請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82601完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾秀如(Shiou-Ru Tzeng) | |
| dc.contributor.author | You-Shu Tsai | en |
| dc.contributor.author | 蔡侑書 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:47:35Z | - |
| dc.date.available | 2024-12-31 | |
| dc.date.copyright | 2021-12-30 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-24 | |
| dc.identifier.citation | [1] WHO. Cancer fact sheets: pancreas. IARC, Cancer Today. 2020. Retrieved from: https://gco.iarc.fr/today/data/factsheets/cancers/13-Pancreas-fact-sheet.pdf [2] Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014. 74 (11): 2913-21. [3] Park W, Chawla A, O’Reilly EM. Pancreatic Cancer: A Review. JAMA. 2021. 326 (9): 851-862. [4] World pancreatic cancer coalition. Types of pancreatic cancer. Pancreatic cancer action network. 2021. Retrieved from: https://www.pancan.org/facing-pancreatic-cancer/about-pancreatic-cancer/types-of-pancreatic-cancer/ [5] Lustgarten Foundation pancreatic cancer research. Stages of pancreatic cancer. Let’s win pancreatic cancer. 2021. Retrieved from: https://letswinpc.org/stages/ [6] World pancreatic cancer coalition. How is pancreatic cancer diagnosed? Pancreatic cancer action network. 2021. Retrieved from: https://www.pancan.org/facing-pancreatic-cancer/diagnosis/ [7] Olson SH, Kurtz RC. Epidemiology of pancreatic cancer and the role of family history. J Surg Oncol. 2013. 107 (1): 1-7. [8] Solomon S, Das S, Brand R, Whitcomb DC. Inherited pancreatic cancer syndromes. Cancer J. 2012. 18 (6): 485-491. [9] Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005. 92 (11): 2076-83. [10] Zhang, S., Wang, C., Huang, H. et al. Effects of alcohol drinking and smoking on pancreatic ductal adenocarcinoma mortality: A retrospective cohort study consisting of 1783 patients. Sci Rep. 2017. 7, 9572. [11] Longnecker DS, Karagas MR, Tosteson TD, Mott LA. Racial differences in pancreatic cancer: comparison of survival and histologic types of pancreatic carcinoma in Asians, blacks, and whites in the United States. Pancreas. 2000. 21 (4): 338-43. [12] Bracci PM. Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol Carcinog. 2012. 51 (1): 53-63. [13] Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013. 144 (6): 1252-61. [14] Higuera O, Ghanem I, Nasimi R, Prieto I, Koren L, Feliu J. Management of pancreatic cancer in the elderly. World J Gastroenterol. 2016. 22 (2): 764-75. [15] Casari I, Falasca M. Diet and Pancreatic Cancer Prevention. Cancers (Basel). 2015. 7 (4): 2309-17. [16] Gullo L, Tomassetti P, Migliori M, Casadei R, Marrano D. Do early symptoms of pancreatic cancer exist that can allow an earlier diagnosis? Pancreas. 2001. 22 (2): 210-3. [17] Lockhart AC, Rothenberg ML, Berlin JD. Treatment for pancreatic cancer: current therapy and continued progress. Gastroenterology. 2005. 128 (6): 1642-54. [18] Kordes M, Larsson L, Engstrand L, Löhr JM. Pancreatic cancer cachexia: three dimensions of a complex syndrome. Br J Cancer. 2021. 124 (10): 1623-1636. [19] von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia Sarcopenia Muscle. 2016. 7 (5): 507-509. [20] Tan, B.H. and K.C. Fearon, Cachexia: prevalence and impact in medicine. Curr Opin Clin Nutr Metab Care, 2008. 11 (4): p. 400-7. [21] Sadeghi M, Keshavarz-Fathi M, Baracos V, Arends J, Mahmoudi M, Rezaei N. Cancer cachexia: Diagnosis, assessment, and treatment. Crit Rev Oncol Hematol. 2018. 127: 91-104. [22] Bossi P, Delrio P, Mascheroni A, Zanetti M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients. 2021. 13 (6): 1980. [23] Anandavadivelan P, Lagergren P. Cachexia in patients with oesophageal cancer. Nat Rev Clin Oncol. 2016. 13 (3): 185-98. [24] Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018. 4: 17105. [25] Argilés JM, López-Soriano FJ, Busquets S. Mediators of cachexia in cancer patients. Nutrition. 2019. 66: 11-15. [26] Sanders KJ, Kneppers AE, van de Bool C, Langen RC, Schols AM. Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective. J Cachexia Sarcopenia Muscle. 2016. 7 (1): 5-22. [27] Azhar G, Wei JY. New Approaches to Treating Cardiac Cachexia in the Older Patient. Curr Cardiovasc Risk Rep. 2013. 7 (6): 480-484. [28] Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet. 2017. 389 (10075): 1238-1252. [29] Mak RH, Ikizler AT, Kovesdy CP, Raj DS, Stenvinkel P, Kalantar-Zadeh K. Wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle. 2011. 2 (1): 9-25. [30] Myhre J and Sifris D, Understanding HIV Wasting Syndrome Causes, Treatment, and Prevention of Unexplained Weight Loss. Verywell Health. 2020 [31] Chevalier S, Farsijani S. Cancer cachexia and diabetes: similarities in metabolic alterations and possible treatment. Appl Physiol Nutr Metab, 2014. 39 (6): 643-53. [32] Walsmith J, Roubenoff R. Cachexia in rheumatoid arthritis. Int J Cardiol. 2002. 85 (1): 89-99. [33] Elborn JS, Cordon SM, Western PJ, Macdonald IA, Shale DJ. Tumour necrosis factor-alpha, resting energy expenditure and cachexia in cystic fibrosis. Clin Sci (Lond). 1993. 85 (5): 563-8. [34] Kamalian N, Keesey RE, ZuRhein GM. Lateral hypothalamic demyelination and cachexia in a case of 'malignant' multiple sclerosis. Neurology. 1975. 25 (1): 25-30. [35] Ma K, Xiong N, Shen Y, Han C, Liu L, Zhang G, Wang L, Guo S, Guo X, Xia Y, Wan F, Huang J, Lin Z, Wang T. Weight Loss and Malnutrition in Patients with Parkinson's Disease: Current Knowledge and Future Prospects. Front Aging Neurosci. 2018. 19 (10):1. [36] Chang SW, Pan WS, Lozano Beltran D, Oleyda Baldelomar L, Solano MA, Tuero I, Friedland JS, Torrico F, Gilman RH. Gut hormones, appetite suppression and cachexia in patients with pulmonary TB. PLoS One. 2013. 8 (1): e54564. [37] Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014. 14 (11): 754-62. [38] Fernandez GJ, Ferreira JH, Vechetti IJ Jr, de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R, Dal-Pai-Silva M, Rogatto SR, Carvalho RF. MicroRNA-mRNA Co-sequencing Identifies Transcriptional and Post-transcriptional Regulatory Networks Underlying Muscle Wasting in Cancer Cachexia. Front Genet. 2020. 11: 541. [39] Bohnert KR, Goli P, Roy A, Sharma AK, Xiong G, Gallot YS, Kumar A. The Toll-Like Receptor/MyD88/XBP1 Signaling Axis Mediates Skeletal Muscle Wasting during Cancer Cachexia. Mol Cell Biol. 2019. 39 (15): e00184-19. [40] Marceca GP, Londhe P, Calore F. Management of Cancer Cachexia: Attempting to Develop New Pharmacological Agents for New Effective Therapeutic Options. Front Oncol. 2020. 10: 298. [41] Schmidt SF, Rohm M, Herzig S, Berriel Diaz M. Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer. 2018. 4 (12): 849-860. [42] Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014. 14 (11): 754-62. [43] Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010. 5 (6): 463-466. [44] Abramson MA, Jazag A, van der Zee JA, Whang EE. The molecular biology of pancreatic cancer. Gastrointest Cancer Res. 2007. 1 (4 Suppl 2): S7-S12. [45] Bye A, Wesseltoft-Rao N, Iversen PO, Skjegstad G, Holven KB, Ulven S, Hjermstad MJ. Alterations in inflammatory biomarkers and energy intake in cancer cachexia: a prospective study in patients with inoperable pancreatic cancer. Med Oncol. 2016. 33 (6): 54. [46] Miller J, Laird BJA, Skipworth RJE. The immunological regulation of cancer cachexia and its therapeutic implications. J Cancer Metastasis Treat. 2019. 5: 68. [47] Carson JA, Baltgalvis KA. Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc Sport Sci Rev. 2010. 38 (4): 168-76. [48] Narsale AA, Carson JA. Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care. 2014. 8 (4): 321-7. [49] Dev R, Bruera E, Dalal S. Insulin resistance and body composition in cancer patients. Ann Oncol. 2018. 29 (suppl_2): ii18-ii26. [50] Yang Q, Yan C, Wang X, Gong Z. Leptin induces muscle wasting in a zebrafish kras-driven hepatocellular carcinoma (HCC) model. Dis Model Mech. 2019. 12 (2): dmm038240. [51] Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015. 15 (2): 96-109. [52] Chen H, Xu C, Jin Q, Liu Z. S100 protein family in human cancer. Am J Cancer Res. 2014. 4 (2): 89-115. [53] Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front Immunol. 2018. 8: 1908. [54] Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K. S100 proteins in the epidermis. J Invest Dermatol. 2004. 123 (1): 23-33. [55] Wang D, Liu G, Wu B, Chen L, Zeng L, Pan Y. Clinical Significance of Elevated S100A8 Expression in Breast Cancer Patients. Front Oncol. 2018. 8: 496. [56] Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front Immunol. 2018. 8: 1908. [57] Samonig L, Loipetzberger A, Blöchl C, Rurik M, Kohlbacher O, Aberger F, Huber CG. Proteins and Molecular Pathways Relevant for the Malignant Properties of Tumor-Initiating Pancreatic Cancer Cells. Cells. 2020. 9 (6): 1397. [58] Crowe LAN, McLean M, Kitson SM, Melchor EG, Patommel K, Cao HM, Reilly JH, Leach WJ, Rooney BP, Spencer SJ, Mullen M, Chambers M, Murrell GAC, McInnes IB, Akbar M, Millar NL. S100A8 S100A9: Alarmin mediated inflammation in tendinopathy. Sci Rep. 2019. 9 (1): 1463. [59] Pin F, Bonewald LF, Bonetto A. Role of myokines and osteokines in cancer cachexia. Exp Biol Med (Maywood). 2021: 15353702211009213. [60] Markowitz J, Carson WE 3rd. Review of S100A9 biology and its role in cancer. Biochim Biophys Acta. 2013. 1835 (1): 100-9. [61] Fernandez GJ, Ferreira JH, Vechetti IJ Jr, de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R, Dal-Pai-Silva M, Rogatto SR, Carvalho RF. MicroRNA-mRNA Co-sequencing Identifies Transcriptional and Post-transcriptional Regulatory Networks Underlying Muscle Wasting in Cancer Cachexia. Front Genet. 2020. 11: 541. [62] Mancinelli R, Checcaglini F, Coscia F, Gigliotti P, Fulle S, Fanò-Illic G. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int J Mol Sci. 202. 122 (16): 8520. [63] Gheibi N, Ghorbani M, Shariatifar H, Farasat A. In silico assessment of human Calprotectin subunits (S100A8/A9) in presence of sodium and calcium ions using Molecular Dynamics simulation approach. PLoS One. 2019. 14 (10): e0224095. [64] Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res. 2018. 67 (10): 801-812. [65] Henderson SE, Makhijani N, Mace TA. Pancreatic Cancer-Induced Cachexia and Relevant Mouse Models. Pancreas. 2018. 47 (8): 937-945. [66] Callaway CS, Delitto AE, Patel R, Nosacka RL, D'Lugos AC, Delitto D, Deyhle MR, Trevino JG, Judge SM, Judge AR. IL-8 Released from Human Pancreatic Cancer and Tumor-Associated Stromal Cells Signals through a CXCR2-ERK1/2 Axis to Induce Muscle Atrophy. Cancers (Basel). 2019. 11 (12): 1863. [67] Freire PP, Fernandez GJ, de Moraes D, Cury SS, Dal Pai-Silva M, Dos Reis PP, Rogatto SR, Carvalho RF. The expression landscape of cachexia-inducing factors in human cancers. J Cachexia Sarcopenia Muscle. 2020. 11 (4): 947-961. [68] Raphael BJ, Hruban RH, Aguirre AJ, Moffitt RA, Yeh JJ, Stewart C, et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017. 32: 185–203. [69] Huang XY, Huang ZL, Yang JH, Xu YH, Sun JS, Zheng Q, Wei C, Song W, Yuan Z. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. J Exp Clin Cancer Res. 2016. 35: 46. [70] Narasimhan A, Zhong X, Au EP, Ceppa EP, Nakeeb A, House MG, Zyromski NJ, Schmidt CM, Schloss KNH, Schloss DEI, Liu Y, Jiang G, Hancock BA, Radovich M, Kays JK, Shahda S, Couch ME, Koniaris LG, Zimmers TA. Profiling of Adipose and Skeletal Muscle in Human Pancreatic Cancer Cachexia Reveals Distinct Gene Profiles with Convergent Pathways. Cancers (Basel). 2021. 13 (8): 1975. [71] Bozza S, Campo S, Arseni B, Inforzato A, Ragnar L, Bottazzi B, Mantovani A, Moretti S, Oikonomous V, De Santis R, Carvalho A, Salvatori G, Romani L. PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J Immunol. 2014. 193 (5): 2340-8. [72] Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, Koniaris LG, Zimmers TA. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 2012. 303 (3): E410-21. [73] Yamaki T, Wu CL, Gustin M, Lim J, Jackman RW, Kandarian SC. Rel A/p65 is required for cytokine-induced myotube atrophy. Am J Physiol Cell Physiol. 2012. 303 (2): C135-42. [74] Cai Z, Xie Q, Hu T, Yao Q, Zhao J, Wu Q, Tang Q. S100A8/A9 in Myocardial Infarction: A Promising Biomarker and Therapeutic Target. Front Cell Dev Biol. 2020. 8: 603902. [75] Müller I, Vogl T, Kühl U, Krannich A, Banks A, Trippel T, Noutsias M, Maisel AS, van Linthout S, Tschöpe C. Serum alarmin S100A8/S100A9 levels and its potential role as biomarker in myocarditis. ESC Heart Fail. 2020. 7 (4): 1442-1451. [76] Chen L, Chen L, Wan L, Huo Y, Huang J, Li J, Lu J, Xin B, Yang Q, Guo C. Matrine improves skeletal muscle atrophy by inhibiting E3 ubiquitin ligases and activating the Akt/mTOR/FoxO3α signaling pathway in C2C12 myotubes and mice. Oncol Rep. 2019. 42 (2): 479-494. [77] Herrmann J, Ciechanover A, Lerman LO, Lerman A. The ubiquitin-proteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc Res. 2004. 61 (1): 11-21. [78] Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M. Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol. 2012. 303 (5): C512-29. [79] Witt SH, Granzier H, Witt CC, Labeit S. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol. 2005. 350 (4): 713-22. [80] Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 2007. 6 (5): 376-85. [81] Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol. 2018. 9: 1298. [82] Ma L, Sun P, Zhang JC, Zhang Q, Yao SL. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med. 2017. 40 (1): 31-38. [83] Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Yamamoto H, Chazin WJ, Nakatani Y, Yui S, Makino H. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther. 2006. 8 (3): R69. [84] Arora A, Patil V, Kundu P, Kondaiah P, Hegde AS, Arivazhagan A, Santosh V, Pal D, Somasundaram K. Serum biomarkers identification by iTRAQ and verification by MRM: S100A8/S100A9 levels predict tumor-stroma involvement and prognosis in Glioblastoma. Sci Rep. 2019. 9 (1): 2749. [85] Serhal R, Hilal G, Boutros G, Sidaoui J, Wardi L, Ezzeddine S, Alaaeddine N. Nonalcoholic Steatohepatitis: Involvement of the Telomerase and Proinflammatory Mediators. Biomed Res Int. 2015. 2015: 850246. [86] Reinhardt K, Foell D, Vogl T, Mezger M, Wittkowski H, Fend F, Federmann B, Gille C, Feuchtinger T, Lang P, Handgretinger R, Andreas Bethge W, Holzer U. Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease. J Immunol. 2014. 193 (7): 3355-65. [87] Van Crombruggen K, Vogl T, Pérez-Novo C, Holtappels G, Bachert C. Differential release and deposition of S100A8/A9 proteins in inflamed upper airway tissue. Eur Respir J. 2016. 47 (1): 264-74. [88] Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res. 2005. 11 (14): 5146-52. [89] Schmidt J, Kajtár B, Juhász K, Péter M, Járai T, Burián A, Kereskai L, Gerlinger I, Tornóczki T, Balogh G, Vígh L, Márk L, Balogi Z. Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry. Oncotarget. 2020. 11 (28): 2702-2717. [90] Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun. 2012. 4 (1): 31-40. [91] Vizcarra E, Lluch A, Cibrián R, Jarque F, García-Conde J. CA 15.3, CEA and TPA tumor markers in the early diagnosis of breast cancer relapse. Oncology. 1994. 51 (6): 491-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82601 | - |
| dc.description.abstract | 惡質症被發現與多種疾病如愛滋病、慢性腎病、癌症皆有關係,其症狀包含持續性的脂肪流失、全身系統性發炎、體重減輕以及肌肉萎縮,是一種多因素代謝綜合症。其中,胰臟癌誘發的惡質症最為常見,與其它腫瘤相比,有近七成的胰臟癌患者於患病後期會被觀察到伴隨發展出惡質症的情形,更有近三成的胰臟癌患者死於惡質症而非腫瘤疾病。然而,目前仍沒有針對早期診斷胰臟癌誘發之惡質症的生物標記。近年來,有文獻指出腫瘤所釋出的發炎因子可能為造成個體肌肉萎縮導致惡質症的原因,於是我們利用胰臟癌細胞株MIA PaCa-2之培養液刺激C2C12小鼠肌肉細胞後,確實可誘發此現象,因此我們推測胰臟癌腫瘤可能會釋出致惡質症的相關因子並具潛力作為將來診斷的生物標記。 首先為找出具潛力之標的,我們將TCGA以及GTEx資料庫中胰臟癌患者腫瘤以及正常人的胰臟組織進行mRNA表現量的比較,再利用Human Protein Atlas排除非分泌型的蛋白後,使用DAVID以及GO軟體分析,發現其中50個胰臟癌高度表現基因在發炎反應中高度富集,且與CCR的結合 (n=13)和TLR的結合 (n=3)兩功能高度相關,此外,過去有文獻表明TLR-4為癌症惡質症的重要上游之一,我們因此利用大數據策略篩選出S100A8和S100A9為致惡質症的潛在候選因子。另外有研究指出S100A8和S100A9主要以共價結合的異二聚體S100A8/A9形式存在於生理條件下,綜合以上結果,我們最終選擇探討S100A8、S100A9和S100A8/A9作為胰臟癌致惡質症的潛在生物標記之潛力。 根據過去的研究,TLR-4藉由活化NF-κB訊息傳遞路徑使下游惡質症相關因子Atrogin-1和 MuRF-1表現量上升進而導致肌肉萎縮.我們利用C2C12肌肉細胞證實S100A8、S100A9和S100A8/A9會造成肌肉萎縮,同時也發現以上三候選因子皆會通過提高p65磷酸化激活NF-κB,使C2C12中的Atrogin-1和 MuRF-1表現量有所提高。 我們也進一步利用ELISA測定檢體中S100A8、S100A9和S100A8/A9之表現量並分析其在臨床上對胰臟癌致惡質症的重要性。發現除S100A9之外,其餘兩個候選分子S100A8和S100A8/A9相較於正常人、胰臟炎患者、胰臟癌患者,其在胰臟癌致惡質症組別的血清中有明顯的上升,且S100A8/A9異二聚體於血清中的平均濃度更達17.5 μg/mL,遠高於目前已知潛在的惡質症生物標記TNF-α 和IL-6 (分別為34.8和184.8 pg/mL)。此外,我們也進一步發現,合併使用血清中S100A8/A9、TNF-α 和IL-6三種潛在生物標記,可獲得比任一單獨使用更佳的區分效果。我們的研究結果表明S100A8/A9可能是一種相當有潛力的胰臟癌致惡質症新型生物標記,並為開發胰臟癌致惡質症早期診斷提供一突破性之契機。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:47:35Z (GMT). No. of bitstreams: 1 U0001-2412202111122000.pdf: 5810490 bytes, checksum: bdafd6d55779640180fb6f358230ba54 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "謝誌……………………………………………………………………….I 中文摘要………………………………………………………………...II Abstract………………………………………………………………...IV 縮寫……………………………………………………………………..VI 目錄…………………………………………………………………...VIII 表目錄………………………………………………………………...XIV 圖目錄…………………………………………………………………XV 附錄目錄……………………………....…………………………….XVII 第一章 導論……………………………..……………………………- 1 - 第一節 胰臟癌概論..................................................................................- 1 - 1.1 胰臟癌流行病學..................................................................................- 1 - 1.2 胰臟癌的分期、診斷與分類...............................................................- 2 - 1.2-1 胰臟癌的種類.........................................................................................- 2 - 1.2-2 胰臟癌的分期.........................................................................................- 2 - 1.2-3 胰臟癌的診斷.........................................................................................- 3 - 1.3 胰臟癌的成因......................................................................................- 4 - 1.3-1 家族病史.................................................................................................- 4 - 1.3-2 遺傳性突變基因種類.............................................................................- 4 - 1.3-3 糖尿病.....................................................................................................- 4 - 1.3-4 抽菸.........................................................................................................- 4 - 1.3-5 種族.........................................................................................................- 5 - 1.3-6 肥胖.........................................................................................................- 5 - 1.3-7 胰臟炎.....................................................................................................- 5 - 1.3-8 年齡.........................................................................................................- 5 - 1.3-9 飲食習慣.................................................................................................- 5 - 1.3-10 酒精.......................................................................................................- 5 - 1.4胰臟癌的病徵.....................................................................................- 5 - 1.5胰臟癌的治療.....................................................................................- 6 - 第二節 惡質症概論.................................................................................- 6 - 2.1 惡質症流行病學........................................................................................- 6 - 2.2惡質症的分期及診斷.................................................................................- 6 - 2.3 惡質症的成因.............................................................................................- 7 - 2.3-1 癌症.........................................................................................................- 7 - 2.3-2 慢性阻塞性肺病 (chronic obstructive pulmonary disease, COPD).......- 7 - 2.3-3 鬱血性心衰竭 (congestive heart failure, CHF)......................................- 8 - 2.3-4 慢性腎臟疾病 (chronic kidney disease, CKD).......................................- 8 - 2.3-5 愛滋病 (acquired immune deficiency syndrome, AIDS)........................- 9 - 2.3-6 其他.........................................................................................................- 9 - 2.4 惡質症的相關機制.....................................................................................- 9 - 2.5 惡質症所導致的全身性影響..................................................................- 10 - 2.5-1 骨骼肌...................................................................................................- 10 - 2.5-2 脂肪組織...............................................................................................- 11 - 2.5-3 心臟.......................................................................................................- 11 - 2.5-4 血液.......................................................................................................- 12 - 2.5-5 肝臟.......................................................................................................- 12 - 2.5-6 大腦.......................................................................................................- 12- 2.5-7 腸道.......................................................................................................- 12 - 2.5-8 胰腺.......................................................................................................- 13 - 2.5-9 骨骼.......................................................................................................- 13 - 2.5-10 睪丸和卵巢.........................................................................................- 13 - 2.6 惡質症的治療...........................................................................................- 14 - 2.6-1 藥物治療 (pharmacologic treatment) ...................................................- 14 - 2.6-2 營養治療 (nutritional treatment) ..........................................................- 14 - 2.6-3 運動治療 (exercise treatment) .............................................................- 15 - 2.7 胰臟癌與惡質症的關聯性......................................................................- 15 - 第三節 生物標記....................................................................................- 15 - 3.1 生物標記之定義.......................................................................................- 15 - 3.2 胰臟癌之生物標記...................................................................................- 16 - 3.3 惡質症之潛力生物標記...........................................................................- 16 - 3.3-1 介白素-1 (interleukin-1, IL-1) ..............................................................- 17 - 3.3-2 介白素-6 (interleukin-6, IL-6) ..............................................................- 17 - 3.3-3 腫瘤壞死因子-α (tumor necrosis factor-α, TNF-α) .............................- 17 - 3.3-4 瘦素 (Leptin).........................................................................................- 18 - 第四節 S100蛋白...................................................................................- 19 - 4.1 S100A8.....................................................................................................- 19 - 4.2 S100A9.....................................................................................................- 19 - 4.3 S100A8/A9...............................................................................................- 21 - 第五節 研究動機....................................................................................- 22 - 第二章 實驗材料................................................................................- 23 - 第一節 細胞株........................................................................................- 23 - 1.1 老鼠肌肉細胞株.......................................................................................- 23 - 1.2 人類胰腺癌細胞株...................................................................................- 23 - 第二節 臨床檢體....................................................................................- 23 - 第三節 重組蛋白....................................................................................- 23 - 第四節 抗體............................................................................................- 23 - 第五節 藥品............................................................................................- 24 - 第六節 試劑組........................................................................................- 26 - 第七節 儀器............................................................................................- 26 - 第三章 實驗方法................................................................................- 27 - 第一節 生物資訊學分析........................................................................- 27 - 1.1 資料庫選擇 (Selection of database).......................................................- 27 - 1.1-1 美國癌症基因體圖譜計畫TCGA (The Cancer Genome Atlas).........- 27 - 1.1-2 基因型-組織表達資料庫GTEx (Genotype-Tissue Expression).........- 27 - 1.1-3 人類蛋白質地圖HPA (Human Protein Atlas).....................................- 27 - 1.2 篩選工具及分析軟體 (Enrichment analysis).......................................- 28 - 1.2-1 DAVID (Database for Annotation, Visualization and Integrated Discovery).......................................................................................................- 28 - 1.2-2 GO (Gene Ontology) ............................................................................- 28 - 第二節 細胞培養....................................................................................- 28 - 2.1 小鼠肌肉纖維母細胞株 (Mouse myeloblast C2C12 cells)...................- 28 - 2.1-1 小鼠肌肉纖維母細胞繼代培養 (Cell culture of C2C12 cells)............- 28 - 2.1-2 小鼠肌肉纖維母細胞分化 (Myogenic differentiation of C2C12 cells)................................................................................................................- 29 - 2.2 人類胰腺癌細胞株 (Human pancreatic cancer cell line MIA PaCa-2).....................................................................................................................- 29 - 2.2-1 人類胰腺癌細胞繼代培養 (Cell culture of MIA PaCa-2 cells)...........- 29 - 2.2-2 人類胰腺癌細胞培養液的收集 (Collection of MIA PaCa-2 conditioned medium)..........................................................................................................- 29 - 2.3 細胞計數 (Cell counting)....................................................................... - 30 - 第三節 小鼠肌肉細胞形態之觀測........................................................- 30 - 3.1 胰臟癌細胞分泌蛋白刺激小鼠肌肉細胞之型態觀察 (Observation of morphological changes of C2C12 after MIA PaCa-2 conditioned medium treatments).....................................................................................................- 31 - 3.2 候選蛋白刺激小鼠肌肉細胞之型態觀察 (Observation of morphological changes of C2C12 after candidate protein treatments).............................- 31 - 第四節 候選蛋白製備............................................................................- 31 - 4.1 候選蛋白S100A9之表現 (Expression of candidate protein S100A9)..........................................................................................................- 31 - 4.2 候選蛋白S100A9之純化(Purification of candidate protein S100A9)..........................................................................................................- 32 - 第五節 蛋白質分析................................................................................- 32 - 5.1 蛋白質濃度之測定 (BCA protein assay) ..............................................- 32 - 5.1-1 濃度測定原理 (Principle of BCA protein assay) .................................- 32 - 5.1-2 蛋白質濃度測定試劑之成分 (Reagents of BCA protein assay).........- 32 - 5.1-3 蛋白質定量步驟 (Steps of protein quantification)...............................- 32 - 5.2 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) ..........................- 33 - 5.2-1 膠體電泳原理 (Principle of SDS-PAGE) ............................................- 33 - 5.2-2 膠體製備與架設 (Preparation of SDS-PAGE) ....................................- 33 - 5.2-3 蛋白質樣品緩衝液之配置 (Preparation of protein sample buffer).....- 34 - 5.2-4 蛋白質樣品之處理 (Preparation of protein sample)............................- 34 - 5.2-5 電泳緩衝液之製備 (Preparation of running buffer).............................- 34 - 5.2-6 蛋白質電泳之操作 (SDS-PAGE running)...........................................- 35 - 5.3 膠體之染色 (SDS-PAGE staining) ........................................................- 35 - 5.3-1 CBB染色之原理 (Principle of Coomassie brilliant blue staining)......- 35 - 5.3-2 CBB染色液之製備 (Preparation of CBB dye)....................................- 35 - 5.3-3 CBB退染液之製備 (Preparation of CBB destain buffer)....................- 35 - 5.3-4 CBB染色之步驟 (Steps of CBB staining)...........................................- 35 - 5.4 蛋白質之轉印 (Protein transferring)....................................................- 36 - 5.4-1 蛋白質轉印緩衝液之備製 (Preparation of protein transfer buffer).....- 36 - 5.4-2 蛋白質轉印之步驟 (Steps of protein transferring)...............................- 36 - 5.5 蛋白質轉印膜之染色 (PVDF staining)..................................................- 36 - 5.5-1 Fast green染劑之製備 (Preparation of Fast green dye).......................- 36 - 5.5-2 Fast green染色之步驟 (Steps of Fast green staining)..........................- 36 - 5.6 西方墨點法 (Western blot).....................................................................- 37 - 5.6-1阻攔 (Blocking) ....................................................................................- 37 - 5.6-2 抗體結合 (Antibody hybridization) .....................................................- 37 - 5.6-3 顯影呈像 (Imaging). ............................................................................- 37 - 5.6-4 影像定量 (Quantitative image analysis) ..............................................- 37 - 第六節 臨床檢體之分析........................................................................- 38 - 6.1 酵素免疫分析法 (Enzyme-linked immunosorbent assay, ELISA).....- 38 - 6.1-1 酵素免疫分析法之原理 (Principle of ELISA) ...................................- 38 - 6.1-2 酵素免疫分析法試劑之配製 (Preparation of ELISA buffer)..............- 38 - 6.1-3 酵素免疫分析法之步驟 (Steps of ELISA) .........................................- 38 - 6.2 免疫組織化學染色 (Immunohistochemistry, IHC)..............................- 39 - 6.2-1 免疫組織化學染色之原理 (Principle of IHC).....................................- 39 - 6.2-2 免疫組織化學染色試劑之配製 (Preparation of IHC buffer)..............- 39 - 6.2-3 免疫組織化學染色之步驟 (Steps of IHC)...........................................- 40 - 6.2-4 免疫組織化學染色結果定量分析 (IHC scoring system /H-score).....- 40 - 第四章 實驗結果................................................................................- 42 - 第一節 胰臟癌中致惡質症因子之篩選....................................................- 42 - 1.1 胰臟癌細胞MIA PaCa-2之分泌型蛋白誘發小鼠肌肉纖維母細胞C2C12萎縮................................................................................................................- 42 - 1.2 利用大數據分析方法找出胰臟癌分泌的潛力致惡質症因子..............- 42 - 第二節 潛力胰臟癌致惡質症因子之功能測試.......................................- 43 - 第三節 潛力胰臟癌致惡質症因子之作用機制.......................................- 44 - 第四節 潛力胰臟癌致惡質症因子調控肌肉之作用機制模型............- 45 - 第五節 潛力胰臟癌致惡質症因子作為生物標記之臨床檢體驗證...- 46 - 5.1 TNF-α和IL-6在臨床病人血清的表現、ROC分析與臨床病理特徵的相關性................................................................................................................- 46 - 5.2 S100A8在臨床病人血清的表現、ROC分析以及與臨床病理特徵的相關性................................................................................................................- 47 - 5.3 S100A8在臨床組織切片的表現與分析................................................- 48 - 5.4 S100A9在臨床病人血清的表現、ROC分析以及與臨床病理特徵的相關性................................................................................................................- 48 - 5.5 S100A9在臨床組織切片的表現與分析................................................- 48 - 5.6 S100A8/A9在臨床病人血清的表現、ROC分析與臨床病理特徵的相關性....................................................................................................................- 49 - 5.7 S100A8/A9在臨床組織切片的表現與分析..........................................- 49 - 第六節 潛力胰臟癌致惡質症生物標記ㄉ惡ROC分析.....................- 50 - 第五章 討論........................................................................................- 52 - 第一節 胰臟癌致惡質症的特殊性........................................................- 52 - 1.1 胰臟癌細胞分泌致惡質症因子..............................................................- 52 - 1.2 胰臟癌分泌具發炎特性之潛力致惡質症因子......................................- 52 - 1.3 利用生物資訊學工具找尋胰臟癌致惡質症相關因子..........................- 52 - 第二節 致惡質症因子可使小鼠肌肉細胞C2C12萎縮......................- 54 - 第三節 惡質症的調控機制....................................................................- 55 - 3.1 誘發惡質症的相關機制...........................................................................- 55 - 3.2 惡質症相關因子Atrogin-1與MuRF-1的角色...................................- 56 - 第四節 S100A8、S100A9以及S100A8/A9相關之臨床研究...........- 57 - 4.1 血清樣本...................................................................................................- 57 - 4.2 組織樣本...................................................................................................- 58 - 第五節 複合性生物標記 (multi-biomarker panel) ............................- 59 - 第六節 未來展望....................................................................................- 60 - 第六章 參考文獻................................................................................- 61 - 表..........................................................................................................- 68 - 圖..........................................................................................................- 71 - 附錄 .....................................................................................................- 90 -" | |
| dc.language.iso | zh-TW | |
| dc.subject | 胰臟癌 | zh_TW |
| dc.subject | 惡質症 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | S100A8 | zh_TW |
| dc.subject | S100A8/A9異二聚體 | zh_TW |
| dc.subject | S100A9 | zh_TW |
| dc.subject | S100A8/A9 heterodimer | en |
| dc.subject | cachexia | en |
| dc.subject | biomarker | en |
| dc.subject | S100A8 | en |
| dc.subject | S100A9 | en |
| dc.subject | pancreatic cancer | en |
| dc.title | 探討S100A8、S100A9、S100A8/A9作為胰臟癌誘發惡質症潛在生物標記的角色及臨床應用 | zh_TW |
| dc.title | "Investigating the Roles and Prospect of S100A8, S100A9, and S100A8/A9 as Potential Biomarkers of Pancreatic Cancer Associated Cachexia" | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 周綠蘋(Lu-Ping Chow) | |
| dc.contributor.oralexamcommittee | 廖偉智(Hsin-Tsai Liu),賴亮全(Chih-Yang Tseng) | |
| dc.subject.keyword | 惡質症,胰臟癌,生物標記,S100A8,S100A9,S100A8/A9異二聚體, | zh_TW |
| dc.subject.keyword | cachexia,pancreatic cancer,biomarker,S100A8,S100A9,S100A8/A9 heterodimer, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202104570 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-12-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-12-31 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2412202111122000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
