Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82650
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信樹(Hsin-Shu Chen)
dc.contributor.authorHui-Ya Chenen
dc.contributor.author陳惠雅zh_TW
dc.date.accessioned2022-11-25T07:48:36Z-
dc.date.available2023-10-15
dc.date.copyright2021-10-21
dc.date.issued2021
dc.date.submitted2021-10-18
dc.identifier.citationCarsten Wulff et al., 'Compiled 9-bit 20-MS 3.5-fJ-conv.step SAR ADC in 28-nm FDSOI for Bluetooth Low Energy Receivers,' in IEEE Journal of Solid-State Circuits. Shi Bu et al., 'A 200-ps-Response-Time Output-Capacitorless Low-Dropout Regulator With Unity-Gain BW>100 MHz in 130-nm CMOS,' in IEEE Transactions on Power Electronics, vol. 33, no. 4, Apr. 2018. A. Vence, et al., 'A 0.076 mm^2 12b 26.5 mW 600 MS/s 4-Way Interleaved Subranging SAR-∆∑ ADC with On-Chip Buffer in 28 nm CMOS,' IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2951-2962, Aug. 2016. K.-H. Chen, 'Power Management Techniques for Integrated Circuit Design,' pp. 85-93, Sep. 2016 Mo Huang et al., 'An Analog-Assisted Tri-loop Digital Low-Dropout Regulator,' in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, Jan. 2018. Jun-Eun Park et al., '0.4-to-1.2V 0.0057 mm^2 55fs-Transient-FoM Ring- Amplifier-Based Low-Dropout Regulator with Replica-Based PSR Enhancement,' in IEEE International Solid-State Circuits, San Francisco, CA, USA, 2020, pp. 492-493. J. Rijmenants, J. B. Litsios, T. R. Schwarz, and M. G. R. Degrauwe, “ILAC: An automated layout tool for analog CMOS circuits,” IEEE J.Solid-State Circuits, vol. 24, no. 2, pp. 417–425, Apr. 1989. J. D. Bruce, H. W. Li, M. J. Dallabetta, and R. J. Baker, 'Analog layout using ALAS!' IEEE J. Solid-State Circuits, vol. 31, no. 2, pp. 271–274, Feb. 1996. Y. Hu et al., 'A 12-bit 200kS/s subranging SAR ADC with an energy-curve reshape technique,' 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, 2016, pp. 149-152. C. Liu, et al., 'A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,' in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010. V. Hariprasath et al., 'Merged capacitor switching based SAR ADC with highest switching energy-efficiency,' in Electronics Letters, vol. 46, no. 9, pp. 620-621, 29 April 2010. G. Huang, et al., 'A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,' IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012. S. Hsieh, et al., 'A 0.44fJ/conversion-step 11b 600KS/s SAR ADC with semi-resting DAC,' 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, 2016, pp. 1-2. Y. Chung, et al., 'A 12-bit 8.47-fJ/Conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS,' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 10-18, Jan. 2015. M. Liu, et al., 'A 7.1-fJ/Conversion-Step 88-dB SFDR SAR ADC With Energy-Free 'Swap To Reset,' ' in IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2979-2990, Nov. 2017. H. Tai, et al., 'A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,' 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 196-197. Y. Hu, et al., 'An 89.55dB-SFDR 179.6dB-FoMs 12-bit 1MS/s SAR-Assisted SAR ADC with Weight-Split Compensation Calibration, ' 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, 2018, pp. 253-256. W. Liu, et al., 'A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration,' in IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2661-2672, Nov. 2011. Yuan Zhou, et al., 'A 12b 160MS/s synchronous two-step SAR ADC achieving 20.7fJ/step FoM with opportunistic digital background calibration,' 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2. W. Tseng, et al., 'A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,' IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, Oct. 2016. D. Chang et al., 'Normalized-Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC,' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 322-332, Feb. 2017. C. C. Lee, et al., 'A 12b 70MS/s SAR ADC with digital startup calibration in 14nm CMOS,' 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, 2015, pp. C62-C63. V. Hariprasath et al., 'Merged Capacitor Switching Based SAR ADC with Highest Switching Energy-Efficiency,' Electron. Lett., vol. 46, pp. 620-621, Apr. 2010. Y.-Z Lin, et al., 'A 8.2-mW 10-b 1.6-GS/s 4× TI SAR ADC with Fast Reference Charge Neutralization and Background Timing-Skew Calibration in 16-nm CMOS,' in Proc. IEEE Symp. VLSI Circuits, pp.C204-C205, Jun. 2016. M. Liu, et al., 'A 106 nW 10 b 80 kS/s SAR ADC With Duty-Cycled Reference Generation in 65 nm CMOS,' in IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2435-2445, Oct 2016. T. Miki, et al., 'A 4.2 mW 50 MS/s 13 bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques,' in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1372-1381, June 2015. Y.-S. Hu, et al. 'A 0.6 V 1.63 fJ/c.-s. Detective Open-Loop Dynamic System Buffer for SAR ADC in Zero-Capacitor TDDI System,' IEEE J. Solid-State Circuits, vol. 54, no. 10, pp. 2680–2690, Oct. 2019. P. Harikumar et al., 'Design of a Reference Voltage Buffer for a 10-bit 50 MS/s SAR ADC in 65 nm CMOS,' in Proc. IEEE Int. Symp. Circuits and System, pp. 249–252, May 2015. S. Wei, et al., 'An 11-bit 200MS/s Subrange SAR ADC with Charge-Compensation-Based Reference Buffer,' IEEE NEWCAS, Jun. 2016. M. Liu, et al., 'A 10-b 20-MS/s SAR ADC with DAC-Compensated Discrete-Time Reference Driver,' IEEE J. Solid-State Circuits, vol. 54, no. 2, pp. 417–427, Feb. 2019. M. Ho, et al., 'A Low-Power Fast-Transient 90-nm Low-Dropout Regulator With Multiple Small-Gain Stages,' IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2466–2475, Nov. 2010. C. Lee, et al., 'A Replica-Driving Technique for High Performance SC Circuits and Pipelined ADC Design,' in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 9, Apr. 2013. T.-Y. Man, et al., 'Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC,' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 5, Apr. 2008. J. Ramirez-Angulo, A. Torralba, J. Galan, A. P. Vega-Leal, and J. Tombs, 'Low-power low-voltage analog electronic circuits using the flipped voltage follower,' in Proc. IEEE Int. Symp. Ind. Electron., Jul. 2002, pp. 1327–1330. J. Ramirez-Angulo, R. G. Carvajal, A. Torralba, J. Galan, A. P. Vega-Leal, and J. Tombs, 'The flipped voltage follower: A useful cell for low-voltage low-power circuit design,' in Proc. IEEE Int. Sym. Circuits Syst., May 2002, vol. 3, pp. 615–618. J. Ramirez-Angulo, S. Gupta, I. Padilla, R. G. Carvajal, A. Torralba, M. Jimenez, and F. Munoz, 'Comparison of conventional and new flipped voltage structures with increased input/output signal swing and current sourcing/sinking capabilities,' in Proc. IEEE Int. Sym. Circuits Syst., Aug. 2005, vol. 2, pp. 1151–1154. P. Hazucha, T. Kamik, B. A. Bloechel, C. Parsons, and S. Borkar, 'Area-efficient linear regulator with ultra-fast load regulation,' IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 933–940, Apr. 2005. P. R. Surkanti et al., 'Flipped Voltage Follower Low Dropout (LDO) Voltage Regulators: A Tutorial Overview,' in 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems, pp. 232–237. Yasuyuki Okuma, et al., '0.5-V Input Digital LDO With 98.7% Current Efficiency and 2.7-µA Quiescent Current in 65nm CMOS,' IEEE CICC, pp. 1-4, Sept. 2010. Yu-Huei Lee, et al., 'A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement,' IEEE J. Solid-State Circuits, vol. 48, pp. 1018-1030, Jan. 2013. Loai G. Salem, et al., 'A 100nA-to-2mA Successive-Approximation Digital LDO with PD Compensation and Sub-LSB Duty Control Achieving a 15.1ns Response Time at 0.5V,' IEEE ISSCC Dig. Tech. Papers, pp. 340-341, Feb. 2017. X. Ma, et al., 'An NMOS Digital LDO With NAND-Based Analog-Assisted Loop in 28-nm CMOS, ' in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 4041-4052, Nov. 2020. X. Wang et al., 'A Dynamically High-Impedance Charge-Pump-Based LDO with Digital-LDO-Like Properties Achieving a Sub-4-fs FoM' IEEE J. Solid-State Circuits, vol. 55, n0. 3, pp. 719-730, Jan. 2020. Feng-Jen Chiang. (2019). All Digital Calibration for High-Resolution Successive-Approximation Register Analog-to-Digital Converter. Master Thesis, Mixed-Signal IC Lab, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei City. Jyun-Chun Huang. (2019). A 13-bit Successive-Approximation-Register Analog-to-Digital Converter with Hybrid Reference Buffer Circuit. Master Thesis, Mixed-Signal IC Lab, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei City.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82650-
dc.description.abstract連續漸進式類比至數位轉換器是一種著名的高電能效率架構由於其電容式數位至類比轉換器和低靜態功耗。然而,外圍電路的驅動是一個嚴重的問題,因此本論文提出了一種混合架構參考電壓緩衝電路,用於採用40奈米製程的0.9伏特電壓每秒一百萬次取樣的十四位元連續漸進式類比至數位轉換器。混合架構參考電壓緩衝電路包括電荷補償電路和動態參考電壓穩定器,以調節所提出的連續漸進式類比至數位轉換器之參考電壓。本文提出的類比至數位轉換器在每秒一百萬次取樣速度下,實現了11.52的測量有效位元。整體有效面積僅為0.048186平方毫米,且無需外部去耦電容。功率消耗為19.5微瓦特,品質因數達到 170.3 分貝。 此外,應用優化的可程式化繞線系統來更快地轉換電路的製程。優化的三點,包括電晶體的創建、擺置和繞線,如此一來即使是需要對稱的電路也可以完成。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:48:36Z (GMT). No. of bitstreams: 1
U0001-1510202116364000.pdf: 3246022 bytes, checksum: afd8f11345b30622771ec45fe59b829e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 I 致謝 II 摘要 III Abstract IV Contents V List of Figures IX List of Tables XIV Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Fundamentals of ADC with RVS and Analog Layout Generator 5 2.1 Introduction 5 2.2 Analog-to-Digital Converter 5 2.2.1 Static Performance 6 2.2.2 Dynamic Performance 9 2.2.3 Architectures 13 2.2.3.1 Pipeline 13 2.2.3.2 Two-Step and Sub-Ranging 14 2.2.3.3 Successive-Approximation-Register(SAR) 15 2.3 Reference Voltage Stabilizer (RVS) 17 2.3.1 Performance Metrics 18 2.3.1.1 Quiescent Current 18 2.3.1.2 Power Efficiency 20 2.3.1.3 Stability Analysis 21 2.3.1.4 Line Regulation and Load Regulation 22 2.3.1.5 Transient Response 24 2.3.1.6 Power Supply Rejection Ratio (PSRR) 27 2.3.2 Architectures 27 2.3.2.1 Analog LDO Regulator 28 2.3.2.2 Digital LDO Regulator 32 2.3.2.3 Analog-Assisted Digital LDO Regulator 35 2.4 Analog Layout Generator 38 2.4.1 Compilation 39 2.4.2 MOS Creation 41 2.4.3 Placement 43 2.4.4 Routing 44 2.4.4.1 Route-type 44 2.4.4.2 Options 47 Chapter 3 A 14-bit 1MS/s SAR ADC with Reference Buffer Circuit 50 3.1 Introduction 50 3.2 Proposed Architecture 52 3.3 High-Efficiency Technique 56 3.3.1 Detect-and-Skip (DAS) Algorithm 57 3.3.2 Aligned Switching Technique 60 3.3.3 Tracking Average 61 3.4 Calibration 63 3.4.1 Capacitor Calibration 63 3.4.2 Offset Mismatch Calibration 69 3.5 Switching Energy 73 3.5.1 Conventional Switching Energy 74 3.5.2 DAS Switching Energy 76 3.6 Charge Compensation (CC) 77 3.6.1 Switched Capacitor (SC) DC-DC Converter 78 3.6.2 Charge Pump and Charge Sharing Methods 79 3.6.3 Accumulated Charge Compensation (ACC) 81 3.6.4 Dual-Use Switching (DUS) 84 3.7 Dynamic Reference Voltage Stabilizer (RVS) 88 3.7.1 Proposed architecture 88 3.7.2 Stability Analysis 90 3.8 Measurement Results 95 3.8.1 Measurement Environment 97 3.8.2 Measurement Performance 99 3.8.3 Measurement discussion 108 Chapter 4 Optimized Programmable Routing in Custom IC Creator 111 4.1 Introduction 111 4.2 MOS Creation 112 4.2.1 Basic Cell 114 4.2.2 Finger and Multiplier 116 4.3 Placement 118 4.3.1 Placement Direction 118 4.3.2 Group Name 120 4.4 Routing 121 4.4.1 U-shaped Route-type 123 4.4.2 S-shaped Route-type 124 4.4.3 Options 125 4.5 Case Implementation 128 4.5.1 Compilation 130 4.5.2 Comparison 132 4.5.2.1 Symmetry 132 4.5.2.2 Common Centroid 134 4.5.2.3 Guard Ring 137 4.5.2.4 Design Time 138 Chapter 5 Conclusion and Future Work 140 5.1 Conclusion 140 5.2 Future Work 141 Bibliography 146
dc.language.isoen
dc.subject連續漸進式zh_TW
dc.subject可程式化繞線優化zh_TW
dc.subject參考電壓穩定器zh_TW
dc.subject類比至數位轉換器zh_TW
dc.subject電荷補償zh_TW
dc.subjectanalog-to-digital converter (ADC)en
dc.subjectOptimized Programmable Routing (OPR)en
dc.subjectReference Voltage Stabilizer (RVS)en
dc.subjectsuccessive-approximation register (SAR)en
dc.subjectCharge Compensation (CC)en
dc.title一個具混合架構參考電壓緩衝電路之類比至數位轉換器與類比佈局之可程式化繞線優化zh_TW
dc.titleA Hybrid Reference Buffer Circuit for an ADC and Optimized Programmable Routing in Analog Layouten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉宗德(Hsin-Tsai Liu),蔡坤諭(Chih-Yang Tseng),洪崇智
dc.subject.keyword連續漸進式,類比至數位轉換器,電荷補償,參考電壓穩定器,可程式化繞線優化,zh_TW
dc.subject.keywordsuccessive-approximation register (SAR),analog-to-digital converter (ADC),Charge Compensation (CC),Reference Voltage Stabilizer (RVS),Optimized Programmable Routing (OPR),en
dc.relation.page153
dc.identifier.doi10.6342/NTU202103761
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
dc.date.embargo-lift2023-10-15-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1510202116364000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved