Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪挺軒(Ting-Tsuan Hung)
dc.contributor.authorTung-Yu Leeen
dc.contributor.author李東祐zh_TW
dc.date.accessioned2022-11-25T07:47:45Z-
dc.date.available2023-10-30
dc.date.copyright2021-11-02
dc.date.issued2021
dc.date.submitted2021-10-29
dc.identifier.citation江淑雯、盧柏松。2017。鳳梨釋迦產期調節研究發展與產業調適。果樹產期調節研究發展與產業調適研討會論文輯。臺東區農業改良場。177-184頁。 林晏宇。2014。以整合性體學研究植物菌質體效應蛋白PHYL1Pn影響微型核酸調控之花器葉化現象。國立臺灣大學植物病理與微生物學研究所碩士論文。 黃耀徵。2009。日日春葉片黃化病之病原植物菌質體與其媒介昆蟲之探討。國立臺灣大學植物病理與微生物學研究所碩士論文。 楊正山。2003。鳳梨釋迦栽培。鳳梨釋迦臺東區農業改良場成立75周年特刊。臺東區農業改良場。1-18頁。 蘇薏婷。2010。植物菌質體罹病日日春花器葉片化、綠化之病徵發展及花形、花色決定基因之變化與植物菌質體菌量之關係。國立臺灣大學植物病理與微生物學研究所碩士論文。 A Youssef S, Sayed Y, S Hassan O, Safwat G, and Shalaby A. 2017. Universal and Specific 16S-23Sr RNA PCR Primers forIdentification of Phytoplasma associated with sesame in Egypt. Alma A, Lessio F, and Nickel H. 2019. Insects as phytoplasma vectors: ecological and epidemiological aspects. Phytoplasmas: Plant Pathogenic Bacteria-II. Springer. 1-25. Ammar, ED, and Hogenhout SA. 2006. Mollicutes associated with arthropods and plants. Insect Symbiosis, Volume 2. CRC press. 119-140. Arashida R, Kakizawa S, Ishii Y, Hoshi A, Jung HY, Kagiwada S, Yamaji Y, Oshima K, and Namba S. 2008. Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology 98: 769-775. Bertaccini A. 2007. Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci 12: 673-689. Bertaccini A, Oshima K, Kube M, and Rao GP. 2019. Phytoplasmas: Plant Pathogenic Bacteria-III. Springer. Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C, Little S. 1997. The elimination of primer-dimer accumulation in PCR. Nucleic acids research 25(16): 3235-3241. Cai H, Wei W, Davis RE, Chen H, and Zhao Y. 2008. Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches'-broom phytoplasma group. International Journal of Systematic and Evolutionary Microbiology 58: 1448-1457. Cao Y, Trivellone V, and Dietrich CH. 2020. A timetree for phytoplasmas (Mollicutes) with new insights on patterns of evolution and diversification. Molecular phylogenetics and evolution 149: 106826. Chang SH, Tan CM, Wu CT, Lin TH, Jiang SY, Liu RC, Tsai MC, Su LW, and Yang JY. 2018. Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. Journal of experimental botany 69: 5389-5401. Deng S, and Hiruki C. 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of microbiological methods 14: 53-61. Doi Y, Teranaka M, Yora K, and Asuyama H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Japanese Journal of Phytopathology 33: 259-266. Firrao G, Andersen M, Bertaccini A, Boudon E, Bove J, Daire X, Davis R, Fletcher J, Garnier M, and Gibb KS. 2004. Candidatus Phytoplasma, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54: 1243-1255. Fletcher J, Wayadande A, Melcher U, and Ye F. 1998. The phytopathogenic mollicute-insect vector interface: a closer look. Phytopathology 88: 1351-1358. Himeno M, Neriya Y, Minato N, Miura C, Sugawara K, Ishii Y, Yamaji Y, Kakizawa S, Oshima K, and Namba S. 2011. Unique morphological changes in plant pathogenic phytoplasma‐infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ‐specific manner. The Plant Journal 67: 971-979. Hogenhout SA, and Loria R. 2008. Virulence mechanisms of Gram-positive plant pathogenic bacteria. Current opinion in plant biology 11: 449-456. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, and Namba S. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences 106: 6416-6421. Hung TH, Wu NM, and Su HJ. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. Journal of Phytopathology 147: 599-604. Ishiie T, Doi Y, Yora K, and Asuyama H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Japanese Journal of Phytopathology 33: 267-275. Kirkpatrick BC, Stenger DC, Morris TJ, and Purcell AH. 1987. Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238: 197-200. Kumari S, Nagendran K, Rai AB, Singh B, Rao GP, and Bertaccini A. 2019. Global status of phytoplasma diseases in vegetable crops. Frontiers in microbiology 10: 1349. Kuske CR, and Kirkpatrick BC. 1992. Phylogenetic relationships between the western aster yellows mycoplasma-like organism and other prokaryotes established by 16S rRNA gene sequence. International Journal of Systematic and Evolutionary Microbiology 42: 226-233. Lee IM, Gundersen-Rindal DE, Davis RE, and Bartoszyk IM. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology 48: 1153-1169. Lee IM, Hammond R, Davis R, and Gundersen D. 1993. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83: 834-842. Lee IM, Martini M, Marcone C, Zhu SF. 2004. Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’for the phytoplasma associated with elm yellows. International Journal of Systematic and Evolutionary Microbiology 54(2): 337-347. Li Y, Piao CG, Tian GZ, Liu ZX, Guo MW, Lin CL, and Wang XZ. 2014. Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches'‐broom group 16SrII‐A. Journal of basic microbiology 54: 818-827. Liu LYD, Tseng HI, Lin CP, Lin YY, Huang YH, Huang CK, Chang TH, and Lin SS. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant and Cell Physiology 55: 942-957. MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RG, and Hogenhout SA. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS biology 12: e1001835. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, and Hogenhout SA. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157: 831-841. Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, and Yamaji Y. 2014. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. The Plant Journal 78: 541-554. Maejima K, Kitazawa Y, Tomomitsu T, Yusa A, Neriya Y, Himeno M, Yamaji Y, Oshima K, and Namba S. 2015. Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant signaling behavior 10: e1042635. Maejima K, Oshima K, and Namba S. 2014. Exploring the phytoplasmas, plant pathogenic bacteria. Journal of General Plant Pathology 80: 210-221. McCoy RE. 2012. Mycoplasmas and yellows diseases. The mycoplasmas 3: 229-264. Minato N, Himeno M, Hoshi A, Maejima K, Komatsu K, Takebayashi Y, Kasahara H, Yusa A, Yamaji Y, and Oshima K. 2014. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Scientific reports 4: 1-7. Namba S. 2002. Molecular biological studies on phytoplasmas. Japanese Journal of Phytopathology 68: 131-134. Namba S. 2011. Phytoplasmas: a century of pioneering research. Journal of General Plant Pathology 77: 345-349. Namba S. 2019. Molecular and biological properties of phytoplasmas. Proceedings of the Japan Academy, Series B 95: 401-418. Namba S, Kato S, Iwanami S, Oyaizu H, Shiozawa H, and Tsuchizaki T. 1993. Detection and differentiation of plant-pathogenic mycoplasmalike organisms using polymerase chain reaction. Phytopathology 83: 786-791. Namba S, Oyaizu H, Kato S, Iwanami S, and Tsuchizaki T. 1993. Phylogenetic diversity of phytopathogenic mycoplasmalike organisms. International Journal of Systematic and Evolutionary Microbiology 43: 461-467. Nault L. 1997. Arthropod transmission of plant viruses: a new synthesis. Annals of the entomological Society of America 90: 521-541. Nei M. and Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76: 5269-5273. Özbek E, Miller SA, Meulia T, and Hogenhout SA. 2003. Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. Journal of invertebrate pathology 82: 167-175. Pérez-López E, Luna-Rodríguez M, Olivier CY, and Dumonceaux TJ. 2016. The underestimated diversity of phytoplasmas in Latin America. International Journal of Systematic and Evolutionary Microbiology 66: 492-513. Pracros P, Renaudin J, Eveillard S, Mouras A, and Hernould M. 2006. Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular Plant-Microbe Interactions 19: 62-68. Rao GP, Bertaccini A, Fiore N, and Liefting LW. 2018. Phytoplasmas: Plant Pathogenic Bacteria. Springer. Schneider B. , Seemüller E, Smart CD, and Kirkpatrick BC. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasma. Molecular and diagnostic procedures in mycoplasmolgy 1: 369-380. Schneider B, Ahrens U, Kirkpatrick BC, and SeemüLler E. 1993. Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. Microbiology 139: 519-527. Smart C, Schneider B, Blomquist C, Guerra L, Harrison N, Ahrens U, Lorenz K, Seemüller E, and Kirkpatrick B. 1996. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Applied and environmental microbiology 62: 2988-2993. Sugawara K, Honma Y, Komatsu K, Himeno M, Oshima K, and Namba S. 2013. The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiology 162: 2005-2014. Sugio A, MacLean AM, Grieve VM, and Hogenhout SA. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences 108: E1254-E1263. Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, and Hogenhout SA. 2011. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual review of phytopathology 49: 175-195. Takinami Y, Maejima K, Takahashi A, Keima T, Shiraishi T, Okano Y, Komatsu K, Oshima K, and Namba S. 2013. First report of ‘Candidatus Phytoplasma asteris’ infecting hydrangea showing phyllody in Japan. Journal of general plant pathology 79: 209-213. Tomkins M, Kliot A, Marée AF, and Hogenhout SA. 2018. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Current opinion in plant biology 44: 39-48. Wang M, and Maramorosch K. 1988. Earliest historical record of a tree mycoplasma disease: beneficial effect of mycoplasma-like organisms on peonies. Mycoplasma diseases of crops. Springer 349-356. Wang N, Yang H, Yin Z, Liu W, Sun L, and Wu Y. 2018. Phytoplasma effector SWP1 induces witches’ broom symptom by destabilizing the TCP transcription factor BRANCHED1. Molecular plant pathology 19: 2623-2634. Wei W, Davis RE, Lee M, and Zhao Y. 2007. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International journal of systematic and evolutionary microbiology 57: 1855-1867.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82609-
dc.description.abstract"植物菌質體 (phytoplasmas)係為一群韌皮部侷限的植物寄生性細菌,最早由日本數名科學家Doi等人於西元1967年率先發現,當時認為該病原體為mycoplasma-like organisms (MLOs)。至西元2020年為止,植物菌質體依照16S rDNA序列共分為34個大群 (groups),其中落花生簇葉病屬於第二大群 (16SrII)的植物菌質體。目前的研究顯示,植物菌質體傳播的方式是經由刺吸式口器的昆蟲,如二點小綠葉蟬、南斑葉蟬等。受植物菌質體感染的寄主植物會出現以下幾種病徵:小葉化、花器葉化、簇葉、矮化、葉片黃化、巨芽等。本研究將進行探討的項目為不同引子對 (primers)對落花生簇葉病之聚合酶連鎖反應 (Polymerase Chain Reaction, PCR)檢測的敏感度差異及近年來疑似由植物菌質體感染的病害——鳳梨釋迦衰弱病——之病原鑑定。本研究的結果顯示,使用本實驗設計的引子對進行聚合酶連鎖反應 (Polymerase Chain Reaction, PCR)比起以往的廣效型引子對P1/P7擁有更清晰、明顯的條帶 (band),並且以10的倍數進行序列稀釋後,再分別進行PCR反應,結果顯示10000倍稀釋擁有最大的差異度,即使用本實驗設計的引子對Phyto1622 (暫定名)可與傳統廣效型引子對P1/P7產生最大的清晰度及敏感度差異。根據PCR反應及序列定序的結果,鳳梨釋迦衰弱病的病原係為第二大群 (16SrII)的植物菌質體,且與引起落花生簇葉病的植物菌質體有99 %的序列相似度,未來將確定傳播途徑是否與落花生簇葉病有關,以期進行更有效的病害管理及防治。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:47:45Z (GMT). No. of bitstreams: 1
U0001-2710202112524300.pdf: 3335377 bytes, checksum: c6c6955bb5184a096f5bbc9405cf2763 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄 口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 目錄 vii 表目錄 x 圖目錄 xi 壹、前言 1 貳、前人研究 4 一、植物菌質體的發展歷史 4 二、植物菌質體在病理學上的性質 6 三、植物菌質體的分類方式 7 四、檢測植物菌質體及其分類技術 8 五、植物菌質體的效應蛋白 (effectors) 9 六、影響花器 (floral organs)分化的因子 (factors) 10 參、材料與方法 12 一、植株來源 12 (1) 鳳梨釋迦衰弱病 (Custard Apple Decline) 12 (2) 落花生簇葉病 (Peanut Witches’ Broom) 12 二、植物總核酸萃取方法 12 三、專一性引子對之設計 13 四、專一性引子對之最佳溫度測試 14 五、鳳梨釋迦衰弱病病原鑑定 15 六、以RFLP in silico分析限制酶 (restriction enzyme)切割各鳳梨釋迦衰弱病 (Custard Apple Decline)序列後片段的分離情形及計算相關係數 (R) 16 七、本實驗新設計引子對之敏感度測試 17 肆、結果 18 一、本實驗新設計廣效型引子對之最佳溫度測試之一 18 二、本實驗新設計廣效型引子對之最佳溫度測試之二 18 三、針對特定群植物菌質體 (16SrII)之專一性引子對測試 19 四、比較P1/P7及Phyto1622增幅落花生簇葉病的效果 19 五、鳳梨釋迦衰弱病病原鑑定 20 六、新設計廣效型引子對之最低敏感度測試 20 七、與國際上已發表之引子對比較最低敏感度 21 八、鳳梨釋迦衰弱病以RFLP in silico 之模擬結果 21 九、鳳梨釋迦衰弱病之田間病徵 22 伍、討論 23 陸、參考文獻 27 柒、表 38 捌、圖 40 玖、附錄一:落花生簇葉病及鳳梨釋迦衰弱病之序列 62 壹拾、附錄二:鳳梨釋迦衰弱病序列與落花生簇葉病序列BLAST的結果 83
dc.language.isozh-TW
dc.subject植物菌質體zh_TW
dc.subject聚合酶連鎖反應zh_TW
dc.subject擬菌質體zh_TW
dc.subject落花生簇葉病zh_TW
dc.subject鳳梨釋迦衰弱病zh_TW
dc.subjectPolymerase Chain Reaction (PCR)en
dc.subjectCustard Apple Declineen
dc.subjectPeanut Witches' Broom(PnWB)en
dc.subjectMycoplasma-like Organisms (MLOs)en
dc.subjectCandidatus Phytoplasmaen
dc.title鳳梨釋迦衰弱病的病原鑑定及落花生簇葉病分子偵測技術改良zh_TW
dc.titleIdentification of the Pathogen of Custard Apple Decline and Improvement of the Molecular Detection Method for Peanut Witches’Broomen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡佳欣(Hsin-Tsai Liu),呂依儒(Chih-Yang Tseng)
dc.subject.keyword鳳梨釋迦衰弱病,落花生簇葉病,擬菌質體,植物菌質體,聚合酶連鎖反應,zh_TW
dc.subject.keywordCustard Apple Decline,Peanut Witches' Broom(PnWB),Mycoplasma-like Organisms (MLOs),Candidatus Phytoplasma,Polymerase Chain Reaction (PCR),en
dc.relation.page98
dc.identifier.doi10.6342/NTU202104329
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物醫學碩士學位學程zh_TW
dc.date.embargo-lift2023-10-30-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-2710202112524300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved