請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8259
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 席行正(Hsing-Cheng Hsi) | |
dc.contributor.author | Yi-Hsuan Teng | en |
dc.contributor.author | 鄧逸萱 | zh_TW |
dc.date.accessioned | 2021-05-20T00:50:53Z | - |
dc.date.available | 2025-08-11 | |
dc.date.available | 2021-05-20T00:50:53Z | - |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-12 | |
dc.identifier.citation | Abbas, S. A., Forghani, M., Anh, S., Donne, S. W., Jung, K. D. (2020). Carbon hollow spheres as electrochemical capacitors: Mechanistic insights. Energy Storage Materials, 24, 550-556.
Akcil, A., Erust, C., Gahan, C. S., Ozgun, M., Sahin, M., Tuncuk, A. (2015). Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – A review. Waste Management, 45, 258-271. Alfarra, A., Frackowiak, E., Béguin, F. (2004). The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Applied Surface Science, 228(1), 84-92. Arima, H., Fujita, T., Yen, W. T. (2002). Gold cementation from ammonium thiosulfate solution by zinc, copper and aluminium powders. Materials transactions, 43(3), 485-493. Balakrishnan, T., Ford, W. T. (1982). Particle size control in suspension copolymerization of styrene, chloromethylstyrene, and divinylbenzene. Journal of applied polymer science, 27(1), 133-138. Baldé, C. P., Forti, V., Gray, V., Kuehr, R., Stegmann, P. (2017). The global e-waste monitor 2017: quantities, flows and resources. Bonn/Geneva/Vienna: United Nations University (UNU), International Telecommunication Union (ITU) International Solid Waste Association (ISWA). Biniak, S., Szymański, G., Siedlewski, J., Świątkowski, A. (1997). The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 35(12), 1799-1810. Birich, A., Raslan Mohamed, S., Friedrich, B. (2018). Screening of Non-cyanide Leaching Reagents for Gold Recovery from Waste Electric and Electronic Equipment. Journal of Sustainable Metallurgy, 4(2), 265-275. Bryson, A. W. (1995). Gold Adsorption by Activated Carbon and Resin. Mineral Processing and Extractive Metallurgy Review, 15(1-4), 145-151. Burg, P., Fydrych, P., Cagniant, D., Nanse, G., Bimer, J., Jankowska, A. (2002). The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods. Carbon, 40(9), 1521-1531. Can, N., Ömür, B. C., Altındal, A. (2016). Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sensors and Actuators B: Chemical, 237, 953-961. Chen, Y., Zi, F., Hu, X., Yang, P., Ma, Y., Cheng, H.,Ma, Y., Wang, Q., Qin, X., Liu, Y., Chen, S., Wang, C. (2020). The use of new modified activated carbon in thiosulfate solution: A green gold recovery technology. Separation and Purification Technology, 230, 115834. Choudhary, B. C., Paul, D., Borse, A. U., Garole, D. J. (2018). Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater. Separation and Purification Technology, 195, 260-270. Chou, J., McFarland, E. W. (2004). Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania. Chemical communications, (14), 1648-1649. Cui, H., Anderson, C. G. (2016). Literature review of hydrometallurgical recycling of printed circuit boards (PCBs). Journal of Advanced Chemical Engineering, 6(1), 1-11. Cyganowski, P., Garbera, K., Leśniewicz, A., Wolska, J., Pohl, P., Jermakowicz-Bartkowiak, D. (2017). The recovery of gold from the aqua regia leachate of electronic parts using a core–shell type anion exchange resin. Journal of Saudi Chemical Society, 21(6), 741-750. Da Silva, M. S., de Melo, R. A., Lopes-Moriyama, A. L., Souza, C. P. (2019). Electrochemical extraction of tin and copper from acid leachate of printed circuit boards using copper electrodes. Journal of Environmental Management, 246, 410-417. Daud, W. M. A. W., Ali, W. S. W. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93(1), 63-69. Derbyshire, F., Jagtoyen, M., Andrews, R., Rao, A., Martin-Gullon, I., Grulke, E. A. (2001). Carbon materials in environmental applications. Chemistry and physics of carbon, 1-66. Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C. C., Ekberg, C. (2019). Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation and Recycling, 141, 284-298. Dong, S., Alvarez, P., Paterson, N., Dugwell, D. R., Kandiyoti, R. (2009). Study on the Effect of Heat Treatment and Gasification on the Carbon Structure of Coal Chars and Metallurgical Cokes using Fourier Transform Raman Spectroscopy. Energy Fuels, 23(3), 1651-1661. Dong, Z., Jiang, T., Xu, B., Yang, Y., Li, Q. (2019). An eco-friendly and efficient process of low potential thiosulfate leaching-resin adsorption recovery for extracting gold from a roasted gold concentrate. Journal of Cleaner Production, 229, 387-398. Dorfner, K. (Eds.). (1991). Ion Exchangers. Berlin, Boston: De Gruyter. Fan, Y., Yang, X., Zhu, B., Liu, P. F., Lu, H. T. (2014). Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. Journal of Power Sources, 268, 584-590. Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y. M., Song, L. P., Wei, F (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS nano,5(1), 191-198. Gajdovcik, P., Lehocka, D., Duplákova, D., Botko, F., Sitek, L. (2019). Design of Printed Circuit Board Production using Water Jet Technology. TEM Journal, 8(4), 1313-1318. García-Soto, M. J., González-Ortega, O. (2016). Synthesis of silica-core gold nanoshells and some modifications/variations. Gold Bulletin, 49(3-4), 111-131. Goldberg, S. (2015). Equations and Models Describing Adsorption Processes in Soils. Chemical Processes in Soils, 8, 489-517. Gröger, H., Kind, C., Leidinger, P., Roming, M., Feldmann, C. (2010). Nanoscale hollow spheres: microemulsion-based synthesis, structural characterization and container-type functionality. Materials, 3(8), 4355-4386. Ha, V. H., Lee, J. C., Huynh, T. H., Jeong, J., Pandey, B. D. (2014). Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy, 149, 118-126. Halli, P., Elomaa, H., Wilson, B. P., Yliniemi, K., Lundström, M. (2017). Improved Metal Circular Economy-Selective Recovery of Minor Ag Concentrations from Zn Process Solutions. ACS Sustainable Chemistry Engineering, 5(11), 10996-11004. Harris, P. J., Liu, Z., Suenaga, K. (2008). Imaging the atomic structure of activated carbon. Journal of Physics: Condensed Matter, 20(36), 362201. Hekmat, F., Hosseini, H., Shahrokhian, S., Unalan, H. E. (2020). Hybrid energy storage device from binder-free zinc-cobalt sulfide decorated biomass-derived carbon microspheres and pyrolyzed polyaniline nanotube-iron oxide. Energy Storage Materials, 25, 621-635. Islam, A., Ahmed, T., Awual, M. R., Rahman, A., Sultana, M., Aziz, A. A., Monir, M. U., Teo, S. H., Hasan, M. (2020). Advances in sustainable approaches to recover metals from e-waste-A review. Journal of Cleaner Production, 244, 118815. Jermakowicz-Bartkowiak, D., Kolarz, B. N. (2013). Anionits for precious metals recovery. Polimery, 7, 524. Khanra, P., Kuila, T., Kim, N. H., Bae, S. H., Yu, D. S., Lee, J. H. (2012). Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast. Chemical Engineering Journal, 183, 526-533. Kim, E. Y., Kim, M. S., Lee, J. C., Pandey, B. D. (2011). Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials, 198, 206-215. Kirubakaran, C. J., Krishnaiah, K., Seshadri, S. K. (1991). Experimental study of the production of activated carbon from coconut shells in a fluidized bed reactor. Industrial engineering chemistry research, 30(11), 2411-2416. Korolev, I., Altınkaya, P., Halli, P., Hannula, P. M., Yliniemi, K., Lundström, M. (2018). Electrochemical recovery of minor concentrations of gold from cyanide-free cupric chloride leaching solutions. Journal of Cleaner Production, 186, 840-850. Krishna, R., Unsworth, T., Edge, R. (2016). Reference Module in Materials Science and Materials Engineering: Raman Spectroscopy and Microscopy. Amsterdam, Holland: Elsevier. Kubo, S., Demir-Cakan, R., Zhao, L., White, R. J., Titirici, M. M. (2010). Porous Carbohydrate-Based Materials via Hard Templating. ChemSusChem: Chemistry Sustainability Energy Materials, 3(2), 188-194. Kumar, A., Holuszko, M., Espinosa, D. C. R. (2017). E-waste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling, 122, 32-42. Kunii, D., Levenspiel, O. (2013). Fluidization engineering. Amsterdam, Holland: Elsevier. Kwak, D. H., Han, S. B., Lee, Y. W., Park, H. S., Choi, I. A., Ma, K. B., Kim, M. C., Kim, S. J., Kin, D. H., Sohn, J. I., Park, K. W. (2017). Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Applied Catalysis B: Environmental, 203, 889-898. Lacoste-Bouchet, P., Deschênes, G., Ghali, E. (1998). Thiourea leaching of a copper-gold ore using statistical design. Hydrometallurgy, 47(2), 189-203. Laguna, A. (Ed.). (2008). Modern supramolecular gold chemistry: gold-metal interactions and applications. New York: John Wiley Sons. Johnson, R. D., Arnold, F. H. (1995). The temkin isotherm describes heterogeneous protein adsorption. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1247(2), 293-297. Li, H., Eksteen, J., Oraby, E. (2018). Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resources, Conservation and Recycling, 139, 122-139. Li, J., Zeng, X. (2012). 13 - Recycling printed circuit boards. In V. Goodship A. Stevels (Eds.), Waste Electrical and Electronic Equipment (WEEE) Handbook (pp. 287-311). Cambridge, London: Woodhead Publishing. Li, R., Deng, H., Zhang, X., Wang, J. J., Awasthi, M. K., Wang, Q., Xiao, R., Zhou, B., Du, J., Zhang, Z. (2019). High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Bioresource Technology, 273, 335-340. Li, S., Pasc, A., Fierro, V., Celzard, A. (2016). Hollow carbon spheres, synthesis and applications – a review. Journal of Materials Chemistry A, 4(33), 12686-12713. Li, X., Lau, S. P., Tang, L., Ji, R., Yang, P. (2014). Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale, 6(10), 5323-5328. Li, X., Zhang, C., Zhao, R., Lu, X., Xu, X., Jia, X., Wang, C., Li, L. (2013). Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes. Chemical Engineering Journal, 229, 420-428. Li, Y., Lin, Y., Xu, Z., Wang, B., Zhu, T. (2019). Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon. Fuel Processing Technology, 189, 110-119. Li, Y., Shi, J. (2014). Hollow‐structured mesoporous materials: chemical synthesis, functionalization and applications. Advanced Materials, 26(20), 3176-3205. Lin, G., Wang, S., Zhang, L., Hu, T., Peng, J., Cheng, S., Fu, L. (2018). Synthesis and evaluation of thiosemicarbazide functionalized corn bract for selective and efficient adsorption of Au(III) from aqueous solutions. Journal of Molecular Liquids, 258, 235-243. Lu, Y., Xu, Z. (2016). Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resources, Conservation and Recycling, 113, 28-39. Macías-García, A., Valenzuela-Calahorro, C., Gómez-Serrano, V., Espínosa-Mansilla, A. (1993). Adsorption of Pb2+ by heat-treated and sulfurized activated carbon. Carbon, 31(8), 1249-1255. McDougall, G. J., Hancock, R. D. (1981). Gold complexes and activated carbon. Gold Bulletin, 14(4), 138-153. Meghea, A., Rehner, H., Peleanu, I., Mihalache, R. (1998). Test-fitting on adsorption isotherms of organic pollutants from waste waters on activated carbon. Journal of radioanalytical and nuclear chemistry, 229(1-2), 105-110. Ng, C., Losso, J. N., Marshall, W. E., Rao, R. M. (2002). Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system. Bioresource Technology, 85(2), 131-135. Pallarés, J., González-Cencerrado, A., Arauzo, I. (2018). Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy, 115, 64-73. Pathania, D., Sharma, S., Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445-S1451. Rajagopal, R. R., Aravinda, L. S., Rajarao, R., Bhat, B. R., Sahajwalla, V. (2016). Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application. Electrochimica Acta, 211, 488-498. Sahin, M., Akcil, A., Erust, C., Altynbek, S., Gahan, C. S., Tuncuk, A. (2015). A Potential Alternative for Precious Metal Recovery from E-waste: Iodine Leaching. Separation Science and Technology, 50(16), 2587-2595. Song, Z., Duan, H., Li, L., Zhu, D., Cao, T., Lv, Y., Xiong, W., Wang, Z., Liu, M., Gan, L. (2019). High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chemical Engineering Journal, 372, 1216-1225. Sposito, G. (1989). The Chemistry of Soils. Oxford, England: Oxford University Press. Staunton, W. P. (2016). Carbon-in-pulp. In Gold Ore Processing (pp. 535-552). Amsterdam, Holland: Elsevier. Štofková, M., Štofko, M. (2002). Ion exchange resin use for Au and Ag separation from diluted solutions of thiourea. Metalurgija, 41(1), 33-36. Sui, Z., Zhang, X., Lei, Y., Luo, Y. (2011). Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon, 49(13), 4314-4321. Tansel, B. (2017). From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environment International, 98, 35-45. Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(1), 23-45. Titirici, M. M., Thomas, A., Antonietti, M. (2007). Replication and coating of silica templates by hydrothermal carbonization. Advanced functional materials, 17(6), 1010-1018. Tsai, C. Y., Chiu, C. C. (2007). A case-based reasoning system for PCB principal process parameter identification. Expert Systems with Applications, 32(4), 1183-1193. Wang, X. S., Qin, Y. (2005). Equilibrium sorption isotherms for of Cu2+ on rice bran. Process Biochemistry, 40(2), 677-680. Wang, Z. D., Yoshida, M., George, B. (2013). Theoretical study on the thermal decomposition of thiourea. Computational and Theoretical Chemistry, 1017, 91-98. Wang, Z., Zhang, B., Ye, C., Chen, L. (2018). Recovery of Au(III) from leach solutions using thiourea functionalized zeolitic imidazolate frameworks (TU*ZIF-8). Hydrometallurgy, 180, 262-270. Wu, S. H., Pendleton, P. (2001). Adsorption of Anionic Surfactant by Activated Carbon: Effect of Surface Chemistry, Ionic Strength, and Hydrophobicity. Journal of Colloid and Interface Science, 243(2), 306-315. Wu, Z., Yuan, W., Li, J., Wang, X., Liu, L., Wang, J. (2017). A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy. Frontiers of Environmental Science Engineering, 11(5), 8. Xie, F., Lu, D., Yang, H., Dreisinger, D. (2014). Solvent Extraction of Silver and Gold From Alkaline Cyanide Solution with lix 7950. Mineral Processing and Extractive Metallurgy Review, 35(4), 229-238. Yang, C., Li, J., Tan, Q., Liu, L., Dong, Q. (2017). Green Process of Metal Recycling: Coprocessing Waste Printed Circuit Boards and Spent Tin Stripping Solution. ACS Sustainable Chemistry Engineering, 5(4), 3524-3534. Yang, Y., Xue, M., Xu, Z., Huang, C. (2013). Health risk assessment of heavy metals (Cr, Ni, Cu, Zn, Cd, Pb) in circumjacent soil of a factory for recycling waste electrical and electronic equipment. Journal of Material Cycles and Waste Management, 15(4), 556-563. Young, C., Gow, N., Melashvili, M., LeVier, M. (2012). Impregnated activated carbon for gold extraction from thiosulfate solutions. Separation Technologies for Minerals, Coal, and Earth Resources, 391. Yu, H., Zi, F., Hu, X., Nie, Y., Chen, Y., Cheng, H. (2018). Adsorption of gold from thiosulfate solutions with chemically modified activated carbon. Adsorption Science Technology, 36(1-2), 408-428. Yu, H., Zi, F., Hu, X., Nie, Y., Xiang, P., Xu, J., Chi, H. (2015). Adsorption of the gold–thiosulfate complex ion onto cupric ferrocyanide (CuFC)-impregnated activated carbon in aqueous solutions. Hydrometallurgy, 154, 111-117. Zhan, L., Xu, Z. (2014). State-of-the-Art of Recycling E-Wastes by Vacuum Metallurgy Separation. Environmental Science Technology, 48(24), 14092-14102. Zhang, Y. N., Ye, Z. F., Yang, K., Dong, S. L. (2014). Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene, 536(2), 279-286. Zhang, Y., Liu, S., Xie, H., Zeng, X., Li, J. (2012). Current Status on Leaching Precious Metals from Waste Printed Circuit Boards. Procedia Environmental Sciences, 16, 560-568. Zhu, C., Guo, S., Fang, Y., Dong, S. (2010). Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS nano, 4(4), 2429-2437. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8259 | - |
dc.description.abstract | 城市採礦,代表著從廢棄電子電機設備(WEEE)產品等回收有價物質,是一種循環經濟的概念。根據文獻顯示,2016年的廢棄電子電機設備已達到44.7百萬噸且預估在2021年將成長至52.2百萬噸。將資源循環永續利用,在全球越來越受到重視,而對缺乏天然礦產的台灣來說,更是重要的議題。在廢棄電子電機設備中,以印刷電路板(PCB)為例,含有金、銀、鉑等貴重金屬,雖然這些貴重金屬的佔比相對少,但其價值卻相當高;而金在貴金屬中,依據其佔比換算價值,可獲得最高的回收價值。 本研究使用硫脲改質活性球狀碳以吸附方法回收金,首先將碳化過的酚醛樹酯放在直立高溫爐中並通入二氧化碳,經過4小時、900oC的活化後,形成球狀活性碳(ACS),再將硫脲溶入水與酒精混合溶液,倒入裝好球狀碳的燒杯中,經過8小時、60oC的加熱攪拌後,過濾烘乾而得到硫脲改質活性球狀碳(TUACS)。經過初步選擇性吸附實驗測試中可發現,在含有金、銅、鉛、鋅、鎳的水溶液中,硫脲改質活性球狀碳對金具有選擇性吸附的特性,因此,進一步對於此材料進行物性化性分析,根據元素分析(EA)結果可得知,硫含量從0上升至10%;而BET比表面積從2445.3 m2/g下降至1948 m2/g,顯示硫官能基成功吸附在球狀活性碳上造成表面積與孔體積下降。經過XPS分析,可得知硫官能基可能為C-S鍵與亞硫酸鹽離子sulfite ion (SO32-),可協助金離子還原為元素金的鍵結官能基。另外,探討時間、劑量、pH值對硫脲改質活性球狀碳吸附金的影響,發現達到飽和吸附平衡時間為96小時、且在pH=2、劑量為0.01 g L-1,其吸附金的回收效率可達70%左右,而劑量增加至0.06 g L-1時,其回收效率可上升至99%左右。在等溫吸附實驗中,可得知其較符合Langmuir等溫吸附曲線。在脫附實驗中,利用0.3 M的硫代硫酸銨(ammonium thiosulfate)進行脫附實驗,脫附時間為24小時,得到的脫附效率可達到94%,證實使用硫代硫酸銨脫附元素金為可行方法。最後進行重複吸附與脫附試驗,了解此材料之重複利用率,經過五次的重複吸脫附,其金回收效率仍可達到90%,表示此材料很適合重複使用。 | zh_TW |
dc.description.abstract | Urban mining represents the recycling of valuable materials from waste electrical and electronic equipment (WEEE) products, and it is a concept of circular economy. According to the literature, the waste electrical and electronic equipment in 2016 has reached 44.7 million tons and is expected to grow to 52.2 million tons in 2021. The sustainable use of resources is increasingly important all over the world. For Taiwan, which lacks of natural minerals, sustainable use of resources in waste is even more vital. Among the WEEE, printed circuit boards (PCBs) contain precious metals such as gold, silver, and platinum. Although these precious metals account for a relatively small proportion, their values are very high. Gold is obviously one of the metals with the highest recycling value and worth to be recycled. In this study, thiourea modified activated carbon sphere (TUACS) was used to recover gold by adsorption. First, carbonized phenol-formaldehyde (PF) resin was carbonized using carbon dioxide in an upright high-temperature furnace at 500oC for 1 h. After 4 hours of activation at 900oC, activated carbon sphere (ACS) is formed. ACS was then immensed in to a mixed solution of DI water and ethanol (EtOH) with thiourea dissolved in. The solution was heated and stirred at 60oC for 8 h, then filtered and dried to obtain TUACS. The selective adsorption experiment tests showed that TUACS has excellent ability to selectively adsorb gold in aqueous solution containing gold, copper, lead, zinc, and nickel ions. Elemental analysis results showed that the sulfur content increased from 0 to 10% and the BET specific surface area determined by N2 adsorption decreased from 2445.3 to 1948 m2 g-1, indicating that sulfur functional groups were successfully impregnated in TUACS, causing a decrease in surface area and pore volume. XPS analysis showed that the sulfur functional groups were mainly as C-S bonds or sulfite ion (SO32-), which may be the key functional groups that bond and reduce gold ions to elemental gold. The time to reach an adsorption equilibrium of gold was 96 h at pH= 2 with the dosage of 0.01 g L-1, and the gold recovery can reach about 70%. When the dosage increased to 0.06 g L-1, the gold recovery efficiency of TUACS can rise to about 99%. The isotherm adsorption experiments suggest that the gold adsorption by TUACS is better fitted with the Langmuir isotherm than the Freundlich isotherm.by using 0.3 M ammonium thiosulfate ((NH4)2S2O3) to desorb gold, the desorption efficiency could reach 94% in 24 h. These results confirm that the element gold present in TUACS can be successfully desorbed with ammonium thiosulfate. Finally, repeated adsorption and desorption tests indicate that after five repeated adsorption and desorption, the gold recovery efficiency of TUACS can still reach 90%, confirming that the TUACS fabricated in this study is a novel gold-selective adsorber with high adsorption efficiency and reuse ability. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:50:53Z (GMT). No. of bitstreams: 1 U0001-1108202016454900.pdf: 3104499 bytes, checksum: 391b8e2940163f3a7e3ec41c3ad04695 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1 1.1 Motivation………………………………………………………………………….1 1.2 Research objectives………………………...……………….……………..….….... 2 Chapter 2 Literature Review ...4 2.1 Waste electric and electronic equipment (WEEE)….…………….……………… 4 2.2 Introduction of printed circuit board (PCB)…………………………..………….. 7 2.2.1 Metals of waste printed circuit boards (WPCBs) 7 2.2.2 Characteristic of gold 8 2.3 Methods of precious metals recovery from WPCBs…………………………….….9 2.3.1 Pyrometallurgy 9 2.3.2 Hydrometallurgy 10 2.3.2.1 Leaching agent: cyanide 12 2.3.2.2 Leaching agent: thiourea 12 2.3.2.3 Leaching agent: thiosulfate 13 2.3.3 Purification of leaching solution 14 2.3.3.1 Ion exchange by resin 14 2.3.3.2 Activated carbon adsorption 15 2.3.3.3 Electrometallurgical processes 17 2.3.3.4 Gold cementation 19 2.4 Activated Carbon………………………………………………………….………20 2.4.1 Variety of Activated Carbon 20 2.4.2 Preparation of Activated Carbon Sphere (ACS) 22 2.4.2.1 Hard templating 22 2.4.2.2 Soft templating 24 2.4.2.3 Hydrothermal carbonization 25 2.4.2.4 Physical Activation and Chemical Activation 26 2.4.3Application of AC…………………………………………………………..28 2.5 Adsorption………………………………………………………………………... 28 2.5.1 Langmuir isotherm 29 2.5.2 Freundlich isotherm 30 2.5.3 Temkin isotherm 31 Chapter 3 Materials and Methods 32 3.1 Research framework…………………………………………………….……….. 32 3.2 Preparation of activated carbon sphere (ACS)………………………….……….. 34 3.3 Preparation of modified activated carbon sphere by thiourea (TUACS)…………36 3.4 Analytical instruments, experimental equipment, experimental reagents…….…..37 3.4.1 Elemental analysis (EA) 38 3.4.2 X-ray diffraction (XRD) 38 3.4.3 X-ray photoelectron spectroscopy (XPS) 39 3.4.4 Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS)….. 39 3.4.5 Transmission electron microscopy (TEM) 39 3.4.6 Specific surface area, pore volume, and pore size distribution (PSD) 40 3.4.7 Raman spectroscopy 41 3.4.8 Inductively couple plasma optical emission spectrometry (ICP-OES) 41 3.4.9 Experimental equipment 42 3.4.10 experimental reagents 43 3.5 Adsorption experiments of Au by TUACS…………………………….………….44 3.6 Selective adsorption experiments of Cu, Pb, Zn, Ni, and Au by carbonized PF resin sphere and TUACS……………………………………………………….……….45 3.7 Desorption experiments of Au………………………………………….…………46 3.8 Repeated adsorption and desorption experiments of Au………………….………47 Chapter 4 Results and Discussion 48 4.1 Physical and chemical characterization of ACS and TUACS…………….………48 4.1.1 Elemental analysis (EA) 48 4.1.2 Scanning Electron Microscopy/ Energy dispersive X-ray spectroscopy (SEM/EDS) 49 4.1.3 Transmission Electron Microscopy (TEM) 53 4.1.4 Specific surface area, pore volume, and pore size distribution (PSD) 54 4.1.5 Raman spectroscopy 57 4.1.6 X-ray Diffraction (XRD) 59 4.1.7 X-ray Photoelectron spectroscopy (XPS) 60 4.2 Adsorption experiments of Au by TUACS…………………………….………….65 4.2.1 Effect of contact time 65 4.2.2 Effect of pH value 67 4.2.3 Effect of TUACS dosage 69 4.2.4 Adsorption isotherm experiments of TUACS 70 4.3 Comparison of selective adsorption capacity by carbonized PF resin spheres and TUACS……………………………………………………………………………73 4.4 Selective adsorption experiments by TUACS for real wastewater metal content..75 4.5 Desorption experiments of Au……………………………………………………77 4.6 Repeated adsorption and desorption experiments of Au……………………….…78 4.7 Mechanism………………………………………………………………….…….80 Chapter 5 Conclusions and Suggestions 82 5.1 Conclusions…………………………………………………………….…………82 5.2 Suggestions……………………………………………………………….……….83 Reference 84 | |
dc.language.iso | en | |
dc.title | 以硫脲改質球狀活性碳進行印刷電路板廢水中金之選擇性吸附 | zh_TW |
dc.title | Selective Adsorption of Gold from PCB Wastewater by Thiourea-Modified Activated Carbon Sphere | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林進榮(Chin-Jung Lin),余炳盛(Bing-Sheng Yu),江右君(Yu-Chun Chiang) | |
dc.subject.keyword | 活性球狀碳,硫脲,選擇性吸附,金,電子廢棄物, | zh_TW |
dc.subject.keyword | Activated carbon sphere,Thiourea,Selective adsorption,Gold,Electronic waste, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU202002980 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-08-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
dc.date.embargo-lift | 2025-08-11 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202016454900.pdf 此日期後於網路公開 2025-08-11 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。