matter digestibility (IVTTDMD). Both max gas production and half-time of asymptote were influenced by level and source, and the degradation rate decreased with the inclusion level of NSP. The result showed a decrease in VFA production per gram of residue with the increasing level of NSP. Urease activity was lowest in both soybean hull diets. Sugar beet pulp inclusion lowered p-cresol and NH3-N concentration and increased indole concentration. Soybean hull supplementation had no effect in altering p-cresol, indole, or skatole during fermentation.

The second experiment investigated the effects of NSP and exogenous enzymes. A total of 4 diets were formulated: CON = control diet; SBH = soybean hull supplemented diet (16.5 % NSP); NSPase = SBH diet supplemented with 0.005 % NSPase; NSPase+Pro = SBH diet supplemented with 0.005 % NSPase and 0.05 % protease. IVDMD and crude protein digestibility decreased in the SBH diet, while supplementing enzymes did not improve digestibility. IVTTDMD was observed highest in the CON diet. Max gas production increased with the inclusion of soybean hull, and the degradation rate was lowered. The molar ratio of propionic acid was highest in the NSPase+Pro diet, while butyric acid was highest in the CON diet. Urease activity and concentrations of NH3-N and indole of SBH diet were not significantly different from CON diet. Exogenous enzyme supplementation significantly increased NH3-N and indole concentrations but decreased the skatole concentration.

The growth performance of pigs did not vary among different diets. The total fecal VFA did not vary among different diets. The molar ratio of VFAs is observed to differ between weeks 2 and 4 in the CON diet. Feces from the SBH diet had a lower protease activity in the fourth week and NH3-N, p-cresol, indole, and skatole concentration in the second and fourth weeks. NSPase and NSPase+Pro diets had increased NH3-N, p-cresol, and skatole compared to the SBH diet on the fourth week.

In conclusion, in vitro digestion and fermentation are accurate and convenient tools for evaluating feed modification and its impact on odor production. Careful feed selection with in vitro methods can significantly reduce the required time and cost otherwise spent on animal trials. The effect of exogenous enzyme supplementation on a high-NSP diet is influenced by many factors and had no significant effect on reducing odor emissions.
en
dc.description.provenanceMade available in DSpace on 2022-11-25T07:48:46Z (GMT). No. of bitstreams: 1
U0001-0702202214150200.pdf: 1968554 bytes, checksum: 3d9d9dd478f3d7e5e164a73157266748 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝誌 I
中文摘要 II
Abstract IV
List of Figures X
List of Tables XI
Abbreviations XIII
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Non-starch polysaccharide 3
2.1.1 NSP solubility 4
2.1.2 NSP fermentation 5
2.2 Odorous compounds 6
2.2.1 Factors influencing odor production 7
2.2.2 Volatile fatty acids 8
2.2.3 Ammonia 9
2.2.4 Indoles and phenols 11
2.2.5 Sulfurous compounds 13
2.2.6 Branch-chained fatty acids 14
2.3 Dietary methods for odor reduction 14
2.3.1 Reduction of crude protein 15
2.3.2 Increase in NSP 16
2.3.3 Exogenous enzymes 17
2.4 Advantages of in vitro method in feed evaluation 19
Chapter 3 Material and Methods 22
3.1 Chemicals and reagents 23
3.2 Diet with different level and source of NSP (in vitro Experiment 1) 24
3.3 Diets with exogenous enzyme supplementation (in vitro Experiment 2) 26
3.4 In vitro digestion and fermentation 27
3.4.1 Gastric buffer (G-buffer) preparation 27
3.4.2 Intestinal buffer (I-buffer) preparation 28
3.4.3 Anaerobic medium 28
3.4.4 In vitro digestion and fermentation process 32
3.4.5 Gastric digestion 33
3.4.6 Intestinal digestion 33
3.4.7 In vitro fermentation 35
3.4.8 In vitro fermentation sampling 37
3.5 Animal feeding trial 37
3.5.1 Animal housing and sample collection 37
3.5.2 Fecal preparation for VFA analysis 38
3.5.3 Fecal preparation for odorous compounds and enzymatic activity analysis 38
3.5.4 Microbial genomic DNA sequencing 39
3.6 Chemical analysis 39
3.6.1 NH3-N concentration 39
3.6.2 Protease activity 40
3.6.3 Urease activity 42
3.6.4 Cellulase and hemicellulase activity 42
3.6.5 Volatile fatty acid 44
3.6.6 Indolic and phenolic compounds 46
3.6.7 Dry matter 48
3.6.8 Crude protein 49
3.6.9 NSP determination 52
3.7 Calculations 54
3.7.1 In vitro digestibility and fermentability 54
3.7.2 Gas production kinetics 54
3.8 Statistical Analysis 55
3.8.1 In vitro method 55
3.8.2 Animal feeding trial 55
Chapter 4 Results and Discussion 57
4.1 Diets with different levels and sources of NSP (in vitro Experiment 1) 57
4.1.1 In vitro digestibility and fermentability 57
4.1.2 Gas production kinetics 59
4.1.3 VFA production 62
4.1.4 Enzymatic activities and odorous compounds 65
4.2 Diets with exogenous enzyme supplementation (in vitro Experiment 2) 69
4.2.1 In vitro digestibility and fermentability 69
4.2.2 Gas production kinetics 71
4.2.3 VFA production 74
4.2.4 Enzymatic activities and odorous compounds 77
4.2.5 Correlation of enzymatic activities and fermentative metabolites 80
4.3 Animal feeding trial 82
4.3.1 Growth performance 82
4.3.2 Fecal VFA concentration of pigs 84
4.3.3 Fecal enzymatic activities and odorous compounds emission 86
4.3.4 Fecal microbial composition 87
4.3.5 Implications of in vitro trial 90
Chapter 5 Conclusion 92
References 93
-
dc.language.isoen-
dc.subject臭味排放zh_TW
dc.subject非澱粉多糖zh_TW
dc.subject酵素zh_TW
dc.subject生長表現zh_TW
dc.subject三段式體外消化法zh_TW
dc.subjectodor emissionen
dc.subjectThree-stage in vitro digestion methoden
dc.subjectgrowth performanceen
dc.subjectnon-starch polysaccharideen
dc.subjectenzymeen
dc.title非澱粉多醣含量及酵素添加對豬隻飼糧消化率及臭味排放影響之評估zh_TW
dc.titleEvaluation of non-starch polysaccharide level and enzyme supplementation effect on digestibility and fecal odor emission in pigsen
dc.typeThesis-
dc.date.schoolyear110-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳靜宜;陳筱薇;鄭永祥;劉韋君zh_TW
dc.contributor.oralexamcommitteeChing-Yi Chen;Shiau-Wei Chen;Yeong-Hsiang Cheng;Wei-Chun Liuen
dc.subject.keyword三段式體外消化法,非澱粉多糖,酵素,臭味排放,生長表現,zh_TW
dc.subject.keywordThree-stage in vitro digestion method,non-starch polysaccharide,enzyme,odor emission,growth performance,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202200327-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-02-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2025-03-01-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-110-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved