請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82645完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林菀俞(Wan-Yu Lin) | |
| dc.contributor.author | Cheng-Hung Sun | en |
| dc.contributor.author | 孫成宏 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:48:30Z | - |
| dc.date.available | 2024-09-01 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-20 | |
| dc.identifier.citation | Abu-Farha, M., Melhem, M., Abubaker, J., Behbehani, K., Alsmadi, O., Elkum, N. (2016). ANGPTL8/Betatrophin R59W variant is associated with higher glucose level in non-diabetic Arabs living in Kuwaits. Lipids in health and disease, 15(1), 1-7. Acuña-Alonzo, V., Flores-Dorantes, T., Kruit, J. K., Villarreal-Molina, T., Arellano-Campos, O., Hünemeier, T., León-Mimila, P. (2010). A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Human molecular genetics, 19(14), 2877-2885. An, J., Gharahkhani, P., Law, M. H., Ong, J.-S., Han, X., Olsen, C. M., Gockel, I. (2019). Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases. Nature communications, 10(1), 1-10. An, P., Czajkowski, J., Kraja, A. T., Province, M. A., Borecki, I. B. (2015). Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Assimes, T. L., Roberts, R. (2016). Genetics: implications for prevention and management of coronary artery disease. Journal of the American College of Cardiology, 68(25), 2797-2818. Avery, C. L., He, Q., North, K. E., Ambite, J. L., Boerwinkle, E., Fornage, M., Pankow, J. S. (2011). A phenomics-based strategy identifies loci on APOC1, BRAP, and PLCG1 associated with metabolic syndrome phenotype domains. PLoS genetics, 7(10), e1002322. Been, L. F., Ralhan, S., Wander, G. S., Mehra, N. K., Singh, J., Mulvihill, J. J., Sanghera, D. K. (2011). Variants in KCNQ1 increase type II diabetes susceptibility in South Asians: a study of 3,310 subjects from India and the US. BMC medical genetics, 12(1), 1-10. Belalcazar, M., Ariel Brautbar, M., Christie Ballantyne, M., Abbas, E. K. Do Genetic Modifiers of HDL-C and Triglyceride Levels also Modify Their Response to a Lifestyle Intervention in the Setting of Obesity and Type-2 Diabetes Mellitus? The Look AHEAD Study. Below, J. E., Parra, E. J., Gamazon, E. R., Torres, J., Krithika, S., Candille, S., Duan, Q. (2016). Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects and tissue-specific enrichment of eQTLs. Scientific reports, 6(1), 1-13. Bernstein, M. S., Costanza, M. C., James, R. W., Morris, M. A., Cambien, F., Raoux, S., Morabia, A. (2002). Physical activity may modulate effects of ApoE genotype on lipid profile. Arteriosclerosis, thrombosis, and vascular biology, 22(1), 133-140. Björkegren, J. L., Kovacic, J. C., Dudley, J. T., Schadt, E. E. (2015). Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. Journal of the American College of Cardiology, 65(8), 830-845. Braun, T. R., Been, L. F., Singhal, A., Worsham, J., Ralhan, S., Wander, G. S., Sanghera, D. K. (2012). A replication study of GWAS-derived lipid genes in Asian Indians: the chromosomal region 11q23. 3 harbors loci contributing to triglycerides. PloS One, 7(5), e37056. Carmelli, D., Cardon, L. R., Fabsitz, R. (1994). Clustering of hypertension, diabetes, and obesity in adult male twins: same genes or same environments? American journal of human genetics, 55(3), 566. Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4(1), s13742-13015-10047-13748. Chen, Y.-C., Xu, C., Zhang, J.-G., Zeng, C.-P., Wang, X.-F., Zhou, R., Shen, J. (2018). Multivariate analysis of genomics data to identify potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia using Meta-CCA and gene-based approach. PloS One, 13(8), e0201173. Chen, Y.-Y., Lin, Y.-J., Chong, E., Chen, P.-C., Chao, T.-F., Chen, S.-A., Chien, K.-L. (2015). The impact of diabetes mellitus and corresponding HbA1c levels on the future risks of cardiovascular disease and mortality: a representative cohort study in Taiwan. PloS One, 10(4), e0123116. Chiang, C.-E., Wang, T.-D., Lin, T.-H., Yeh, H.-I., Liu, P.-Y., Cheng, H.-M., Ueng, K.-C. (2017). The 2017 focused update of the guidelines of the Taiwan Society of Cardiology (TSOC) and the Taiwan Hypertension Society (THS) for the management of hypertension. Acta Cardiologica Sinica, 33(3), 213. Clee, S. M., Kastelein, J. J., van Dam, M., Marcil, M., Roomp, K., Zwarts, K. Y., Stulc, T. (2000). Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. The Journal of clinical investigation, 106(10), 1263-1270. Coram, M. A., Duan, Q., Hoffmann, T. J., Thornton, T., Knowles, J. W., Johnson, N. A., Eaton, C. B. (2013). Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. The American Journal of Human Genetics, 92(6), 904-916. Cui, M., Li, W., Ma, L., Ping, F., Liu, J., Wu, X., Nie, M. (2017). HDL-cholesterol concentration in pregnant Chinese Han women of late second trimester associated with genetic variants in CETP, ABCA1, APOC3, and GALNT2. Oncotarget, 8(34), 56737. Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A. E., Kwong, A., McGue, M. (2016). Next-generation genotype imputation service and methods. Nature genetics, 48(10), 1284-1287. Dehwah, M., Wang, M., Huang, Q. (2010). CDKAL1 and type 2 diabetes: a global meta-analysis. Genet Mol Res, 9(2), 1109-1120. di Giuseppe, R., Pechlivanis, S., Fisher, E., Arregui, M., Weikert, B., Knüppel, S., Joost, H.-G. (2013). Microsomal triglyceride transfer protein-164 T> C gene polymorphism and risk of cardiovascular disease: results from the EPIC-Potsdam case-cohort study. BMC medical genetics, 14(1), 1-9. Du, Z., Ma, L., Qu, H., Chen, W., Zhang, B., Lu, X., Li, W. (2019). Whole genome analyses of chinese population and De Novo assembly of a northern han genome. Genomics, proteomics bioinformatics, 17(3), 229-247. Edmondson, A. C., Brown, R. J., Kathiresan, S., Cupples, L. A., Demissie, S., Manning, A. K., Rodrigues, A. (2009). Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. The Journal of clinical investigation, 119(4), 1042-1050. Ehret, G. B. (2010). Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Current hypertension reports, 12(1), 17-25. Flannick, J., Johansson, S., Njølstad, P. R. (2016). Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nature Reviews Endocrinology, 12(7), 394. Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J., Mohlke, K. L. (2014). Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS genetics, 10(9), e1004633. Frikke-Schmidt, R. (2010). Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis, 208(2), 305-316. Gittens, J. E. (2018). An Evaluation of the PrediXcan Method for the Identification of Lipid Associated Genes. Goodarzi, M., Guo, X., Cui, J., Jones, M., Haritunians, T., Xiang, A., Hsueh, W. (2013). Systematic evaluation of validated type 2 diabetes and glycaemic trait loci for association with insulin clearance. Diabetologia, 56(6), 1282-1290. Gordon, D. J., Probstfield, J. L., Garrison, R. J., Neaton, J. D., Castelli, W. P., Knoke, J. D., Tyroler, H. A. (1989). High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation, 79(1), 8-15. Grundy, S. M., Cleeman, J. I., Bairey Merz, C. N., Brewer, H. B., Clark, L. T., Hunninghake, D. B., Program, C. C. o. t. N. C. E. (2004). Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Journal of the American College of Cardiology, 44(3), 720-732. Ha, E. E., Van Camp, A. G., Bauer, R. C. (2019). Genetics-driven discovery of novel regulators of lipid metabolism. Current opinion in lipidology, 30(3), 157. Hindy, G., Dornbos, P., Chaffin, M. D., Liu, D. J., Wang, M. X., Aguilar-Salinas, C. A., Aslibekyan, S. (2020). Rare coding variants in 35 genes associate with circulating lipid levels: a multi-ancestry analysis of 170,000 exomes. bioRxiv. Hirawa, N., Fujiwara, A., Umemura, S. (2013). ATP2B1 and blood pressure: from associations to pathophysiology. Current opinion in nephrology and hypertension, 22(2), 177-184. Jeemon, P., Pettigrew, K., Sainsbury, C., Prabhakaran, D., Padmanabhan, S. (2011). Implications of discoveries from genome-wide association studies in current cardiovascular practice. World journal of cardiology, 3(7), 230. Kang, M., Sung, J. (2019). A genome-wide search for gene-by-obesity interaction loci of dyslipidemia in Koreans shows diverse genetic risk alleles. Journal of lipid research, 60(12), 2090-2101. Kathiresan, S., Tada, H., Won, H.-H., Melander, O. only, and not to be further disclosed. Kato, N., Takeuchi, F., Tabara, Y., Kelly, T. N., Go, M. J., Sim, X., Yamamoto, K. (2011). Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nature genetics, 43(6), 531-538. Kayima, J., Liang, J., Natanzon, Y., Nankabirwa, J., Ssinabulya, I., Nakibuuka, J., Li, C. (2017). Association of genetic variation with blood pressure traits among East Africans. Clinical genetics, 92(5), 487-494. Khera, A. V., Emdin, C. A., Drake, I., Natarajan, P., Bick, A. G., Cook, N. R., Rader, D. J. (2016). Genetic risk, adherence to a healthy lifestyle, and coronary disease. New England Journal of Medicine, 375(24), 2349-2358. Khetarpal, S. A., Edmondson, A. C., Raghavan, A., Neeli, H., Jin, W., Badellino, K. O., Wolfe, M. L. (2011). Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol. PLoS genetics, 7(12), e1002393. Klimentidis, Y. C., Arora, A., Newell, M., Zhou, J., Ordovas, J. M., Renquist, B. J., Wood, A. C. (2020). Phenotypic and genetic characterization of lower LDL cholesterol and increased type 2 diabetes risk in the UK Biobank. Diabetes, 69(10), 2194-2205. Ko, A. M.-S., Chen, C.-Y., Fu, Q., Delfin, F., Li, M., Chiu, H.-L., Ko, Y.-C. (2014). Early Austronesians: into and out of Taiwan. The American Journal of Human Genetics, 94(3), 426-436. Kobayashi, Y., Hirawa, N., Tabara, Y., Muraoka, H., Fujita, M., Miyazaki, N., Ichihara, N. (2012). Mice lacking hypertension candidate gene ATP2B1 in vascular smooth muscle cells show significant blood pressure elevation. Hypertension, 59(4), 854-860. Koyama, S., Ito, K., Terao, C., Akiyama, M., Horikoshi, M., Momozawa, Y., Onouchi, Y. (2019). Population-specific and transethnic genome-wide analyses reveal distinct and shared genetic risks of coronary artery disease. bioRxiv, 827550. Kraja, A. T., Liu, C., Fetterman, J. L., Graff, M., Have, C. T., Gu, C., Chasman, D. I. (2019). Associations of mitochondrial and nuclear mitochondrial variants and genes with seven metabolic traits. The American Journal of Human Genetics, 104(1), 112-138. Kulminski, A. M., Loika, Y., Nazarian, A., Culminskaya, I. (2020). Quantitative and qualitative role of antagonistic heterogeneity in genetics of blood lipids. The Journals of Gerontology: Series A, 75(10), 1811-1819. Kupper, N., Willemsen, G., Riese, H., Posthuma, D., Boomsma, D. I., de Geus, E. J. (2005). Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension, 45(1), 80-85. León-Mimila, P., Villamil-Ramírez, H., Macias-Kauffer, L. R., Jacobo-Albavera, L., Lopez-Contreras, B. E., Posadas-Sanchez, R., Dominguez-Perez, M. (2020). A functional variant of the SIDT2 gene involved in cholesterol transport is associated with HDL-C levels and premature coronary artery disease. medRxiv. Leong, A., Wheeler, E. (2018). Genetics of HbA1c: a case study in clinical translation. Current opinion in genetics development, 50, 79-85. Levy, D., Ehret, G. B., Rice, K., Verwoert, G. C., Launer, L. J., Dehghan, A., Aspelund, T. (2009). Genome-wide association study of blood pressure and hypertension. Nature genetics, 41(6), 677-687. Li, C., Kim, Y. K., Dorajoo, R., Li, H., Lee, I.-T., Cheng, C.-Y., Ganesh, S. K. (2017). Genome-wide association study meta-analysis of long-term average blood pressure in East Asians. Circulation: Cardiovascular Genetics, 10(2), e001527. Li, H., Gan, W., Lu, L., Dong, X., Han, X., Hu, C., Li, P. (2013). A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes, 62(1), 291-298. Li, Y.-H., Ueng, K.-C., Jeng, J.-S., Charng, M.-J., Lin, T.-H., Chien, K.-L., Su, C.-H. (2017). 2017 Taiwan lipid guidelines for high risk patients. Journal of the Formosan Medical Association, 116(4), 217-248. Li, Y., Liu, L., Huang, Y., Zheng, H., Li, L. (2019). Association of ABO Polymorphisms and Cancer/Cardiocerebrovascular Disease: a Meta-analysis. Li, Y., Liu, L., Huang, Y., Zheng, H., Li, L. (2020). Association of ABO polymorphisms and pancreatic Cancer/Cardiocerebrovascular disease: a meta-analysis. BMC medical genetics, 21(1), 1-10. Lin, W.-Y. (2021). Lifestyle factors and genetic variants on two biological age measures: evidence from 94,443 Taiwan Biobank participants. The Journals of Gerontology: Series A. Lin, W.-Y., Liu, Y.-L., Yang, A. C., Tsai, S.-J., Kuo, P.-H. (2020). Active cigarette smoking is associated with an exacerbation of genetic susceptibility to diabetes. Diabetes, 69(12), 2819-2829. Lin, W.-Y., Chan, C.-C., Liu, Y.-L., Yang, A. C., Tsai, S.-J., Kuo, P.-H. (2019). Performing different kinds of physical exercise differentially attenuates the genetic effects on obesity measures: Evidence from 18,424 Taiwan Biobank participants. PLoS genetics, 15(8), e1008277. Liu, H., Wang, W., Zhang, C., Xu, C., Duan, H., Tian, X., Zhang, D. (2018). Heritability and genome-wide association study of plasma cholesterol in Chinese adult twins. Frontiers in endocrinology, 9, 677. Liu, Z.-K., Hu, M., Baum, L., Thomas, G. N., Tomlinson, B. (2010). Associations of polymorphisms in the apolipoprotein A1/C3/A4/A5 gene cluster with familial combined hyperlipidaemia in Hong Kong Chinese. Atherosclerosis, 208(2), 427-432. Lo, Y.-H., Cheng, H.-C., Hsiung, C.-N., Yang, S.-L., Wang, H.-Y., Peng, C.-W., Chen, C.-H. (2020). Detecting genetic ancestry and adaptation in the Taiwanese Han people. Molecular Biology and Evolution. Loehr, L. R., Meyer, M. L., Poon, A. K., Selvin, E., Palta, P., Tanaka, H., Wagenknecht, L. E. (2016). Prediabetes and diabetes are associated with arterial stiffness in older adults: the ARIC study. American journal of hypertension, 29(9), 1038-1045. Lu, X., Peloso, G. M., Liu, D. J., Wu, Y., Zhang, H., Zhou, W., Li, H. (2017). Exome chip meta-analysis identifies novel loci and East Asian–specific coding variants that contribute to lipid levels and coronary artery disease. Nature genetics, 49(12), 1722-1730. Luo, M., Peng, D. (2018). ANGPTL8: an important regulator in metabolic disorders. Frontiers in endocrinology, 9, 169. MacDonald, P., Wheeler, M. (2003). Voltage-dependent K+ channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia, 46(8), 1046-1062. Marco, C., Antonio, D., Antonina, S., Alessandro, S., Concetta, C. (2015). Genes involved in pruning and inflammation are enriched in a large mega-sample of patients affected by schizophrenia and bipolar disorder and controls. Psychiatry research, 228(3), 945-949. Marees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie‐Claire, C., Derks, E. M. (2018). A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis. International journal of methods in psychiatric research, 27(2), e1608. Matsunaga, H., Ito, K., Akiyama, M., Takahashi, A., Koyama, S., Nomura, S., Sakaue, S. (2020). Transethnic meta-analysis of genome-wide association studies identifies three new loci and characterizes population-specific differences for coronary artery disease. Circulation: Genomic and Precision Medicine, 13(3), e002670. McCarthy, M. I., Zeggini, E. (2009). Genome-wide association studies in type 2 diabetes. Current diabetes reports, 9(2), 164-171. McGurk, K. A., Keavney, B. D., Nicolaou, A. (2021). Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis. Mens, M. M., Maas, S. C., Klap, J., Weverling, G. J., Klatser, P., Brakenhoff, J. P., Kavousi, M. (2020). Multi-omics analysis reveals microRNAs associated with cardiometabolic traits. Frontiers in genetics, 11, 110. Moon, S., Lee, Y., Won, S., Lee, J. (2018). Multiple genotype–phenotype association study reveals intronic variant pair on SIDT2 associated with metabolic syndrome in a Korean population. Human genomics, 12(1), 1-10. Neufeld, E. B., Remaley, A. T., Demosky, S. J., Stonik, J. A., Cooney, A. M., Comly, M., Santamarina-Fojo, S. (2001). Cellular localization and trafficking of the human ABCA1 transporter. Journal of Biological Chemistry, 276(29), 27584-27590. Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M. D., Bochud, M., Coin, L., Eyheramendy, S. (2009). Genome-wide association study identifies eight loci associated with blood pressure. Nature genetics, 41(6), 666. Nor, H. N. H. M., Shahrill, M. (2014). Using a Case-Control Genotypic Testing in Investigating the Association with Type-2 Diabetes. Modern Applied Science, 8(6), 1. Oh, S.-W., Lee, J.-E., Shin, E., Kwon, H., Choe, E. K., Choi, S.-Y., Choi, S. H. (2020). Genome-wide association study of metabolic syndrome in Korean populations. PloS One, 15(1), e0227357. Oldoni, F., Palmen, J., Giambartolomei, C., Howard, P., Drenos, F., Plagnol, V., Smith, A. J. (2016). Post-GWAS methodologies for localisation of functional non-coding variants: ANGPTL3. Atherosclerosis, 246, 193-201. Pan, W., Chang, H., Yeh, W., Hsiao, S., Hung, Y. (2001). Prevalence, awareness, treatment and control of hypertension in Taiwan: results of Nutrition and Health Survey in Taiwan (NAHSIT) 1993–1996. Journal of human hypertension, 15(11), 793-798. Peloso, G. M., Auer, P. L., Bis, J. C., Voorman, A., Morrison, A. C., Stitziel, N. O., Fornage, M. (2014). Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. The American Journal of Human Genetics, 94(2), 223-232. Poulsen, P., Kyvik, K. O., Vaag, A., Beck-Nielsen, H. (1999). Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study. Diabetologia, 42(2), 139-145. Pu, J., Romanelli, R., Zhao, B., Azar, K. M., Hastings, K. G., Nimbal, V., Palaniappan, L. P. (2015). Dyslipidemia in special ethnic populations. Cardiology clinics, 33(2), 325-333. Puavilai, W., Laoragpongse, D. (2004). Is calculated LDL-C by using the new modified Friedewald equation better than the standard Friedewald equation? JOURNAL-MEDICAL ASSOCIATION OF THAILAND, 87(6), 589-593. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Daly, M. J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:https://doi.org/10.1086/519795 Qi, L., Parast, L., Cai, T., Powers, C., Gervino, E. V., Hauser, T. H., Doria, A. (2011). Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. Journal of the American College of Cardiology, 58(25), 2675-2682. Radovica, I., Fridmanis, D., Vaivade, I., Nikitina-Zake, L., Klovins, J. (2013). The association of common SNPs and haplotypes in CETP gene with HDL cholesterol levels in Latvian population. PloS One, 8(5), e64191. Razzaghi, H., Santorico, S. A., Kamboh, M. I. (2012). Population-based resequencing of LIPG and ZNF202 genes in subjects with extreme HDL levels. Frontiers in genetics, 3, 89. Sanghera, D. K., Blackett, P. R. (2012). Type 2 diabetes genetics: beyond GWAS. Journal of diabetes metabolism, 3(198). Sarzynski, M. A., Jacobson, P., Rankinen, T., Carlsson, B., Sjöström, L., Carlsson, L. M., Bouchard, C. (2011). Association of GWAS-based candidate genes with HDL-cholesterol levels before and after bariatric surgery in the Swedish obese subjects study. The Journal of Clinical Endocrinology Metabolism, 96(6), E953-E957. Sheen, Y.-J., Hsu, C.-C., Jiang, Y.-D., Huang, C.-N., Liu, J.-S., Sheu, W. H.-H. (2019). Trends in prevalence and incidence of diabetes mellitus from 2005 to 2014 in Taiwan. Journal of the Formosan Medical Association, 118, S66-S73. Shin, Y.-B., Lim, J. E., Ji, S.-M., Lee, H.-J., Park, S.-Y., Hong, K.-W., Oh, B. (2013). Silencing of Atp2b1 increases blood pressure through vasoconstriction. Journal of hypertension, 31(8), 1575-1583. Silbernagel, G., Chapman, M. J., Genser, B., Kleber, M. E., Fauler, G., Scharnagl, H., Kähönen, M. (2013). High intestinal cholesterol absorption is associated with cardiovascular disease and risk alleles in ABCG8 and ABO: evidence from the LURIC and YFS cohorts and from a meta-analysis. Journal of the American College of Cardiology, 62(4), 291-299. Smith, C. J. (2018). Genetic and metabolic associations with preterm birth. The University of Iowa, Sáez, M., González-Pérez, A., Hernández-Olasagarre, B., Beà, A., Moreno-Grau, S., de Rojas, I., Comella, J. (2019). Genome Wide Meta-Analysis identifies common genetic signatures shared by heart function and Alzheimer’s disease. Scientific reports, 9(1), 1-14. Sombié, H. K., Kologo, J. K., Tchelougou, D., Ouédraogo, S. Y., Ouattara, A. K., Compaoré, T. R., Soubega, S. T. (2019). Positive association between ATP2B1 rs17249754 and essential hypertension: a case-control study in Burkina Faso, West Africa. BMC cardiovascular disorders, 19(1), 1-7. Soumian, S., Albrecht, C., Davies, A., Gibbs, R. (2005). ABCA1 and atherosclerosis. Vascular medicine, 10(2), 109-119. Spracklen, C. N., Chen, P., Kim, Y. J., Wang, X., Cai, H., Li, S., Takeuchi, F. (2017). Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Human molecular genetics, 26(9), 1770-1784. Spracklen, C. N., Shi, J., Vadlamudi, S., Wu, Y., Zou, M., Raulerson, C. K., Yuan, W. (2018). Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. PLoS genetics, 14(4), e1007275. Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Jonsdottir, T., Walters, G. B., Ghosh, S. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature genetics, 39(6), 770-775. Takeuchi, F., Serizawa, M., Yamamoto, K., Fujisawa, T., Nakashima, E., Ohnaka, K., Miyagishi, M. (2009). Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes, 58(7), 1690-1699. Tan, C., Tai, E. S., Tan, C., Chia, K., Lee, J., Chew, S., Ordovas, J. (2003). APOE polymorphism and lipid profile in three ethnic groups in the Singapore population. Atherosclerosis, 170(2), 253-260. Tang, C. S., Zhang, H., Cheung, C. Y., Xu, M., Ho, J. C., Zhou, W., Au, K.-W. (2015). Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese. Nature communications, 6(1), 1-9. Teng, M.-S., Hsu, L.-A., Wu, S., Chou, H.-H., Chang, C.-J., Sun, Y.-Z., Ko, Y.-L. (2013). Mediation analysis reveals a sex-dependent association between ABO gene variants and TG/HDL-C ratio that is suppressed by sE-selectin level. Atherosclerosis, 228(2), 406-412. Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M., Koseki, M., Willer, C. J. (2010). Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 466(7307), 707-713. TINGJING, K. (2014). GENOME WIDE ASSOCIATION STUDIES OF CORONARY ARTERY DISEASE IN SINGAPOREAN CHINESE POPULATIONS. van der Harst, P., Verweij, N. (2018). Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circulation research, 122(3), 433-443. van Vliet-Ostaptchouk, J., den Hoed, M., Luan, J., Zhao, J., Ong, K., Van Der Most, P., Van Der Klauw, M. (2013). Pleiotropic effects of obesity-susceptibility loci on metabolic traits: a meta-analysis of up to 37,874 individuals. In: Springer. vanÂīt Hooft, F., SyvÃĪnen, A.-C. Association of Genetic Risk Variants with Expression of Proximal Genes Identifies Novel Susceptibility Genes for Cardiovascular Disease. Wang, J., Burnett, J. R., Near, S., Young, K., Zinman, B., Hanley, A. J., Hegele, R. A. (2000). Common and rare ABCA1 variants affecting plasma HDL cholesterol. Arteriosclerosis, thrombosis, and vascular biology, 20(8), 1983-1989. Wang, Y., Zhang, Y., Li, Y., Zhou, X., Wang, X., Gao, P., Zhu, D. (2013). Common variants in the ATP2B1 gene are associated with hypertension and arterial stiffness in Chinese population. Molecular biology reports, 40(2), 1867-1873. Wei, C.-Y., Yang, J.-H., Yeh, E.-C., Tsai, M.-F., Kao, H.-J., Lo, C.-Z., Belsare, S. (2021). Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ genomic medicine, 6(1), 1-10. Wei, F.-Y., Suzuki, T., Watanabe, S., Kimura, S., Kaitsuka, T., Fujimura, A., Fontecave, M. (2011). Deficit of tRNA Lys modification by Cdkal1 causes the development of type 2 diabetes in mice. The Journal of clinical investigation, 121(9). Wheeler, E., Leong, A., Liu, C.-T., Hivert, M.-F., Strawbridge, R. J., Podmore, C., Hong, J. (2017). Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS medicine, 14(9), e1002383. Whitfield, A. J., Barrett, P. H. R., Van Bockxmeer, F. M., Burnett, J. R. (2004). Lipid disorders and mutations in the APOB gene. Clinical chemistry, 50(10), 1725-1732. Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni, S., Mora, S. (2013). Discovery and refinement of loci associated with lipid levels. Nature genetics, 45(11), 1274. Wu, Y., Waite, L. L., Jackson, A. U., Sheu, W. H., Buyske, S., Absher, D., Carty, C. L. (2013). Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained. PLoS Genet, 9(3), e1003379. Xie, M., Yuan, S., Zeng, Y., Zheng, C., Yang, Y., Dong, Y., He, Q. (2021). ATP2B1 gene polymorphisms rs2681472 and rs17249754 are associated with susceptibility to hypertension and blood pressure levels: A systematic review and meta-analysis. Medicine, 100(15), e25530. doi:10.1097/md.0000000000025530 Zhang, H., Mo, X., Zhou, Z., Zhu, Z., HuangFu, X., Guo, Z., Zhang, Y. (2019). Detection of Putative Functional Single Nucleotide Polymorphisms in Blood Pressure Loci and Validation of Association Between Single Nucleotide Polymorphism in WBP1L and Hypertension in the Chinese Han Population. Journal of cardiovascular pharmacology, 73(1), 48-55. Zhang, R., Abou-Samra, A. B. (2014). A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovascular diabetology, 13(1), 1-10. Zimoń, M., Huang, Y., Trasta, A., Liu, J. Z., Chen, C.-Y., Halavatyi, A., Sexton, D. (2020). Pairwise genetic interactions modulate lipid plasma levels and cellular uptake. bioRxiv. 김근희. (2020). Blood lipids and risk of acute myocardial infarction using Mendelian randomization. 연세대학교 보건대학원, | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82645 | - |
| dc.description.abstract | "根據衛生福利部1999~2019年的統計資料,臺灣十大死因排行中有五項疾病與心血管相關。另外,根據2019年世界衛生組織(WHO)的調查顯示,全球總死亡人數中,有大於70%的人死於非傳染性的慢性病,而最大的比例就是心血管疾病,每3人中就有1人死於與心血管相關的疾病,「三高」儼然已成為全球重要的健康議題。由於人類文明演進、生活方式的改變及遺傳因子的影響,遺傳力比例在高血糖表型約從26%到72%之間;在高血壓表型約從為44%到63%之間;而高血脂為30%到80%之間。 隨著醫學的進步,心血管疾病表型也被發現與特定基因相關,因此在本研究中,使用了八項表型來探討影響心血管疾病的基因,並進一步整合其相對應的單核苷酸多型性及基因,以探究該疾病背後隱含的關聯性。這八項表型包含高密度脂蛋白膽固醇HDL-C (high-density lipoprotein cholesterol)、低密度脂蛋白膽固醇LDL-C (low-density lipoprotein cholesterol)、總膽固醇TC (total cholesterol)、三酸甘油脂TG (triglyceride)、收縮壓SBP (systolic blood pressure)、舒張壓DBP (diastolic blood pressure)、空腹血糖值FG (fasting glucose) 與糖化血色素HB (HbA1c)。 本研究使用全基因組關聯分析(Genome-wide association study ,GWAS)方法來分析,資料來源為「臺灣人體生物資料庫」(TWB),定出受測者基因型的晶片為TWB1晶片及TWB2晶片,時間從2012至2020。研究的分析組(TWBB1)、驗證組(TWBB2)分別有25,460及68,983位民眾,兩晶片涵蓋的「單核苷酸多型性」(SNPs)分別為597,644個與606,096個。本研究將空腹血糖值(FG)與糖化血色素(HbA1c)代表高血糖表型;舒張壓(DBP)與收縮壓(SBP)代表高血壓表型;高密度脂蛋白膽固醇(HDL-C) 、低密度脂蛋白膽固醇(LDL-C)、總膽固醇(TC)以及三酸甘油脂(TG)代表高血脂症表型。在釐清這八項表型彼此之間的關聯性時,先將TWBB1及 TWBB2資料庫中的基因及SNP主效應作為影響心血管疾病的相關因子,羅列出各表型關係基因與SNPs,以此分析八項表型之SNPs之間的共通性來探討心血管疾病。本研究將顯著水準設為5x10-8 (即百萬分之0.05)。 彙整各表型的重疊性最突顯的基因,結果分述如下: 1) 高血糖指標兩個表型 FG與HbA1c的共同基因為CDC123、KCNQ1、CDKAL1;2) 高血壓指標兩個表型DBP與SBP的共有基因為ATP2B1;3)在高血脂症指標四個表型HDL-C、LDL-C、TC及TG共同基因分為兩類,APOE、DOCK6為HDL-C、LDL-C及TC 之共同基因;APOB為TC、LDL-C及TG之共同基因。 最後所篩選出來的基因中,除了新發現的臺灣漢族特有基因外,其餘與三高相關的基因在歐洲、亞洲及非洲血統皆有先前1989~2021的文獻探討,結果也與本研究一致。 與三高疾病關聯基因是本研究的主要探討的方向,出發點是希望能貢獻於精準醫療、預防醫學及公共衛生。由於三高的遺傳力不低,若能透過基因檢測提早預防三高疾病,培養良好的飲食、運動習慣,將能促進社會大眾健康的正循環價值。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:48:30Z (GMT). No. of bitstreams: 1 U0001-1810202121152100.pdf: 3652530 bytes, checksum: 5d62e5ee207b06790fc680fd6c5c8985 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 I 中文摘要 II ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 X 第一章. 緒論 1 第二章. 材料與方法 2 2.1 臺灣人體生物資料庫(TWB) 2 2.1.1 材料來源道德聲明 2 2.2 品質管控 2 2.3 基因型補值 3 2.4 與三高疾病有關的八項表型 4 2.5 共變項定義 4 2.6全基因組關聯分析(GENOME-WIDE ASSOCIATION STUDY, GWAS) 5 2.6.1 篩選出候選基因 5 2.6.2 表型之配適模型 5 第三章. 結果 6 3.1 八項表型之主效應分析 6 3.1.1 高血糖表型之主效應分析_空腹血糖值 6 3.1.2 高血糖表型之主效應分析_糖化血色素 6 3.1.3 高血壓表型之主效應分析_舒張壓 7 3.1.4 高血壓表型之主效應分析_收縮壓 7 3.1.5 高血脂表型之主效應分析_高密度脂蛋白膽固醇 7 3.1.6 高血脂表型之主效應分析_低密度脂蛋白膽固醇 8 3.1.7 高血脂表型之主效應分析_總膽固醇 8 3.1.8 高血脂表型之主效應分析_三酸甘油脂 8 3.2 八項表型之綜合性評估 9 3.2.1 分析高血糖表型主效應之關聯 9 3.2.2 分析高血壓表型主效應之關聯 9 3.2.3 分析高血脂表型主效應之關聯 9 第四章. 討論 10 4.1 特有基因發現與過去研究的比較 10 4.2 研究所面臨的限制 11 4.3 研究與創新 12 4.4 結語 13 第五章. 圖 14 第六章. 表 18 第七章. 參考文獻 19 第八章. 附錄 30 附錄一 空腹血糖值(FG)之危險候選基因篩選(TWBB1/TWBB2) 30 附錄二 糖化血色素(HB)之危險候選基因篩選(TWBB1/TWBB2) 34 附錄三 舒張壓(DBP)之危險候選基因篩選(TWBB1/TWBB2) 38 附錄四 收縮壓(SBP)之危險候選基因篩選(TWBB1/TWBB2) 40 附錄五 高密度脂蛋白膽固醇(HDL-C)之危險候選基因篩選(TWBB1/TWBB2) 43 附錄六 低密度脂蛋白膽固醇(LDL-C)之危險候選基因篩選(TWBB1/TWBB2) 65 附錄七 總膽固醇(TC)之危險候選基因篩選(TWBB1/TWBB2) 79 附錄八 三酸甘油脂(TG)之危險候選基因篩選(TWBB1/TWBB2) 104" | |
| dc.language.iso | zh-TW | |
| dc.subject | 單核苷酸多型性 | zh_TW |
| dc.subject | 全基因組關聯分析 | zh_TW |
| dc.subject | 三高 | zh_TW |
| dc.subject | 基因 | zh_TW |
| dc.subject | 臺灣人體生物資料庫 | zh_TW |
| dc.subject | Genome-wide Association Study(GWAS) | en |
| dc.subject | Taiwan Biobank | en |
| dc.subject | Gene | en |
| dc.subject | Three-Hypers | en |
| dc.subject | Single Nucleotide Polymorphisms (SNPs) | en |
| dc.title | 三高疾病八表型之全基因組關聯分析 | zh_TW |
| dc.title | Genome-wide association study for eight phenotypes of three-hypers disease (hyperglycemia、hypertension、hyperlipidemia) | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉貞佑(Hsin-Tsai Liu),杜裕康(Chih-Yang Tseng) | |
| dc.subject.keyword | 臺灣人體生物資料庫,基因,三高,單核苷酸多型性,全基因組關聯分析, | zh_TW |
| dc.subject.keyword | Taiwan Biobank,Gene,Three-Hypers,Single Nucleotide Polymorphisms (SNPs),Genome-wide Association Study(GWAS), | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU202103845 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-20 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-01 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1810202121152100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
