請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8262完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧虎生(Huu-Sheng Lur) | |
| dc.contributor.author | Ta-Ping Hsuan | en |
| dc.contributor.author | 宣大平 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:50:56Z | - |
| dc.date.available | 2025-08-15 | |
| dc.date.available | 2021-05-20T00:50:56Z | - |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | 朱鈞。1984。作物學通論。台灣商務印書館,pp.171-177。臺灣。 江曉東、姜琳琳、華夢飛、陳惠玲、呂潤、胡凝、楊曉亞。2018。噴施不同化學製劑對水稻葉片抗高溫抵抗的效果分析。中國農業氣象39: 92 - 99。 老嘉玲。2004。高溫逆境下不同水稻品種之生理反應及蛋白質表現。國立臺灣大學農藝學系碩士論文。臺灣。 吳文欽。2008。利用譜系資料來探討台灣稉稻品種遺傳基礎及歧異度。國立中興大學碩士論文。臺灣。 李清縢。2008。台灣百年氣候趨勢特徵。全球變遷通訊雜誌 59: 23 - 26。 吳艷洪、李海霞、董红霞、曾漢來。2011。水稻光合作用能力的高溫穩定性評價指標。華中農業大學學報(自然科學版)30: 8-12。 吳文欽、林茂森。2008。臺灣水稻品種之譜系分析: I. 日本引種間之親緣關係。作物、環境與生物資訊 5: 248-257。 宋勳、洪梅珠、許愛娜。1991。台灣稻米品質之研究。台灣省台中區農業改良場特刊24號。彰化。 呂俊、張蕊、宗學鳳、王三根、何光華。2009。水楊酸對高溫脅迫下水稻幼苗抗熱性的影響。中國生態農業學報 17: 1168-1171。 林婉琦。1998。高溫下水稻16.9kDa熱休克蛋白質基因表現的調控及其mRNA的穩定性。國立臺灣大學植物學研究所博士論文。臺灣。 林以辰。1999。轉殖冷溫誘導蛋白質peaci11.8基因及水稻熱休克蛋白質Oshsp16.9基因之大腸桿菌在不同溫度逆境下表現之研究。國立臺灣大學植物學研究所碩士論文。臺灣。 林芹如。2008。充實期高溫影響稻米品質形成的生理途徑。國立臺灣大學農藝所碩士論文。臺灣。 林鈴娜、張育森。2009。水楊酸對植物抗高溫逆境之作用。臺灣園藝55: 193-206。 林鈴娜。2011。水楊酸對提升花卉作物溫度逆境耐受性之研究。國立臺灣大學園藝學研究所博士論文。臺灣。 林澤延。2016。水楊酸及氯化鈣提升薰衣草及鼠尾草耐熱性之探討。國立臺灣大學園藝暨景觀學研究所碩士論文。臺灣。 柯勇。1998。非傳染性病害。作物病害與防治。藝軒圖書出版社,pp.152 - 190。臺北。 孫守恭。2004。非寄生性病害。植物病理學通論,再版。藝軒圖書出版社,pp.43-53。臺北。 高景輝。2005。植物生理分析技術。五南圖書出版。台灣。 張碧芳。2004。溫度對作物的影響及熱休克蛋白質的功能。植物重要防疫檢疫病蟲害診斷鑑定技術研討會專刊(三),119-156。 張彩霞。2015。水楊酸減輕水稻高溫傷害的機理研究。中國:農業科學院作物栽培學與耕作學碩士論文。 張桂蓮、 陳立雲、 張順堂、 劉國華、唐文邦、 賀治洲、 王明。2007。抽穗開花期高溫對水稻劍葉理化特性的影響。 中國農業科學,40: 1345-1352。 符冠富、張彩霞、楊雪芹、楊永傑、陳婷婷、趙霞、符衛蒙、奉保華、章秀福、陶龍興、金千瑜 。2015。水楊酸減輕高溫抑制水稻穎花分化的作用機理研究。中國水稻科學,29 : 637-647 莊子瑩、 羅正宗、 黃文理。2018。溫室綠肥用水稻高溫逆境下之外表形態與抗氧化能力分析。作物、環境與生物資訊 15: 47-58。 許志聖、楊嘉凌。赴日本研習面對全球暖化水稻育種新技術與栽培之研究 臺中區農業改良場 出國報告,pp.14 - 16。 郭文鑠、楊之遠。1982。颱風誘發焚風現象及其對農作物之影響。氣象學報 28: 1-12。 陳瀅如。2009。乙烯和多元胺對高溫下水稻穀粒發育的關係。國立臺灣大學農藝學研究所碩士論文。臺灣。 陳榮坤。2012。日本九州沖繩農研中心水稻育種及栽培技術研習紀要 臺南區農業專訊 79: 18 - 21。 彭啟明。2020。2020台灣進入氣候緊急狀態。聯合報。網址:https://udn.com/news/story/7339/4262494。上網日期: 2020-06-19。 萬正林、羅慶熙、李立志。2009。水楊酸誘導番茄幼苗抗高溫效果。中國蔬菜24: 36-42。 廖大經、陳隆澤。2012。高溫對水稻稔實率及稻米品質之影響。作物、環境與生物資訊9: 248 - 256。 趙政男。1988。稻品種間胴割粒率差異性之探討。稻米品質研討會專集 pp. 357-363。 趙森、于江輝、周浩、孟秋成、肖國櫻。2013。抽穗開花期耐高溫的爪哇稻資源篩選。 植物遺傳資源學報14: 384 - 389。 劉依欣。2011。水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析。國立中央大學生命科學系碩士論文。臺灣。 鄭佳綺。2012。充實期高溫對水稻產量及白堊質的影響。台中區農業改良場101年專題討論專集。 鄭榮儀。2016。水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析。國立中央大學生命科學系碩士論文。臺灣。 盧虎生。2004。水稻之發育過程與健康管理。水稻健康管理研討會專輯 pp.17-32。臺中霧峰:農委會農業試驗所編印。 盧虎生、宣大平、中央氣象局。2007。全球暖化對於台灣稻米品質之影響與對策。全球暖化對台灣稻米產業之影響研討會專刊,pp.103-120。台灣農藝學會、行政院農業委員會花蓮區農業改良場、中興大學農藝學系編印。 蘇宗振。2009。氣候變遷下台灣糧食生產因應對策。農政與農情 200: 37 - 40。 Agarwal, M., C. Sahi, S. Katiyar-Agarwal, S. Agarwal, T. Young, D. R. Gallie, V. M. Sharma, K. Ganesan, and A. Grover. 2003. Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol. Bio. l51: 543-553. Akasha, A., M. Ashraf, A. Shereen, W. Mahboob, and S. Faisal. 2019. Heat tolerance screening studies and evaluating salicylic acid efficacy against high temperature in rice (Oryza sativa L.) genotypes. J. Plant Biochem. Physiol. 7,235: 1 - 8. Al-busaidi, A., M. Ahmed, and J. Chikara. 2012. The impact of heat and water stress conditions on the growth of the biofuel plant Jatropha curcas. Int. J. Environmental Studies 69:273 - 288. Ali, K., A. Azhar, and S. Galani. 2013. Response of rice (Oryza sativa L.) under elevated temperature at early growth stage; Physiological markers. Russian J. Agricultural and Socio Economic Sci. 8: 11-19. Asatsuma S, C. Sawada, A . Kitajima, T. Asakura, and T. Mitsui. 2006. α-Amylase affects starch accumulation in rice grains. J. Appl. Glycosci. 53: 187-192. Baker, J. T., J. L. H. Allen, and K. J. Boote. 1992. Temperature effects on rice at elevated CO2 concentration. J. Exp. Bot. 43: 959-964. Cao, Z., Y. Li, H. Tang, B. Zeng, X. Tang, Q. Long, X. Chou, C., W. T. Chen, M. H. Lo, H. H. Hsu, C. Hong, C. Tsou, C. H. Lu, M. M. Lu, C. W. Hung, C. T. Chen, and C. Z. Cheng. 2017. Climate change in Taiwan 2017: Scientific Report 1-The Physical Science Basis. Cao, Z., Y. Li, H. Tang, B. Zeng, X. Tang, Q. Long, X. Wu, Y. Cai, L. Yuan, J. Wan. 2020. Fine mapping of the qHTB1-1 QTL, which confers heat tolerance at the booting stage, using an Oryza rupogon Griff. introgression line. Theor Appl Genet. 133: 1161-1175. Ceccareli, S., S. Grando, M. Maatougui, M. Michael, M. Slash, R. Haghparast, M. Rahmanian, A. Taheri, A. Al-Yassin, A. Benbelkacem, M. Labdi, H. Mimoun, and M. Nachit. 2010. Plant breeding and climate changes. J. Agric. Sci. 148: 627-637. Chang, P. F. L. C., Y. Huang, F. C. Chang, T. S. Tseng, W. C. Lin, and C. Y. Lin. 2001. Isolation and characterization of the third gene encoding a 16.9 kDa class I low-molecular-mass heat shock protein, Oshsp 16.9C in rice. Bot. Bull. Acad. Sin. 42: 85-92. Chen, H., M. S. Lin, and K. K. Hwu. 2008. A database of Taiwan rice pedigrees. Crop Environ. Bioinform. 5: 22-28. Chen, J., L. Tang, P. Shi, B. Yang, T. Sun, W. Cao, and Y. Zhu. 2017. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma. 254: 935-943. Chen, X. , S. Lin, Q. Liu, J. Huang, W. Zhang, J. Lin, Y. Wang, K. Yuqin, H. He. 2014. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochim Biophys Acta 1844: 818-828. Cheng, L., J.M. Wang, V. Uzokwe, L.J. Meng, Y. Wang, Y. Sun. 2012. Genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice. J. Integr. 11: 359-67. Chou, C.. 2017. Climate change in Taiwan 2017: Scientific Report 1 - The Physical Science Basis. Retrieved from https://tccip.ncdr.nat.gov.tw/v2/upload/book/20180410112426.pdf Clarke, S. M., L. A. Mur, and J. E. Wood. 2004. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal 38: 432-47. Cox, T. S., J. P. Murphy, and D. M. Rodgers. 1986. Changes in genetic diversity in the red winter wheat regions of the United States. Proc. Natl. Acad. Sci. USA, 83: 5583-5586. Cronje, M. J., and L. Bornman. 1999. Salicylic acid influences Hsp70/Hsc70 expression in Lycopersiconesculentum: dose- and time-dependent induction or potentiation. Bioch. Bioph. Res. Commun. 265: 422-427. Dat, J. F., H. Lopez-Delgado, C. H. Foyer, and I. M. Scott. 1998. Parallel changes in H2O2 and catalase during thermo tolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116: 1351-1357. Delannay, X. D., M. Rodgers, and R. G. Palmer. 1983. Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci. 23:944-949. Ding, C. K., C. Y. Wang, K. C. Gross, and D. L. Smith. 2001. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Sci. 161: 1153-1159. Donovan, M. P., P. D. Nabity, and E. H. Dlucia. 2013. Salicylic acid-mediated reductions in yield in Nicotiana attenuate challenged by aphid herbivory. Arthropod-Plant Interactions 7: 45-52. DuBois, M., K. A. Giels, J. K. Hamilton., P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. Essemine, J., S. Amnar, and S. Bouzid. 2010. Importance of heat stress on germination and growth in higher plants: biochemical and molecular repercussions and mechanism of tolerance. J. Biol. Sci. 10: 565-572. Filgueiras, C. C., A. D. Martins, R. V. Pereira, and D. S. Willett. 2019. The Ecology of Salicylic Acid Signaling: primary, secondary and tertiary effects with applications in agriculture. Int. J. molecular sci. 20: 5851. Fokar, M., T. N. Henry, and A. Blum. 1998. Heat tolerance in spring wheat. I. Estimating cellular thermo tolerance and its heritability. Euphytica 104: 1-8. Food and Agricultural Organization. FAOSTAT Database. Rome: Food and Agricultural Organization. Yearbook. 2013. Fu, G. F., C. X. Zhang, X. Q. Yang, Y. J. Yang, T. T. Chen, X. Zhao, W. M. Fu, B. H. Feng, X. F. Zhang, L. X. Tao and Q. Y. Jin. 2015. Action mechanism by which SA alleviates high temperature-induced inhibition to spikelet differentiation. Chin J. Rice Sci. 29: 637-647. Fukushima, A., H. Ohta, R. Kaji, and N. Tsuda. 2015. Effects of hot water disinfection and cold water seed soaking on germination in feed rice varieties of Tohoku region. Jpn. J. Crop Sci. 84: 439-444. Galani, S., S. Hameed, M. K. Ali. 2016. Exogenous application of salicylic acid: inducing thermotolerance in cotton (GossypiumHirsutum L.) seedlings. Int. J. Agric. Food Res. 5: 9-18. Gong, M, X. J. Li, and S. N. Chen. 1998. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J. Plant Physiol. 153: 488-496. Harihar, S., S. Srividhya, C. Vijayalakshmi, and P. Boominathan. 2014. Temperature induction response technique - A physiological approach to identify thermotolerant genotypes in rice. Internat. J. agric. Sci.10: 230-232. Horie, T., T. Matsui, H. Nakagawa, and K. Omasa. 1996. Effect of elevated CO2 and global climate change on rice yield in Japan. In: Omasa K, Kai K, Taoda H, Uchijima Z, Yoshimo M, eds., Climate change and plants in east Asia. Tokyo, 39-56. HoShi T., S. Abe, H. Kasaneyama,K. Kobayashi, K. Hirao, T. Matsui, T. Tamura, Y. K. Nakajima, H. Kanayama, Y. Sasaki, N. Abe, S. Azuma, T. Kondo, K. Ishizaki, K. Higuchi, M. Ozeki, and A. Harada. 2001. A new rice cultivar 'Koshiibuki' with high grain quality and excellent taste. The Hokuriku Crop Sci. 36: 1-3. Hsu, P. Y., and D. M. Yeh. 2004. Heat tolerance in English ivy as measured by an electrolyte leakage technique. J. Hortic. Sci. Biotech. 79: 298-302. Hsuan, T. P., P. R. Jhuang, W. C. Wu, and H. S. Lur. 2019. Thermotolerance evaluation of Taiwan Japonica type rice cultivars at the seedling stage. Bot. Stud. 60(29): 1-18. Hu, S. B.. 2013. Study on differences of varieties and its mechanism in rice apikelet sterility induced by high temperature. [PhD Thesis]. Beijing, China. Chinese Academy of Agricultural Sciences. IPCC. 2007. Climate change 2007: The physical basis. Summary for policy makers. Retrieved from http://www.picc.ch. IPCC. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press: 1-19. Jagadish S., Crauford P. Q., Wheeler T. R. 2007. High temperature stress and spikelet fertility inrice (Oryza sativa L.). J. Exp Bot. 58: 1627-1635. Jagadish, S., J. Cairns, R. Lafitte, T. Wheeler, A. Price, and P. Craufurd. 2010. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci. 50: 1633-1641. Jagadish, S., R. Muthurajan, R. Oane, T. R. Wheeler, S Heuer, J. Bennett and P. Q. Craufurd. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany 61:143–156. Jiang H., W. Dian, and P. Wu. 2003. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochem. 63: 53-59. Kao, C. H.. 2005. Laboratory manual for physiological studies of plants. Wu-Nan Book. Taipei, Taiwan. Kempthorne, O.. 1969. An introduction to genetic statistics. Iowa State University Press, Ames, Iowa. Key J. L., and T. Kosuge. 1985. Cellular and molecular biology of plant stress. Alan R. Liss, Inc., New York. Kheir, E. A., M. S. Sheshshayee, T. G. Prasad, and M. Udayakumar. 2012. Temperature induction response as a screening technique for selecting high temperature-tolerant cotton lines. J. Cotton Sci. 16: 190-199. Kobata, T., N. Miya, and N. T. Anh. 2011. High risk of the formation of milky white rice kernels in cultivars with higher potential grain growth rate under elevated temperatures. Plant Production Sci. 14:359-364. Kobata, T., N. Uemuki, T. Inamura, and H. Kagata. 2004. Shortage of assimilate supply to grain increases the proportion of milky white rice kernels under high temperatures. Jpn. J. Crop Sci. 73: 315-322. Kumar, G., B. T. Krishnaprasad, M. Savitha, R. Gopalakrishna, K. Mukhopadhyay, G. Ramamohan, and M. Udayakumar. 1999. Enhanced expression of heat shock protein in thermotolerant lines of sunflower and their progenies selected on the basis of temperature induction response (TIR). Theor Appl Genet 99: 359-367. Larkindale J., and M. R. Knight. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128: 682-695. Larkindale, J., J. D. Hall, M. R. Knight, and E. Vierling. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138: 882-897. Li, X. M., D. Y. Chao, Y. Wu, X. Huang, K. Chen, L. G. Cui, L. Su, W. W. Ye, H. Chen, H. C. Chen. 2015. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat. Genet. 47: 827–833. Lin, A. C., and J. S. Chen. 1976. Comparison of tillering characteristics of rice in the first and second phases. Sci. Development 4: 53-70. Lin, M. S., and C. C. Wu. 1994. Program for estimating relative genetic contribution and coefficient of parentage. J. Hered 85: 66-67. Linquist S., and E. A. Craig. 1988. The heat-shock proteins. Annu Rev Genet 22: 631- 677. Liu , S., M. A. Waqas, S. Wang, X. Xiong, and Y. Wan. 2017. Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLOSE ONE 1-15. Liu, Q. H., X. Wu, T. Li, J. Q. Ma, and X. B. Zhou. 2013. Effects of elevated air temperature on physiological characteristics of flag leaves and grain yield in rice. Chilean J. Agr. Research, 73: 85-90. Lur, H. S.. 2009. Effects of high temperature on yield and grain quality of rice in Taiwan. In MARCO Symposium. Challenges for Agro-Environmental Research in Monsoon Asia. National Institute for Agro-Environmental Science, Japan. Mackill, D., W. Coffman, and J. Rutger, 1982. Pollen shedding and combining ability for high temperature tolerance in rice. Crop Sci. 22:730-733. Matsui T., K. Omasa, and T. Horie. 2000. High temperature at flowering inhibit swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci 3:430-434 Matsui, T., K. Omasa, and T. Horie. 2001a. Comparison between anthers of two rice (Oryza sativa L.) cultivars with tolerance to high temperatures at flowering or susceptibility. Plant Prod. Sci. 4: 36-40. Matsui, T., K. Omasa, and T. Horie. 2001b. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Prod. Sci. 4: 90-93. Morita, S., H. Shiratsuchi, J. Takahashi, and K. Fujita. 2004. Effect of high temperature on grain ripening in rice plants-analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Jpn. Crop Sci. 73: 77-83. Mohammed, A. and L. Tarpley. 2009. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology 149: 999-1008. Nabeshima, M., M. Ebata, and M. Ishikawa. 1988. Studies on the high temperature and dry wind injuries in flowering rice plant. (in Japanese) Rep. Tokai Br. Crop Sci. Soc. Jpn. 105: 1-2. Nagata, K., T. Takita, S. Yoshinaga, K. Terashima, and A. Fukuda. 2004. Effect of air temperature during the early grain filling stage on grain fissuring in rice. Jpn. J. Crop Sci. 73: 336-342. Nakata, M., Y. Fukamatsu, T. Miyashita, M. Hakata, R. Kimura, Y. Nakata, M. Kuroda, T. Yamaguchi, and H. Yamakawa. 2017. High temperature-induced expression of rice α-amylases in developing endosperm produces chalky grains. Plant Sci. 8: 2089. Osada, A., V. Sasiprapa, M. Rahong, S. Dhammanuvong, and H. Chakrabandhu. 1973. Abnormal occurrence of empty grains of indica rice plants in the dry, hot season in Thailand. Proc. Crop Sci. Jpn. 42: 103-109. Parsell, D. A., and S. Lidquist. 1993. The function of heat-Shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. PNAS 101: 971-9975. Permana, H., K. Murata, M. Kashiwagi, T. Yamada, and M. Kanekatsu. 2017. Screening of Japanese rice cultivars for seeds with heat stress tolerance under hot water disinfection method. Asian J. Plant Sci. 16:211-220. Porter, J. R., and M. Gawith. 1999. Temperature and the growth and development of wheat: A review. Eur. J. Agron. 10:23-36. Pradhan S. K., S. R. Barik, A. Sahoo, S. Mohapatra, D. K. Nayak, A. Mahender. 2016. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLOS ONE 11:1-23. Prasad, P. V. V., K. J. Boote, J. L. H. Allen, J. E. Sheehy, and J. M. G. Thomas. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95: 398-411. Ramesh, R., T. Ramesh, P.R. Rao, V.G. Shankar and M.H.V. Bhave. 2017. Evaluation of rice genotypes for high temperature tolerance under field conditions. Journal of Pharmacognosy and Phytochemistry 6: 115-124. Rani, B. A., and N. Maragatham. 2013. Effect of elevated temperature on rice phenology and yield. Indian J. Sci. Tech. 6: 5095-5097. Resurreccion, A. P., T. Hara, B. O. Juliano, and S. Yoshida. 1977. Effect of temperature during ripening on grain quality of rice. Soil. Sci. Plant Nutr 23: 109-112. Rittossa, F., 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571-573. Sapna, H., S. Srividhya, C. Vijayalakshmi, and P. Boominathan. 2014. Temperature induction response technique - A physiological approach to identify thermotolerant genotypes in rice. Int. J. Agr. Sci. 10:230-232. Sarwar, M., and G. M. Avesi. 1985. Evaluation of rice germplasm for high temperature tolerance. Pakistan J. Agric. Res. 6: 162-164. Saseendaran, S. A., K. K. Singh, L. S. Rathore, S. V. Singh, and S. K. Sinha. 2000. Effects of climate change on rice production in the tropical humid climate of Kerala, India. Climatic Change 44: 495-514. Satake, T., and S. Yoshida. 1978. High temperature-induced sterility in indica rice at flowering. Proc. Crop Sci. Jpn. 47: 6-17. Satake, T.. 1995. High temperature injury. In: Matsuo T, et al. Science of the rice plant, Vol. 2. Physiology. Tokyo: Food and Agricultural Policy Research Centre 805-812. Sharma, D., H. M. Mamrutha, V. K. Gupta, R. Tikari, and R. Singh. 2015. Association of SSCP variants of HSP genes with physiological and yield traits under heat stress in wheat. Res. Crops 16:139-146. Shi, C. L., Z. Q. Luo, M. Jiang, Y. L. Shi, Y. X. Li, S. L. Xuan, Y. Liu, S. B. Yang, and G. K. Yu. 2017. An quantitative analysis of high temperature effects during meiosis stage on rice grain number per panicle. Chin. J. Rice Sci. 31: 658-664. Shi, Q., Z. Bao, Z. Zhu, Q. Ying, and Q. Qian. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L.. Plant Growth Regul. 48:127-135. Shi, S., M. Pan, T. Lu, H. Chen, M. Zhu, and J. Liu. 1999. Analysis of salicylic acid induced proteins in rice. Tsinghua Sc. Technol. 4: 1519-1523. Shi, S., M. X. Pan, T. Lu, H. M. Chen, M. Zhu, and J. Y. Liu. 1999. Tsinghua Sci. Technol. 4:1519- 1523. Singla, S. L., A. Pareek, and A. Grover. 1997. Yeast HSP104 homologue rice HSP110 is developmentally and stress regulated. Plant Sci. 125: 211-219. Soliman, M. H., A. A. M. Alayafi, A. A. El Kelish, and A. M. Abu-Elsaoud. 2018. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Bot. Stud. 59: 6. Srikanthbabu, V., B. Ganeshkumar, T. Krishnaprasad, R. Gopalakrishna, M. Savitha, and M. Udayakumar. 2002. Identification of pea genotypes with enhanced thermo tolerance using temperature induction response technique (TIR). J. Plant Physiol. 159: 535-545. Tashiro, T., and I. F. Wardlaw. 1991. The effect of high tempreture on kernel dimensions and type and occurrence of kernel damage in rice. Aust. J. Agri. Res., 42: 485-496. Tenori, F. A., C. Ye, E. Redona, S. Sierra, M. Laza, and M. A. Argayoso. 2013. Screening rice genetic resources for heat tolerance. SABRAO J. Breeding and Genet. 45: 371-381. Tissieres, A., H. K. Mitchell, and U. M. Tracy. 1974. Protein synthesis in salivary glands of Drosophila melanogaster relation to chromosome puffs. J. Mol. Biol. 84: 389-398. Tohru, K., N. Uemuki, T. Inamura, and H. Kagata. 2004. Shortage of assimilate supply to grain increases the proportion of milky white rice kernels under high temperatures. Jpn. J. Crop Sci. 73: 315-322. Towil, L. E., and P. Mazur. 1974. Studies on the reduction of 2,3,5-triphenyl tetrazolium chloride as a viability assay for plant tissue culture. Can. J. Bot. 53: 1097-1102. Vaghchhipawala, Z., R. Bassüner, K. Clayton, K. Lewers, R. Shoemaker, and S. Mackenzie. 2001. Modulations in gene expression and mapping of genes associated with cyst nematode infection of soybean. Mol. Plant-Microbe Interact. 14:42-54. Venkatesh Babu, D., P. Sudhakar, and Y. S. K. Reddy. 2013. Screening of thermotolerant ragi genotypes at seedling stage using TIR technique. The Bioscan, 8: 1493-1495. Vierling, E.. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Pyhsiol. Plant Mol. Biol. 42: 579-620. Vijayalakshmi, D., S. Srividhya, P. Vivitha, and M. Raveendran. 2015. Temperature induction response (TIR) as a rapid screening protocol to dissect the genetic variability in acquired thermotolerance in rice and to identify novel donors for high temperature stress tolerance. Indian J. Plant Physi. 20:368-374. Wang, Y., L. Wang, J. Zhou, S. Hu, H. Chen, J. Xiang, Y. Zhang, Y. Zeng, Q. Shi, D. Zhu, and Y. Zhang. 2019. Research progress on heat stress or rice at flowering stage. Rice Sci. 26: 1-10. Wei, H., J. Liu, Y. Wang, N. Huang, X. Zhang, L. Wang, J. Zhang, J. Tu, and X. Zhong . 2013. A dominant major locus in chromosome9 of rice (Oryza sativa L.) confers tolerance to 48 °C high temperature at seedling stage. J. Hered 104: 287–294. Wu, C., K. H. Cui, W. C. Wang, Q. Li, S. Fahad, Q. Q. Hu, J. L. Huang, L. X. Nie, P. K. Mohapatra, and S. B. Peng. 2017. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front Plant Sci. 8: 371. Wu, W. C., and M. S. Lin. 2008. Pedigree Analysis of Rice Varieties of Taiwan: I. Relationships among Japanese Introductions. Crop, Environment and Bioinformatics 5: 248-257. Wu, W. C.. 2008. Genetic Base and Diversity of Japonica Rice varieties of Taiwan Based on Pedigree Analysis。National Chung Hsing University Master thesis. Taiwan. Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 144: 258-277. Yang, J. L., S. T. Wu, and F. S. Thseng. 1997. Variation of emergence ability of rice using direct-seeding method. Taichung District Agricultural Research And Extension Station. 56: 1-9. Ye, C., F. A. Tenorio, M. A. Argayoso, M. A. Laza, H. J. Koh, E. D. Redona.., K. S. V. Jagadish, and G. B. Gregorio. 2015. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet. 16: 41. Yeh, C. H., N. J. Kaplinsky, C. Hu, and Y. Y. Charng. 2012. Some like it hot, some like it warm: phenotyping to explore thermo tolerance diversity. Plant Sci. 195: 10-23. Yeh, C. H., K. W. Yeh, S. H. Wu, P. F. L. Chang, Y. M. Chen, and C. Y. Lin. 1995. A recombinant rice 16.9-kDa heat shock protein can provide thermo protection in vitro. Plant Cell Physiol. 36: 1341-1348. Yoshida, S., and T. Hara. 1977. Effect of air temperature and light on grain filling of an Indica and a Japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Sci. Plant Nutr. 23: 93-107. Yoshida, S.. 1981. Fundamentals of rice crop science. International Rice Research Institute, Los Bae at flowering sta 72. Zacharias, M., S. D. Singh, S. N. Kumar, and P. K. Aggarwal. 2010. Impact of elevated temperature at different phenological stages on the growth and yield of wheat and rice. Indian J. Plant Physiol. 15: 350-358. Zakaria, S., T. Matsuda, S. Taijima, and Y. Nitta. 2002. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod. Sci. 5: 160-168. Zha, Z. P., D. Yin , B. L. Wan, and C. H. Jlao. 2016. An analysis on the heat resistance of rice germplasm resources during flowering period. Asian Agric. Res. 8(6): 1-4. Zhang, G. F., S. H. Wang, J. You, Q. S. Wang, Y. F. Ding, and Z. H. J. I. 2006. Effect of high temperature in different filling stages on rice qualities. (in Chinese) Acta Agron Sin 32: 283-287. Zhao, Z. G., J. Ling, Y. H. Xiao, W. W. Zhang, H. Q. Zhai and J. M. Wan. 2006. Identification of QTLs for Heat Tolerance at the Booting Stage in Rice (Oryza sativa L.). Acta Agronomica sinica. 32:640-644. Ziska, L. H., W. Weerakoon, O. S. Namuco, and R. Pamplona. 1996. The influence of nitrogen on the elevated CO2 response in field grown rice. Aust J Plant Physiol 23:45-52. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8262 | - |
| dc.description.abstract | 台灣栽培之水稻品種以日本型稉稻(Japonica rice)為主,是日本型稻栽培最南、緯度最低與溫度最高之區域,未來將受到全球暖化嚴重影響。本研究評估台灣重要水稻品種不同時期耐熱能力,包括秧苗期之生長和成熟期之稔實率與稻米品質,期望篩選出具有良好耐熱特性之品種,以作為未來育種之基礎,同時也探討水楊酸在高溫下緩解稻米品質劣化之應用,期能建立高溫環境下水稻栽培可使用之因應資材。 在秧苗期耐熱性評估部分,以漸進溫度誘導(Temperature-induced response, TIR)後再進行高溫處理或直接高溫處理等多樣高溫處理方式,評估台灣水稻種原耐熱性,進一步對耐性品種及敏感品種之細胞膜穩定性 (cell membrane stability, CMS)、細胞活性(2,3,5-triphenyl-tetrazolium chloride, TTC)、丙二醛 (Malondialdehyde, MDA) 及親緣距離、育種年代等進行分析。在幼苗萌芽初期,品種間對熱逆境反應具有顯著差異,若先經TIR處理後,可顯著提高水稻幼苗於高溫逆境下之存活率及地上部相對生長量,但TIR處理對耐熱性提升會因品種有所差異。將篩選出之耐熱品種在盆栽試驗及CMS、TTC測定結果上確實有較佳之耐熱表現,但幼苗生長率與種子發芽耐熱性兩者間相關性不高。在親源分析圖譜上,耐性基因並非集中在親緣接近之特定品種群,而育種年代與耐熱性間並無相關性。未來幼苗期耐熱育種策略可能需要以不同親緣分群之高耐性品種為親本以聚集堆疊不同之耐熱基因。不同生育期如發芽期、幼苗期、穀粒成熟期之耐熱性相關不高,不同階段之耐熱品種需於其生育階段進行篩選。本研究初步篩選出TK14、HC56、TT30、TNG70、TK8等幼苗期具有良好耐熱性之品種,供未來進一步耐熱育種應用。 在成熟期高溫對稔實率評估方面,分別進行孕穗期至成熟收穫期之長期高溫(35/30℃)處理,與孕穗期進行14天短期高溫(35/30℃)處理。其中長期高溫處理4個不同年期,高溫下稔實率與常溫對照組平均數比較下降15 - 52%,以CNG242 (67.2%)、TK14 (65.0%)、TCS10 (63.8%)等品種表現較佳。短期高溫處理下, 2批次試驗結果各年期品種稔實率平均數分別為75.2%、73.8%,比對照組下降7.7 - 14.67%,以CNG242 (92.5%)、TK2 (89.2%)、TN5 (89.0%)、TK16 (85.2%) 等品種表現較佳。 在稻米品質耐熱性評估上,分別進行了齊穗期後至收穫之長期高溫(35/30℃)處理,與齊穗期後14天之短期高溫(35/30℃)處理。長期高溫處理結果顯示各參試品種白米完整粒比率皆表現甚差,參試的台灣品種在35/30℃下沒有能維持較佳稻米品質之耐熱品種存在。短期高溫處理結果顯示2批次試驗白米完整粒各品種平均數分別為37.8%和26.9%,以TCS10 (84.4%)、Koshihikari (64.4%)、HL20 (59.6%)、TK8 (59.5%)、TK2 (53.0%)、CNG242 (52.2%)表現較佳。 在應用水楊酸緩解高溫逆境下水稻米質劣化可行性研究方面,於台灣大學人工氣候室進行4批次試驗並調查米質相關數據,初步結果顯示,日夜溫30/25℃下對4品種水稻具有提高完整米粒比率效果,但35/30℃下對米質外觀改善並無顯著結果。另於花蓮縣吉安鄉花蓮區農改場走入式生長箱以32/27℃ 處理並施用水楊酸,結果顯示具有提高完整米粒比率、稔實率及千粒重效果。總體而言在一定溫度範圍內水楊酸處理顯示具有米質促進效果之潛力。植株生理表現方面,在32/27℃處理條件下,兩參試品種劍葉細胞相對離子滲漏率在施用水楊酸後均有下降,而高溫下水楊酸處理較高溫對照組穀粒有較低的α-Amylase相對活性及相對總可溶性糖含量,有助於可減緩穀粒白堊質之發生。 綜合言之,本研究結果顯示台灣水稻品種在秧苗期生長、成熟期稔實率與稻米品質等不同時期耐熱能力具有顯著的品種間差異,也已初步篩選出幼苗期及成熟期稔實率或米質表現較佳品種,未來可以利用這些具有高溫耐性品種進一步育種。在水稻田間栽培緩解高溫傷害之因應技術方面,試驗結果顯示施用水楊酸在一定範圍內具有減緩高溫下稻米品質劣化、提高完整米率及減少白堊質發生率之效果,具有未來進一步利用之潛力。 | zh_TW |
| dc.description.abstract | The rice varieties grown in Taiwan are mainly Japonica-type rice varieties, which are grown in the southernmost-, lowest-latitude and hottest Japonica-type rice cultivation area in the world. It will also be severely affected by global warming in the future. This study explores the evaluation of heat tolerance of different important rice varieties in Taiwan at different stages, including the growth at the seedling stage, the spikelet fertility and the rice quality at maturity, we hope to select varieties with good heat tolerance as a basis for further breeding. The application of salicylic acid to alleviate the deterioration of rice quality under high temperature was also explored, and it is expected to establish materials that can be used for rice cultivation under high temperature environments. In the evaluation of heat tolerance at the rice seedling stage, several high temperature treatment methods such as temperature-induced response (TIR) followed by high temperature treatment or direct high temperature treatments were used to evaluate the heat tolerance of Taiwan rice varieties. After the temperature induction response technique (TIR) treatment, the seedling survival rate and relative growth rate of the rice varieties under high temperature stress were significantly improved. In addition, the seedlings of the thermotolerant varieties demonstrated greater thermotolerance performance in the pot experiment as well as cell membrane stability (CMS) and cell activity (2, 3, 5-triphenyl-tetrazolium chloride; TTC) test results. However, the correlation between the thermotolerance of the seedlings and seeds was low. A phylogenetic dendrogram was plotted and revealed that thermotolerant genes did not group in specific clusters. Furthermore, there was a non-significant correlation between the thermotolerance of the varieties and the years in which they were released. Additionally, thermotolerance during different growth stages (i.e., the germination, seedling, and grain maturation stages) exhibited low correlations. In this study, the varieties obtained through preliminary screening (i.e., TK14, HC56, TT30, TNG70, and TK8) exhibited outstanding thermotolerance at the seedling stage. Regarding the evaluation of the spikelet fertility under high temperature, the rice plants were moved into the phytotron of 35/30℃ at the booting stage either until harvest (long term), or 14 days under high temperature and moved back to the field (short term). Under the long term treatment, the rate of spikelet fertility at different years decreased by 15 – 52 % compared with the means of the field temperature control. Varieties such as CNG242 (67.2%), TK14 (65.0%) and TCS10 (63.8%) performed better. Under short-term high-temperature treatment, two batches of experiments were carried out. The results showed that the average rate of spikelet fertility rate for each year was 75.2% and 73.8%, which were 7.7 - 14.67% lower than that of the control. TK 2 (89.2%), TN5 (89.0%), TK16 (85.2%) performed better. In the evaluation of rice quality under high temperature, long-term treatment at 35/30°C after the full heading stage to harvest and short-term treatment at 35/30°C after the 14th days from full heading period were performed. The long-term treatment results at rice quality showed that all the tested varieties have poor performance with the percentage of head rice. Among the Taiwan varieties tested in this study, there were no heat-resistant varieties that could maintain better rice quality at 35/30℃. The results of short-term high-temperature treatment of rice quality showed that the average percentage of head rice in the two batches were 37.8% and 26.9%, with TCS10 (84.4%), Koshihikari (64.4%), HL20 (59.6%), TK8 (59.5%), TK 2 (53.0%) and CNG242 (52.2%) performed better. In the evaluation of the salicylic acid application to alleviate the deterioration of rice quality under high temperature stress, the rice quality assessment after spraying salicylic acid at the full heading stage of rice was conducted in the phytotron of Taiwan University. Results showed that the percentage of head rice in 4 different varieties were increased by the application of salicylic acid under 30/25°C (day and night temperatures), but there was no significant effect on the improvement of the percentage of head rice at 35/30 °C. Further, the study of the application of salicylic acid under 32/27 ℃ in the temperature controlled growth chamber of the Hualien District agricultural research and extension station, Ji'an Township, Hualien County was conducted, and the results showed that there was the significant effect of improving the percentage of head rice, the spikelet fertility rate and the weight of thousand kernels. Overall, salicylic acid treatment has the potential to promote rice quality in a certain high temperature range. However, there are different responses on salicylic acid-induced tolerance effects in different varieties, and the best application method should be further study in future. In addition, the changes in physiological characteristics of flag leaves and grains of rice after spraying salicylic acid at 32/27℃ have also been investigated. The results showed that the relative cell membrane leakage rate of the flag leaves of the two tested varieties at 32/27℃ were higher than the control treatment at 25/20℃, but lower after the application of salicylic acid. The relative α-Amylase activity and relative total soluble sugar content were lower under the salicylic acid treatment compared with the higher temperature treatment and can help to slow down the occurrence of chalkiness in the grains. In summary, there were significant difference in thermotolerance among Taiwan rice varieties at different growth stages. And the varieties with better thermotolerance performance in rice seedling stage or maturity stage have been screened out, which can be used for further breeding in the future. In rice field cultivation technology to alleviate high temperature damage, the results showed that the application of salicylic acid could alleviate the deterioration of rice quality under high temperature, improving the average percentage of head rice and reducing the occurrence of chalky rice grains in a certain temperature range. The application of salicylic acid in the field has the potential to be further utilized in the future to combat high temperature stress. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:50:56Z (GMT). No. of bitstreams: 1 U0001-1108202016060300.pdf: 4954006 bytes, checksum: c0a3f21ed59fa22a879255847d03c5e9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 ...i 誌謝 ...ii 中文摘要 ...xi 英文摘要 ...xiv 序言 ...1 第壹章、前人研究 ...3 第貳章、台灣水稻品種秧苗期耐高溫能力之研究 ...16 第參章、台灣水稻品種成熟期耐熱性研究 ...47 第肆章、應用水楊酸緩解高溫逆境下水稻米質劣化之探討 ...77 第伍章、結論 ...110 參考文獻 ...113 附錄 ...130 | |
| dc.language.iso | zh-TW | |
| dc.title | 台灣水稻品種不同生育期耐熱性評估與施用水楊酸對緩解高溫逆境下稻米品質劣化影響之研究 | zh_TW |
| dc.title | A Study on the Thermotolerance of Taiwan Rice Cultivars at Different Growth Stages and the Effect of Salicylic Acid Application to Alleviate the Deterioration of Rice Quality under High Temperature Stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉力瑜(L-Y Liu),董致韡(Chih-wei Tung),楊嘉凌(Jia-ling Yang),張孟基(Men-chi Chang) | |
| dc.subject.keyword | 水稻,高溫,全球暖化,耐熱性,稉稻,秧苗期,孕穗期,齊穗期,日本型稻,溫度誘導反應,稔實率,米質,完整米率,細胞膜穩定性,丙二醛,細胞活性,育種年代, | zh_TW |
| dc.subject.keyword | Rice,Global warming,High temperature,Heat tolerance,Thermo-tolerance,Seedling stage,Booting stage,Full heading stage,Temperature-induced response (TIR),Salicylic acid (SA),Rice quality,Spikelet fertility,Cell membrane stability (CMS),Cell activity (TTC),Malondialdehyde (MDA),Breeding year, | en |
| dc.relation.page | 146 | |
| dc.identifier.doi | 10.6342/NTU202002971 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202016060300.pdf | 4.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
